• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于機(jī)器學(xué)習(xí)方法的丙型肝炎病毒非結(jié)構(gòu)蛋白5B聚合酶抑制劑活性預(yù)測(cè)

    2011-12-11 09:09:54
    物理化學(xué)學(xué)報(bào) 2011年6期
    關(guān)鍵詞:四川大學(xué)丙型肝炎抑制劑

    呂 巍 薛 英

    (1山東農(nóng)業(yè)大學(xué)生命科學(xué)學(xué)院,作物生物學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,山東泰安271018;2四川大學(xué)化學(xué)學(xué)院,教育部綠色化學(xué)與技術(shù)重點(diǎn)實(shí)驗(yàn)室,成都610064;3四川大學(xué)生物治療國(guó)家重點(diǎn)實(shí)驗(yàn)室,成都610041)

    基于機(jī)器學(xué)習(xí)方法的丙型肝炎病毒非結(jié)構(gòu)蛋白5B聚合酶抑制劑活性預(yù)測(cè)

    呂 巍1薛 英2,3,*

    (1山東農(nóng)業(yè)大學(xué)生命科學(xué)學(xué)院,作物生物學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,山東泰安271018;2四川大學(xué)化學(xué)學(xué)院,教育部綠色化學(xué)與技術(shù)重點(diǎn)實(shí)驗(yàn)室,成都610064;3四川大學(xué)生物治療國(guó)家重點(diǎn)實(shí)驗(yàn)室,成都610041)

    在丙型肝炎病毒(HCV)的基因復(fù)制和蛋白質(zhì)成熟的過程中,非結(jié)構(gòu)蛋白5B(NS5B)作為RNA依賴的RNA聚合酶起到了重要的作用.抑制NS5B聚合酶可以阻止丙型肝炎病毒的RNA復(fù)制,因此成為一種治療丙型肝炎的有效方法.通過計(jì)算機(jī)方法進(jìn)行虛擬篩選和預(yù)測(cè)NS5B聚合酶抑制劑已經(jīng)變得越來越重要.本文主要采用機(jī)器學(xué)習(xí)方法(支持向量機(jī)(SVM)、k-最近相鄰法(k-NN)和C4.5決策樹(C4.5 DT))對(duì)已知的丙型肝炎病毒NS5B蛋白酶抑制劑與非抑制劑建立分類預(yù)測(cè)模型.1248個(gè)結(jié)構(gòu)多樣性化合物(552個(gè)NS5B抑制劑與696個(gè)非NS5B抑制劑)被用于測(cè)試分類預(yù)測(cè)系統(tǒng),并用遞歸變量消除法選擇與NS5B抑制劑相關(guān)的性質(zhì)描述符以提高預(yù)測(cè)精度.獨(dú)立驗(yàn)證集的總預(yù)測(cè)精度為84.1%-85.0%,NS5B抑制劑的預(yù)測(cè)精度為81.4%-91.7%,非NS5B抑制劑的預(yù)測(cè)精度為78.2%-87.2%.其中支持向量機(jī)給出最好的NS5B抑制劑預(yù)測(cè)精度(91.7%);C4.5決策樹給出最好的非NS5B抑制劑預(yù)測(cè)精度(87.2%);k-最近相鄰法給出最好的總預(yù)測(cè)精度(85.0%).研究表明機(jī)器學(xué)習(xí)方法可以有效預(yù)測(cè)未知數(shù)據(jù)集中潛在的NS5B抑制劑,并有助于發(fā)現(xiàn)與其相關(guān)的分子描述符.

    機(jī)器學(xué)習(xí)方法;分子描述符;遞歸變量消除法; 支持向量機(jī);丙型肝炎病毒

    1 Introduction

    Hepatitis C virus(HCV)is a positive strand RNA virus of the Flaviviridae family.1The capsid and envelope are composed of four structural proteins and there are five non-structural proteins which play important roles in protein maturation and gene replication.HCV is responsible for a variety of clinical conditions ranging from acute viral hepatitis to chronic liver disease and cirrhosis.2It is the major cause of liver cancer and about two thirds of all liver transplants are a result of HCV infection.Since the HCV cDNA was cloned successfully by Choo et al.in 1989,3there have been many researches about the genome,function of protein,and biological function of HCV.In 2000,according to the World Health Organization survey,there are estimated 170 million people worldwide chronically infected by the HCV and an estimated 3-4 million new infections annually.4Currently,there is no effective vaccine to prevent hepatitis.Therefore,drug development for the treatment of HCV has become a hot spot for many scientists.The current standard of care for HCV,which is based on a combination of Interferon(IFN)and Ribavarin,can cure HCV infections,but is often inadequate.5In addition,there will be serious side effects and a low success rate in the main viral genotype. The need for improved therapies is pressing because although the incidence of new HCV infections is declining,mortality is expected to increase into the middle of the next decade.6

    The lack of a highly effective and safe treatment option for the HCV highlights the necessity of developing more efficient means of combating and curing this viral disease ultimately.A primary focus is currently on finding new inhibitors of the NS5B polymerase.As we all know,NS5B polymerase has been identified as an RNA dependent RNA polymerase,which can be essential for replication since it both affects the synthesis of a(-)-stranded HCV RNA template and regenerates the (+)-stranded genomic RNA.7Inhibiting NS5B polymerase will prevent the RNA replication,so it has a significant effect on the treatment of HCV.In recent years,some X-ray crystallographic structures of NS5B have been determined and their resolutions are more accurate too,such as the structures(PDB ID: 3mwv,3mww,3gyn,etc.).8,9The modulation of NS5B inhibitors has become more explicit10and more databases of commercially available compounds were generated.In this situation, the area of NS5B inhibitor predicted by the non-structurebased computational methods has developed too.

    The machine learning(ML)methods are very important computational methods and efficacious tools in the virtual screening and the computer-aided drug design.They have been applied in drug pharmacodynamics,pharmacokinetics,and toxicology,11-13with much achievement.Recursive feature elimination(RFE)method,14,15which has been extensively used in the feature selecting,is employed in this research for selecting the most relevant molecular descriptors to NS5B inhibitory liability.To assess the prediction accuracy of the models in this research,two different evaluation methods have been employed which are valid for estimating drug prediction models.One is five-fold cross validation16and the other is evaluation by an independent validation set.

    In this paper,we use ML methods,such as support vector machines(SVM),k-nearest neighbor(k-NN),and C4.5 decision tree(C4.5 DT),to study NS5BIs and non-NS5BIs for developing a fast and cost-efficient tool for facilitating NS5BIs prediction and design,and we employ the RFE method to select the descriptors which are most relative to the discrimination of NS5BIs and non-NS5BIs for improving the accuracy of the prediction models.

    2 Methodology

    2.1 Selection of NS5BIs and non-NS5BIs

    Atotal of 1313 compounds about NS5B with known IC50values were selected from a number of published papers9,17-70(See Supporting Information:Table S1).Based on the tested experimental data in prevenient researches,35when the IC50value is lower than 300 nmol·L-1,the molecule has good activity.And in the other papers,24,56it was indicated that when the IC50value is between 400 and 600 nmol·L-1,the molecule has inhibitory potential too,but not strong.For example,the compounds(07-1-20 and 07-1-21)have the activity of inhibiting NS5B and their IC50values are 200 and 300 nmol·L-1,respectively.35The compound(08-9-4c)with IC50value of 440 nmol·L-1can inhibit NS5B activity,however,methylation of the R3 sulfonamide moiety present in 08-9-4b(27 nmol·L-1)resulted in significant loss of NS5B inhibition properties.56The phenyl ethyl amide compounds(05-3-43 and 05-3-44)with substituents at R3 with Cl and F are little potential at inhibiting NS5B and the IC50values are 500 and 600 nmol·L-1,respectively.24The compound (09-15-11f)with the IC50value of 685 nmol·L-1is a weaker NS5B inhibitor.61For compounds(09-12-4n and 09-12-4s) with the IC50values of 780 and 730 nmol·L-1,respectively,the inhibiting activity for NS5B is very weak because of an αbranched in the R1 moiety.58In this work,based on experimental data mentioned above,one method was applied to assign compounds as NS5BIs and non-NS5BIs.71In all molecules collected,we can divide them into three sets based on the IC50values of these molecules.One set includes 552 inhibitors(IC50≤400 nmol·L-1),the second set includes 696 non-inhibitors (IC50≥600 nmol·L-1).The last set includes 65 molecules(400 nmol·L-1<IC50<600 nmol·L-1)which are ambiguous between inhibitors and non-inhibitors.In these three sets,we only choose the first two sets to test.

    The two-dimensional(2D)structure of each of the compounds was generated by using ChemDraw72and was subsequently converted into three-dimensional(3D)structure by using Corina73for calculating the quantum chemical properties. The 3D structure of each compound was manually inspected to ensure that the chirality of each chiral agent is properly generated.All the generated geometrics have been fully optimized without symmetry restrictions.

    Firstly,all compounds were divided into training set,testing set,and independent validation set according to their distributions in the chemical space defined by their structural and chemical features.74Compounds of similar structural and chemical features were evenly assigned into separate sets.For those compounds without enough structurally and chemically similar counterparts,they were assigned,in order of priority,to the training set and then the testing set,respectively.The ID of compound in every subset is supplied in Table S2 in Supporting Information.The training set was used by SVM to develop a statistical model.The testing set was used by SVM to optimize the parameters of SVM classification algorithm,and the independent validation set was used for assessing the classification accuracy of the model.Then,all compounds in training set and testing set were randomly divided into five subsets of approximately equal size.After training the SVM with a collection of four subsets,the performance of the SVM was tested against the fifth subset.This process was repeated five times, so that every subset was once used as the test data.

    2.2 Molecular descriptors

    Molecular descriptors were used to routinely represent quantitatively structural and physicochemical properties of molecules,which have been extensively applied in the structureactivity relationship(SAR),14quantitative structure-activity relationship(QSAR),75and other computational researches of pharmaceutical agents.76,77In this work,a total of 198 molecular descriptors listed in Table S3 in Supporting Information were used,which were selected from more than 1000 descriptors described in the literature by eliminating those descriptors that are obviously redundant.78The resulting 198 molecular descriptors include 18 descriptors in the class of simple molecular properties,27 descriptors in the class of molecular connectivity and shape,97 descriptors in the class of electro-topological state,31 descriptors in the class of quantum chemical properties,and 25 descriptors in the class of geometrical properties. They were computed from the 3D structure of each compound by using the molecular descriptor computing program.79The irrelevant and redundant descriptors to NS5BIs and non-NS5BIs were further eliminated by using feature selection method.11,80

    2.3 Feature selection method

    In a dataset with a fixed number of samples,excessive descriptors may cause a predicting model to be over-fitted to affect its precision.Therefore,feature selection methods have become increasingly prevalent.It is good at enhancing the performance of ML methods by eliminating the molecular descriptors which are redundant and irrelevant to the discrimination of different datasets.12Recursive feature elimination(RFE),one of the feature selection methods,has been widely acknowledged because of its high efficacy manifested in discovering informative feature molecular descriptors most relevant to the cancer classification,13prediction of P-glycoprotein substrates,81prediction of tetrahymena pyriformis toxicity chemicals,12and the drug activity analysis.11RFE with SVM is used to reduce the other redundant and unrelated descriptors.For a fixed parameter σ,in the first step,the SVM builds a model with the complete set of descriptors.In the second step,the contribution of the descriptors is ranked in the datasets based on a criterion score which is calculated by a scoring function.In the third step,the m ranked lowest descriptors are washed out.Finally, the SVM classifier is retrained by using the remaining descriptors,and the corresponding prediction accuracy is computed by means of five-fold cross validation.All the four steps are then repeated for other σ until all descriptors have been removed. After the completion of these procedures,the set of descriptors and parameter σ which give the best prediction accuracy are selected.

    The choice of the parameter m affects the performance of SVM as well as the speed of feature selection.To control the size of the selected descriptors,we only consider the number of descriptors smaller than one-fifth of the whole descriptors.78Our earlier studies suggested that the performance of a SVM system with m=5 is only reduced by a few percentages smaller than that with m=1,which is consistent with the findings from other studies.15In this work,m=5 is used for the sake of computational efficiency.

    2.4 Machine learning methods

    There are a number of downloadable ML methods software packages.For example,PHAKISO(http://www.phakiso.com/ index.htm)and WEKA(http://www.cs.waikato.ae.nz/~ml/weka)for a collection of ML methods software,82NeuNet(http:// www.cormactech.com/neunet/index.html)for neural network, SVM-Light(http://svmlight.joachims.org)for SVM software were used in many researches.We used our in-house program to build SVM model83for predicting the compounds from NS5BIs and non-NS5BIs.And we also use the other ML methods to predict them,for example,k-NN84and C4.5.85Then the results calculated by these ML methods are compared.

    2.5 Performance evaluation

    As in the case of all discriminative methods,86the performance of ML methods can be measured by the quantity of true positives(TP),true negatives(TN),false positives(FP),and false negatives(FN),which are the number of NS5BIs predicted as NS5BIs,non-NS5BIs predicted as non-NS5BIs,non-NS5BIs predicted as NS5BIs,NS5BIs predicted as non-NS5BIs,respectively.There are several accuracy functions for measuring prediction performance,which include sensitivity SE=(TP/(TP+FN))×100%(prediction accuracy for NS5BIs), specificity SP=(TN/(TP+FN))×100%(prediction accuracy for non-NS5BIs),the overall prediction accuracy(Q),and Matthews correlation coefficient(C)are given by Eq.(1)and Eq.(2),respectively.

    3 Results and discussion

    3.1 Overall prediction accuracies and merit of the machine learning methods

    SVM prediction of NS5BIs is evaluated by the method of 5-fold cross validation.Through comparing the accuracies of SVM,which used 5-fold cross validation with and without theuse of RFE of feature selection method,we find that the feature selection method plays an important role in the performance of SVM for the prediction of NS5BIs and non-NS5BIs. The results are listed in Table 1.Through this method,we find 24 descriptors which are critical for SVM model.The 24 descriptors are listed in Table 2.The accuracies of SVM with RFE are 81.8%for NS5BIs and 81.8%for non-NS5BIs;and the accuracies of SVM without RFE are 90.2%for NS5BIs and 53.1%for non-NS5BIs.The average accuracies with and without RFE are 82.0%and 69.8%,respectively.It obviously indicates that the method with RFE is substantially better than that derived from SVM without RFE,especially for NS5BIs.This suggests that RFE is useful in selecting the proper set of molecular descriptors for the prediction of NS5BIs.The results show that the selection of appropriate molecular descriptors is important for the improvement of average prediction accuracy,but more important for implying which pharmacological features are more propitious to distinguish NS5BIs and non-NS5BIs.

    Table 1 Accuracies of NS5BIs and non-NS5BIs derived from SVM without and with the use of the RFE method (SVM+RFE)by using five-fold cross validation

    Table 2 The 24 molecular descriptors selected from the RFE method for the classification of NS5BIs and non-NS5BIs

    Table 3 gives the prediction accuracies of NS5BIs and non-NS5BIs derived from other two machine learning methods(k-NN and C4.5 DT)by using the RFE selected descriptors and five-fold cross validation method.For comparison,those results from SVM are also labeled in Table 3.By comparing the prediction accuracies from the three methods,we have obtained several results.For NS5BIs,the accuracies of these methods are in the range of 81.4%-91.7%with SVM givingthe best accuracy at 91.7%.For non-NS5BIs,the accuracies are in the range of 78.2%-87.2%with C4.5 DT giving the best accuracy at 87.2%.Lastly,for both NS5BIs and non-NS5BIs, the average accuracies are in the range of 84.1%-85.0%with k-NN giving the best accuracy at 85.0%,C4.5 DT giving the second best accuracy at 84.7%and SVM giving the worst accuracy at 84.1%.

    Table 3 Comparison of the prediction accuracies of NS5BIs and non-NS5BIs derived from different machine learning methods by using independent validation sets

    A frequently used method for checking whether a prediction system is over-fitting is to compare the prediction accuracies determined by using cross validation methods and independent validation sets.Since descriptor selection is performed by using the cross validation method as the modeling testing sets,an over-fitted classification system is expected to have much higher prediction accuracy for the cross validation sets than that for the independent validation sets.As shown in Table 1 and Table 3,the predication accuracies of the SVM systems based on the five-fold cross validation method and those based on independent validation sets are similar.This shows that the SVM classi-fication systems in this work are unlikely over-fitted.

    Fig.1 Structures of the part of misclassified NS5BIs

    Fig.2 Structures of the part of misclassified non-NS5BIs

    Overall,our study suggests that ML methods are useful for facilitating the prediction of novel NS5BIs from compounds with diverse structures.Another advantage of the SVM studied in this work is that they do not require the knowledge about the molecular mechanism or structure-activity relationship of a particular drug property.

    3.2 Molecular descriptors associated with the diversity between NS5BIs and non-NS5BIs

    Selecting molecular descriptors which are most relevant to the prediction of NS5BIs is important for optimizing the prediction models and for elucidating the molecular factors contributing to NS5BIs.Commonly,QSAR models particularly design a group of specific descriptors to represent the studied NS5BIs which have similar structural groups or structural alerts.34In this research,a total of 24 molecular descriptors are selected by RFE.These descriptors,given in Table 2,represent the structural and physicochemical properties associated with the diversity between NS5BIs and non-NS5BIs.All of them are found to match or partially match those descriptors used in the published NS5BIs QSAR models.34The physicochemical properties,such as steric,electrostatic,hydrophobic,hydrogen bond acceptor,and hydrogen bond donor,are incorporated in the comparative molecular similarity indices analysis(CoMSIA)and comparative molecular field analysis(CoMFA)methods for the studies of NS5B polymerase inhibitors.34In our work,the descriptors selected by RFE method are the same as the results in other researches.34For example,topological state descriptors including S(1),S(5),S(8),S(13),S(25),S(28), S(76)and Tbmdd are selected which are related with steric property;χen(electronegativity index),QH,Max(most positive charge on H atoms),QC,Max(most positive charge on C atoms), QN,SS(sum of squares of charges on N atoms),QO,SS(sum of squares of charges on O atoms),Rpc(relative positive charge), Rnc(relative negative charge),Svpc(sum of van der Waals surface areas of positively charged atoms)and Svpcw(sum of charge weighted van der Waals surface areas of positively charged atoms)are related to electrostatic;and the descriptors of Shpb(hydrophobic region)and Hiwpb(hydrophobic integy moment)are selected to descript the hydrophobic property in our work.In addition,Srivastava et al.87constructed the QSAR model of NS5BIs with several molecular descriptors including electronegativity(χeq)which is selected as χen(electronegativity index)in our work.

    3.3 Misclassified compounds in the independent validation set

    There are 53 molecules incorrectly classified by our SVM system with the independent validation set method.The predic-tion accuracy is 91.7%for NS5BIs,78.2%for non-NS5BIs, and 84.1%for all of them.And for NS5BIs set,which is comprised of 145 molecules,there are 12 molecules which are predicted to non-NS5BIs,on the other hand,for non-NS5BIs set, which is comprised of 188 molecules,there are 41 molecules which are predicted to NS5BIs.All of these misclassified molecules are shown in Fig.1,Fig.2 and Fig.S1 in Supporting Information.From these figures,we can see that the misclassified agents are mainly the compounds with multiple and dense rings.It suggests that using current molecular descriptors may not be sufficient to properly show the molecular features.So it implies that further improvement and refinement of our molecular descriptors may be needed.

    4 Conclusions

    This study shows that machine learning methods,especially SVM,are useful for facilitating the prediction of NS5BIs without the knowledge of mechanisms but only with the choice of specific molecular descriptors.However,the current ML methods are limited in their ability to facilitate the study of the mechanism of predicted properties.Nevertheless,we believe in the near future,this weakness may be partially overcome by the development of regression-based ML methods.In addition, our study indicates that prediction accuracy of this model is affected by the molecular descriptors selected by RFE which can further help to optimally select molecular descriptors.To conclude,the availability of more extensive information about various NS5BIs and associated mechanisms will facilitate the development of machine learning methods into practical tools for the prediction of different types of NS5BIs in the early stage of drug development.

    Supporting Information Available:The information of the investigated dataset is provided in Tables S1,S2,S3 and Fig.S1. This information is available free of charge via the internet at http://www.whxb.pku.edu.cn.

    (1) Bréchot,C.Digest.Dis.Sci.1996,41,6S.

    (2) Hoofnagle,J.H.Hepatology 1997,26,15S.

    (3) Choo,Q.L.;Kuo,G.;Weiner,A.J.;Overby,L.R.;Bradley,D. W.;Houghton,M.Science 1989,244,359.

    (4)World Health Organization(WHO)Hepatitis C Fact Sheet No. 164,Rev,October,2000.

    (5)Cornberg,M.;Wedemeyer,H.;Manns,M.P.Curr. Gastroenterol.Rep.2002,4,23.

    (6) Garber,K.;Arbor,A.Nat.Biotechnol.2007,25,1379.

    (7) Appel,N.;Schaller,T.;Penin,F.;Bartenschlager,R.J.Biol. Chem.2006,281,9833.

    (8) Laplante,S.R.;Gillard,J.R.;Jakalian,A.;Aubry,N.; Coulombe,R.;Brochu,C.;Tsantrizos,Y.S.;Poirier,M.; Kukolj,G.;Beaulieu,P.L.J.Am.Chem.Soc.2010,132,15204.

    (9) Ellis,D.A.;Blazel,J.K.;Tran,C.V.;Ruebsam,F.;Murphy,D. E.;Li,L.S.;Zhao,J.;Zhou,Y.;McGuire,H.M.;Xiang,A.X.; Webber,S.E.;Zhao,Q.;Han,Q.;Kissinger,C.R.;Lardy,M.; Gobbi,A.;Showalter,R.E.;Shah,A.M.;Tsan,M.;Patel,R.A.; LeBrun,L.A.;Kamran,R.;Bartkowski,D.M.;Nolan,T.G.; Norris,D.A.;Sergeeva,M.V.;Kirkovsky,L.Bioorg.Med. Chem.Lett.2009,19,6047.

    (10)Biswal,B.K.;Wang,M.;Cherney,M.M.;Chan,L.; Yannopoulos,C.G.;Bilimoria,D.;Bedard,J.;James,M.N.G. J.Mol.Biol.2006,361,33.

    (11) Xue,Y.;Li,Z.R.;Yap,C.W.;Sun,L.Z.;Chen,X.;Chen,Y.Z. J.Chem.Inf.Comput.Sci.2004,44,1630.

    (12)Xue,Y.;Li,H.;Ung,C.Y.;Yap,C.W.;Chen,Y.Z.Chem.Res. Toxicol.2006,19,1030.

    (13)Lin,H.H.;Han,L.Y.;Yap,C.W.;Xue,Y.;Liu,X.H.;Zhu,F.; Chen,Y.Z.J.Mol.Graph.Model.2007,26,505.

    (14)Yu,H.;Yang,J.;Wang,W.;Han,J.Proc.IEEE Comput.Soc. Bioinformatics Conf.2003,220.

    (15) Furlanello,C.;Serafini,M.;Merler,S.;Jurman,G.Neural Networks 2003,16,641.

    (16) Trotter,M.W.B.;Holden,S.QSAR Comb.Sci.2003,22,533.

    (17) Pace,P.;Nizi,E.;Pacini,B.;Pesci,S.;Matassa,V.;De-Francesco R.;Altamura S.;Summa V.Bioorg.Med.Chem.Lett.2004,14, 3257.

    (18) Gopalsamy,A.;Lim,K.;Ellingboe,J.W.;Krishnamurthy,G.; Orlowski,M.;Feld,B.;van Zeijlb,M.;Howe,A.Y.M.Bioorg. Med.Chem.Lett.2004,14,4221.

    (19) Stansfield,I.;Avolio,S.;Colarusso,S.;Gennari,N.;Narjes,F.; Pacini,B.;Ponzi,S.;Harper,S.Bioorg.Med.Chem.Lett.2004, 14,5085.

    (20) Chan,L.;Pereira,O.;Reddy,T.G.;Das,S.K.;Poisson,C.; Courchesne,M.;Proulx,M.L.;Siddiqui,A.;Yannopoulos,C. G.;Nguyen-Ba,N.;Roy,C.;Nasturica,D.;Moinet,C.;Bethell, R.;Hamel,M.;Heureux,L.L.;David,M.;Nicolas,O.; Courtemanche-Asselin,P.;Brunette,S.;Bilimoria,D.;Bédard, J.Bioorg.Med.Chem.Lett.2004,14,797.

    (21) Chan,L.;Das,S.K.;Reddy,T.G.;Poisson,C.;Proulx,M.L.; Pereira,O.;Courchesne,M.;Roy,C.;Wang,W.Y.;Siddiqui,A.; Yannopoulos,C.G.;Nguyen-Ba,N.;Labrecque,D.;Bethell,R.; Hamel,M.;Courtemanche-Asselin,P.;Heureux,L.L.;David, M.;Nicolas,O.;Brunette,S.;Bilimoria,D.;Bédard,J.Bioorg. Med.Chem.Lett.2004,14,793.

    (22) Pfefferkorn,J.A.;Greene,M.L.;Nugent,R.A.;Gross,R.G.; Mitchell,M.A.;Finzel,B.C.;Harris,M.S.;Wells,P.A.; Shelly,G.A.;Anstadt,R.A.;Kilkuskie,B.E.;Koptab,L.A.; Schwendea,F.J.Bioorg.Med.Chem.Lett.2005,15,2481.

    (23) Pratt,J.K.;Donner,P.;McDaniel,K.F.;Maring,C.J.;Kati,W. M.;Mo,H.M.;Middleton,T.;Liu,Y.Y.;Ng,T.;Xie,Q.H.; Zhang,R.;Montgomery,D.;Molla,A.;Kempf,D.J.; Kohlbrenner,W.Bioorg.Med.Chem.Lett.2005,15,1577.

    (24) Pfefferkorn,J.A.;Nugent,R.;Gross,R.J.;Greene,M.; Mitchell,M.A.;Reding,M.T.;Funk,L.A.;Anderson,R.; Wells,P.A.;Shelly,J.A.;Anstadt,R.;Finzel,B.C.;Harris,M. S.;Kilkuskie,R.E.;Koptab,L.A.;Schwendea,F.J.Bioorg. Med.Chem.Lett.2005,15,2812.

    (25)Shipps,G.W.;Deng,Y.Q.;Wang,T.;Popovici-Muller,J.; Curran,P.J.;Rosner,K.E.;Cooper,A.B.;Girijavallabhan,V.; Butkiewiczb,N.;Cableb,M.Bioorg.Med.Chem.Lett.2005, 15,115.

    (26) LaPorte,M.G.;Lessen,T.A.;Leister,L.;Cebzanov,D.; Amparo,E.;Faust,C.;Ortlip,D.;Bailey,T.R.;Nitz,T.J.; Chunduru,S.K.;Young,D.C.;Burns,J.C.Bioorg.Med. Chem.Lett.2006,16,100.

    (27) Gopalsamy,A.;Aplasca,A.;Ciszewski,G.;Park,K.;Ellingboe, J.W.;Orlowski,M.;Feldb,B.;Howeb,A.Y.M.Bioorg.Med. Chem.Lett.2006,16,457.

    (28) Beaulieu,P.L.;Gillard,J.;Bykowski,D.;Brochu,C.; Dansereau,N.;Duceppe,J.S.;Haché,B.;Jakalian,A.;Lagacé, L.;LaPlante,S.;McKercher,G.;Moreau,E.;Perreault,S.P.; Stammers,T.;Thauvette,L.;Warrington,J.;Kukolj,G.Bioorg. Med.Chem.Lett.2006,16,4987.

    (29)Krueger,A.C.;Madigan,D.L.;Jiang,W.W.;Kati,W.M.;Liu, D.C.;Liu,Y.Y.;Maring,C.J.;Masse,S.;McDaniel,K.F.; Middleton,T.;Mo,H.M.;Molla,A.;Montgomery,D.;Pratt,J. K.;Rockway,T.W.;Zhang,R.;Kempf,D.J.Bioorg.Med. Chem.Lett.2006,16,3367.

    (30) Rockway,T.W.;Zhang,R.;Liu,D.C.;Betebenner,D.A.; McDaniel,K.F.;Pratt,J.K.;Beno,D.;Montgomery,D.;Jiang, W.W.;Masse,S.;Kati,W.M.;Middleton,T.;Molla,A.; Maring,C.J.;Kempf,D.J.Bioorg.Med.Chem.Lett.2006,16, 3833.

    (31) Gopalsamy,A.;Shi,M.X.;Ciszewski,G.;Park,K.;Ellingboe, J.W.;Orlowski,M.;Feldb,B.;Howeb,A.Y.M.Bioorg.Med. Chem.Lett.2006,16,2532.

    (32) Ontoria,J.M.;Hernando,J.I.M.;Malancona,S.;Attenni,B.; Stansfield,I.;Conte,I.;Ercolani,C.;Habermann,J.;Ponzi,S.; Filippo,M.D.;Koch,U.;Rowley,M.;Narjes,F.Bioorg.Med. Chem.Lett.2006,16,4026.

    (33) Ishida,T.;Suzuki,T.;Hirashima,S.;Mizutani,K.;Yoshida,A.; Ando,J.;Ikeda,S.;Adachic,T.;Hashimotoa,H.Bioorg.Med. Chem.Lett.2006,16,1859.

    (34) Li,H.;Tatlock,J.;Linton,A.;Gonzalez,J.;Borchardt,A.; Dragovich,P.;Jewell,T.;Prins,T.;Zhou,R.;Blazel,J.;Parge, H.;Love,R.;Hickey,M.;Doan,C.;Shi,S.;Duggal,R.;Lewisc, C.;Fuhrmana,S.Bioorg.Med.Chem.Lett.2006,16,4834.

    (35)Yan,S.Q.;Appleby,T.;Gunic,E.;Shim,J.H.;Tasu,T.;Kim, H.;Rong,F.;Chen,N.H.;Hamatake,R.;Wu,J.Z.;Hong,Z.; Yao,N.H.Bioorg.Med.Chem.Lett.2007,17,28.

    (36)Yan,S.Q.;Larson,G.;Wu,J.Z.;Appleby,T.;Ding,Y.L.; Hamatake,R.;Hong,Z.;Yao,N.H.Bioorg.Med.Chem.Lett. 2007,17,63.

    (37)Yan,S.Q.;Appleby,T.;Larson,G.;Wu,J.Z.;Hamatake,R.K.; Hong,Z.;Yao,N.H.Bioorg.Med.Chem.Lett.2007,17,1991.

    (38) Burton,G.;Ku,T.W.;Carr,T.G.;Kiesow,T.;Sarisky,R.T.; Lin-Goerke,J.L.;Hofmann,G.A.;Slater,M.G.;Haigh,D.; Dhanak,D.;Johnson,V.K.;Parryb,N.R.;Thommesb,P. Bioorg.Med.Chem.Lett.2007,17,1930.

    (39) Krueger,A.C.;Madigan,D.L.;Green,B.E.;Hutchinson,D. K.;Jiang,W.W.;Kati,W.M.;Liu,Y.Y.;Maring,C.J.;Masse, S.V.;McDaniel,K.F.;Middleton,T.R.;Mo,H.M.;Molla,A.; Montgomery,D.A.;Ng,T.I.;Kempf,D.J.Bioorg.Med.Chem. Lett.2007,17,2289.

    (40)Rong,F.;Chow,S.;Yan,S.Q.;Larson,G.;Hong,Z.;Wu,J. Bioorg.Med.Chem.Lett.2007,17,1663.

    (41) Ding,Y.L.;Smith,K.L.;Varaprasad,C.V.N.S.;Chang,E.; Alexander,J.;Yao,N.H.Bioorg.Med.Chem.Lett.2007,17, 841.

    (42) Dragovich,P.S.;Blazel,J.K.;Ellis,D.A.;Han,Q.;Kamran, R.;Kissinger,C.R.;LeBrun,L.A.;Li,L.S.;Murphy,D.E.; Noble,M.;Patel,R.A.;Ruebsam,F.;Sergeeva,M.V.;Shah,A. M.;Showalter,R.E.;Tran,C.V.;Tsan,M.;Webber,S.E.; Kirkovsky,L.;Zhou,Y.F.Bioorg.Med.Chem.Lett.2008,18, 5635.

    (43) Hutchinson,D.K.;Rosenberg,T.;Klein,L.L.;Bosse,T.D.; Larson,D.P.;He,W.P.;Jiang,W.W.;Kati,W.M.; Kohlbrenner,W.E.;Liu,Y.Y.;Masse,S.V.;Middleton,T.; Molla,A.;Montgomery,D.A.;Beno,D.W.A.;Stewart,K.D.; Stoll,V.S.;Kempf,D.J.Bioorg.Med.Chem.Lett.2008,18, 3887.

    (44) Rawal,R.K.;Katti,S.B.;Kaushik-Basu,N.;Arora,P.;Pan,Z. H.Bioorg.Med.Chem.Lett.2008,18,6110.

    (45)Kim,S.H.;Tran,M.T.;Ruebsam,F.;Xiang,A.X.;Ayida,B.; McGuire,H.;Ellis,D.;Blazel,J.;Tran,C.V.;Murphy,D.E.; Webber,S.E.;Zhou,Y.F.;Shah,A.M.;Tsan,M.;Showalter,R. E.;Patel,R.;Gobbi,A.;LeBrun,L.A.;Bartkowski,D.M.; Nolan,T.G.;Norris,D.A.;Sergeeva,M.V.;Kirkovsky,L.; Zhao,Q.;Han,Q.;Kissinger,C.R.Bioorg.Med.Chem.Lett. 2008,18,4181.

    (46) Evans,K.A.;Chai,D.P.;Graybill,T.L.;Burton,G.;Sarisky,R. T.;Lin-Goerke,J.;Johnstonb,V.K.;Riveroa,R.A.Bioorg. Med.Chem.Lett.2006,16,2205.

    (47) Bosse,T.D.;Larson,D.P.;Wagner,R.;Hutchinson,D.K.; Rockway,T.W.;Kati,W.M.;Liu,Y.Y.;Masse,S.;Middleton, T.;Mo,H.;Montgomery,D.;Jiang,W.;Koev,G.;Kempf,D.J.; Molla,A.Bioorg.Med.Chem.Lett.2008,18,568.

    (48) Donner,P.L.;Xie,Q.H.;Pratt,J.K.;Maring,C.J.;Kati,W.; Jiang,W.;Liu,Y.Y.;Koev,G.;Masse,S.;Montgomery,D.; Molla,A.;Kempf,D.J.Bioorg.Med.Chem.Lett.2008,18, 2735.

    (49) Liu,Y.Y.;Donner,P.L.;Pratt,J.K.;Jiang,W.W.;Ng,T.; Gracias,V.;Baumeister,S.;Wiedeman,P.E.;Traphagen,L.; Warrior,U.;Maring,C.;Kati,W.M.;Djuric,S.W.;Molla,A. Bioorg.Med.Chem.Lett.2008,18,3173.

    (50) Li,L.S.;Zhou,Y.F.;Murphy,D.E.;Stankovic,N.;Zhao,J.J.; Dragovich,P.S.;Bertolini,T.;Sun,Z.X.;Ayida,B.;Tran,C. V.;Ruebsam,F.;Webber,S.E.;Shah,A.M.;Tsan,M.; Showalter,R.E.;Patel,R.;LeBrun,L.A.;Bartkowski,D.M.; Nolan,T.G.;Norris,D.A.;Kamran,R.;Brooks,J.;Sergeeva, M.V.;Kirkovsky,L.;Zhao,Q.;Kissinger,C.R.Bioorg.Med. Chem.Lett.2008,18,3446.

    (51) Zhou,Y.F.;Webber,S.E.;Murphy,D.E.;Li,L.S.;Dragovich, P.S.;Tran,C.V.;Sun,Z.X.;Ruebsam,F.;Shah,A.M.;Tsan, M.;Showalter,R.E.;Patel,R.;Li,B.;Zhao,Q.;Han,Q.; Hermann,T.;Kissinger,C.R.;LeBrun,L.;Sergeeva,M.V.; Kirkovsky,L.Bioorg.Med.Chem.Lett.2008,18,1413.

    (52) Ruebsam,F.;Webber,S.E.;Tran,M.T.;Tran,C.V.;Murphy, D.E.;Zhao,J.J.;Dragovich,P.S.;Kim,S.H.;Li,L.S.;Zhou, Y.F.;Han,Q.;Kissinger,C.R.;Showalter,R.E.;Lardy,M.; Shah,A.M.;Tsan,M.;Patel,R.;LeBrun,L.A.;Kamran,R.; Sergeeva,M.V.;Bartkowski,D.M.;Nolan,T.G.;Norris,D. A.;Kirkovsky,L.Bioorg.Med.Chem.Lett.2008,18,3616.

    (53) Sergeeva,M.V.;Zhou,Y.F.;Bartkowski,D.M.;Nolan,T.G.; Norris,D.A.;Okamoto,E.;Kirkovsky,L.;Kamran,R.; LeBrun,L.A.;Tsan,M.;Patel,R.;Shah,A.M.;Lardy,M.; Gobbi,A.;Li,L.S.;Zhao,J.J.;Bertolini,T.;Stankovic,N.; Sun,Z.X.;Murphy,D.E.;Webber,S.E.;Dragovich,P.S. Bioorg.Med.Chem.Lett.2008,18,3421.

    (54) Zhou,Y.F.;Li,L.S.;Dragovich,P.S.;Murphy,D.E.;Tran,C. V.;Ruebsam,F.;Webber,S.E.;Shah,A.M.;Tsan,M.;Averill, A.;Showalter,R.E.;Patel,R.;Han,Q.;Zhao,Q.;Hermann,T.; Kissinger,C.R.;LeBrun,L.;Sergeeva,M.V.Bioorg.Med. Chem.Lett.2008,18,1419.

    (55) Ruebsam,F.;Sun,Z.X.;Ayida,B.K.;Webber,S.E.;Zhou,Y. F.;Zhao,Q.;Kissinger,C.R.;Showalter,R.E.;Shah,A.M.; Tsan,M.;Patel,R.;LeBrun,L.A.;Kamran,R.;Sergeeva,M. V.;Bartkowski,D.M.;Nolan,T.G.;Norris,D.A.;Kirkovsky, L.Bioorg.Med.Chem.Lett.2008,18,5002.

    (56) Ellis,D.A.;Blazel,J.K.;Webber,S.E.;Tran,C.V.;Dragovich, P.S.;Sun,Z.X.;Ruebsam,F.;McGuire,H.M.;Xiang,A.X.; Zhao,J.J.;Li,L.S.;Zhou,Y.F.;Han,Q.;Kissinger,C.R.; Showalter,R.E.;Lardy,M.;Shah,A.M.;Tsan,M.;Patel,R.; LeBrun,L.A.;Kamran,R.;Bartkowski,D.M.;Nolan,T.G.; Norris,D.A.;Sergeeva,M.V.;Kirkovsky,L.Bioorg.Med. Chem.Lett.2008,18,4628.

    (57) Hendricks,R.T.;Spencer,S.R.;Blake,J.F.;Fell,J.B.;Fischer, J.P.;Stengel,P.J.;Leveque,V.J.P.;LePogam,S.;Rajyaguru, S.;Najera,I.;Josey,J.A.;Swallow,S.Bioorg.Med.Chem.Lett. 2009,19,410.

    (58) Ruebsam,F.;Tran,C.V.;Li,L.S.;Kim,S.H.;Xiang,A.X.; Zhou,Y.F.;Blazel,J.K.;Sun,Z.X.;Dragovich,P.S.;Zhao,J. J.;McGuire,H.M.;Murphy,D.E.;Tran,M.T.;Stankovic,N.; Ellis,D.A.;Gobbi,A.;Showalter,R.E.;Webber,S.E.;Shah, A.M.;Tsan,M.;Patel,R.A.;LeBrun,L.A.;Hou,H.Y.J.; Kamran,R.;Sergeeva,M.V.;Bartkowski,D.M.;Nolan,T.G.; Norris,D.A.;Kirkovsky,L.Bioorg.Med.Chem.Lett.2009,19, 451.

    (59) deVicente,J.;Hendricks,R.T.;Smith,D.B.;Fell,J.B.;Fischer, J.;Spencer,S.R.;Stengel,P.J.;Mohr,P.;Robinson,J.E.; Blake,J.F.;Hilgenkamp,R.K.;Yee,C.;Zhao,J.P.;Elworthy, T.R.;Tracy,J.;Chin,E.;Li,J.;Lui,A.;Wang,B.;Oshiro,C.; Harris,S.F.;Ghate,M.;Leveque,V.J.P.;Najera,I.;Pogam,S. L.;Rajyaguru,S.;Ao-Ieong,G.;Alexandrova,L.;Fitch,B.; Brandl,M.;Masjedizadeh,M.;Wua,S.Y.;de Keczer,S.; Voronin,T.Bioorg.Med.Chem.Lett.2009,19,5648.

    (60) Pacini,B.;Avolio,S.;Ercolani,C.;Koch,U.;Migliaccio,G.; Narjes,F.;Pacini,L.;Tomei,L.;Harper,S.Bioorg.Med.Chem. Lett.2009,19,6245.

    (61) Shaw,A.N.;Tedesco,R.;Bambal,R.;Chai,D.P.;Concha,N. O.;Darcy,M.G.;Dhanak,D.;Duffy,K.J.;Fitch,D.M.;Gates, A.;Johnston,V.K.;Keenan,R.M.;Lin-Goerke,J.;Liu,N.; Sarisky,R.T.;Wiggall,K.J.;Zimmerman,M.N.Bioorg.Med. Chem.Lett.2009,19,4350.

    (62) Habermann,J.;Capitò,E.;Ferreira,M.R.R.;Koch,U.;Narjes, F.Bioorg.Med.Chem.Lett.2009,19,633.

    (63) Muller,J.P.;Shipps,G.W.,Jr.;Rosner,K.E.;Deng,Y.Q.; Wang,T.;Curran,P.J.;Brown,M.A.;Siddiqui,M.A.;Cooper, A.B.;Duca,J.;Cable,M.;Girijavallabhan,V.Bioorg.Med. Chem.Lett.2009,19,6331.

    (64) deVicente,J.;Hendricks,R.T.;Smith,D.B.;Fell,J.B.;Fischer, J.;Spencer,S.R.;Stengel,P.J.;Mohr,P.;Robinson,J.E.; Blake,J.F.;Hilgenkamp,R.K.;Yee,C.;Adjabeng,G.; Elworthy,T.R.;Li,J.;Wanga,B.;Bamberg,J.T.;Harris,S.F.; Wonga,A.;Leveque,V.J.P.;Najera,I.;Pogam,S.L.;Rajyaguru, S.;Ao-Ieong,G.;Alexandrova,L.;Larrabee,S.;Brandl,M.; Briggs,A.;Sukhtankar,S.;Farrell,R.Bioorg.Med.Chem.Lett. 2009,19,5652.

    (65) deVicente,J.;Hendricks,R.T.;Smith,D.B.;Fell,J.B.;Fischer, J.;Spencer,S.R.;Stengel,P.J.;Mohr,P.;Robinson,J.E.; Blake,J.F.;Hilgenkamp,R.K.;Yee,C.;Adjabeng,G.; Elworthy,T.R.;Tracy,J.;Chin,E.;Li,J.;Wanga,B.;Bamberg, J.T.;Stephenson,R.;Oshiro,C.;Harris,S.F.;Ghate,M.; Leveque,V.;Najera,I.;Pogam,S.L.;Rajyaguru,S.;Ao-Ieong, G.;Alexandrova,L.;Larrabee,S.;Brandl,M.;Briggs,A.; Sukhtankar,S.;Farrell,R.;Xu,B.Bioorg.Med.Chem.Lett. 2009,19,3642.

    (66)Wang,G.Y.;Lei,H.X.;Wang,X.F.;Das,D.;Hong,J.; Mackinnon,C.H.;Coulter,T.S.;Montalbetti,C.A.G.N.; Mears,R.;Gai,X.J.;Bailey,S.E.;Ruhrmund,D.;Hooi,L.; Misialek,S.;Rajagopalan,P.T.R.;Cheng,R.K.Y.;Barker,J. J.;Felicetti,B.;Sch?nfeld,D.L.;Stoycheva,A.;Buckman,B. O.;Kossen,K.;Seiwert,S.D.;Beigelman,L.Bioorg.Med. Chem.Lett.2009,19,4480.

    (67)Wanga,G.Y.;Zhang,L.G.;Wu,X.M.;Das,D.;Ruhrmund,D.; Hooi,L.;Misialek,S.;Rajagopalan,P.T.R.;Buckman,B.O.; Kossen,K.;Seiwert,S.D.;Beigelman,L.Bioorg.Med.Chem. Lett.2009,19,4484.

    (68)Wanga,G.Y.;He,Y.Z.;Sun,J.;Das,D.;Hu,M.G.;Huang,J. H.;Ruhrmund,D.;Hooi,L.;Misialek,S.;Rajagopalan,P.T.R.; Stoycheva,A.;Buckman,B.O.;Kossen,K.;Seiwert,S.D.; Beigelman,L.Bioorg.Med.Chem.Lett.2009,19,4476.

    (69)McGowan,D.;Nyanguile,O.;Cummings,M.D.;Vendeville, S.;Vandyck,K.;den Broeck,W.V.;Boutton,C.W.;Bondt,H. D.;Quirynen,L.;Amssoms,K.;Bonfanti,J.F.;Last,S.; Rombauts,K.;Tahri,A.;Hu,L.L.;Delouvroy,F.;Vermeiren, K.;Vandercruyssen,G.;Van der Helm,L.;Cleiren,E.; Mostmans,W.;Lory,P.;Pille,G.;Van Emelen,K.;Fanning,G.; Pauwels,F.;Lin,T.I.;Simmen,K.;Raboisson,P.Bioorg.Med. Chem.Lett.2009,19,2492.

    (70) Hendricks,R.T.;Fell,J.B.;Blake,J.F.;Fischer,J.P.; Robinson,J.E.;Spencer,S.R.;Stengel,P.J.;Bernacki,A.L.; Leveque,V.J.P.;Pogam,S.L.;Rajyaguru,S.;Najera,I.;Josey, J.A.;Harris,J.R.;Swallow,S.Bioorg.Med.Chem.Lett.2009, 19,3637.

    (71)Lv,W.;Xue,Y.Eur.J.Med.Chem.2010,45,1167.

    (72) ChemDraw,version 9.0;Cambridge Soft Corporation: Cambridge,USA,2004.

    (73)Corina,Version 3.4;Molecular Networks GmbH Computerchemie:Erlangen,Germany,2006.

    (74) Todeschini,R.;Consonni,V.Handbook of Molecular Descriptors;Wiley-VCH:New York,2000.

    (75) Hasegawa,K.J.Chem.Inf.Comput.Sci.1999,39,112.

    (76) Byvatov,E.;Fechner,U.;Sadowski,J.;Schneider,G.J.Chem. Inf.Comput.Sci.2003,43,1882.

    (77) He,L.;Jurs,P.C.;Custer,L.L.;Durham,S.K.;Pearl,G.M. Chem.Res.Toxicol.2003,16,1567.

    (78) Lü,W.;Xue,Y.Acta Phys.-Chim.Sin.2010,26,471. [呂 巍,薛 英.物理化學(xué)學(xué)報(bào),2010,26,471.]

    (79) Degroeve,S.;de Baets,B.;van de Peer,Y.;Rouze,P. Bioinformatics 2002,18,S75.

    (80)Xue,Y.;Yap,C.W.;Sun,L.Z.;Cao,Z.W.;Wang,J.F.;Chen, Y.Z.J.Chem.Inf.Comput.Sci.2004,44,1497.

    (81) Leach,A.R.;Gillet,V.J.An Introduction to Chemoinformatics; Springer:New York,2007.

    (82) Garner,S.R.Weka,version 3.4.12;University of Waikato:New Zealand,2005.

    (83) Vapnik,V.N.The Nature of Statistical Learning Theory; Springer-Verlag:New York,1995.

    (84) Johnson,R.A.;Wichern,D.W.Applied Multivariate Statistical Analysis;Prentice Hall:New York,1982.

    (85) Quinlan,J.R.C4.5,Programs for Machine Learning;Morgan Kaufmann:San Mateo,CA,1992.

    (86) Baldi,P.;Brunak,S.;Chauvin,Y.;Andersen,C.A.;Nielsen,H. Bioinformatics 2000,16,412.

    (87) Srivastava,A.K.;Pandey,A.;Srivastava,A.;Shukla,N.J.Sau. Chem.Soc.2011,15,25.

    March 2,2011;Revised:March 29,2011;Published on Web:April 21,2011.

    Prediction of Hepatitis C Virus Non-Structural Proteins 5B Polymerase Inhibitors Using Machine Learning Methods

    Lü Wei1XUE Ying2,3,*
    (1College of Life Sciences,State Key Laboratory of Crop Biology,Shandong Agricultural University,Tai′an 271018,Shandong Province,P.R.China;2College of Chemistry,Key Laboratory of Green Chemistry and Technology,Ministry of Education,Sichuan University,Chengdu 610064,P.R.China;3State Key Laboratory of Biotherapy,Sichuan University,Chengdu 610041,P.R.China)

    Non-structural proteins 5B(NS5B)play an important role in protein maturation and gene replication as an RNA dependent RNA polymerase in the hepatitis C virus(HCV).Inhibiting NS5B polymerase will prevent RNA replication and,therefore,it is significant for the treatment of HCV.It is becoming increasingly important to screen and predict molecules that have NS5B inhibitory activity by computational methods.This work explores several machine learning(ML)methods(support vector machine(SVM),k-nearest neighbor(k-NN),and C4.5 decision tree(C4.5 DT))for the prediction of NS5B inhibitors(NS5BIs).This prediction system was tested using 1248 compounds(552 NS5BIs and 696 non-NS5BIs),which are significantly more diverse in chemical structure than those used in other studies.A feature selection method was used to improve the prediction accuracy and the selection of molecular descriptors responsible for distinguishing between NS5BIs and non-NS5BIs.The prediction accuracies were 81.4%-91.7%for the NS5BIs,78.2%-87.2%for the non-NS5BIs,and 84.1%-85.0%overall based on the three kinds of machine learning methods.SVM gave the best accuracy of 91.7%for the NS5BIs, C4.5 gave the best accuracy of 87.2%for the non-NS5BIs,and k-NN gave the best overall accuracy of 85.0%for all the compounds.This work suggests that machine learning methods can facilitate the prediction of the NS5BIs potential for unknown sets of compounds and to determine the molecular descriptors associated with NS5BIs.

    Machine learning method;Molecular descriptor;Recursive feature elimination; Support vector machine;Hepatitis C virus

    *Corresponding author.Email:xue@scu.edu.cn;Tel:+86-28-85418330.

    The project was supported by the National Key Basic Research Program of China(2009CB118500)and Scientific Research Foundation for the Returned Overseas Chinese Scholars,Ministry of Education,China(20071108-18-15).

    國(guó)家重點(diǎn)基礎(chǔ)研究發(fā)展規(guī)劃項(xiàng)目(2009CB118500)和教育部留學(xué)歸國(guó)人員科研啟動(dòng)基金(20071108-18-15)

    O641

    猜你喜歡
    四川大學(xué)丙型肝炎抑制劑
    圍剿暗行者——丙型肝炎
    肝博士(2022年3期)2022-06-30 02:48:54
    四川大學(xué)西航港實(shí)驗(yàn)小學(xué)
    凋亡抑制劑Z-VAD-FMK在豬卵母細(xì)胞冷凍保存中的應(yīng)用
    百年精誠(chéng) 譽(yù)從信來——走進(jìn)四川大學(xué)華西眼視光之一
    四川大學(xué)華西醫(yī)院
    α-干擾素聯(lián)合利巴韋林治療慢性丙型肝炎
    丙型肝炎治療新藥 Simeprevir
    組蛋白去乙酰化酶抑制劑的研究進(jìn)展
    慢性丙型肝炎中醫(yī)治療進(jìn)展
    磷酸二酯酶及其抑制劑的研究進(jìn)展
    偷拍熟女少妇极品色| 成人性生交大片免费视频hd| videos熟女内射| 国模一区二区三区四区视频| 亚洲最大成人av| 国产av不卡久久| 少妇裸体淫交视频免费看高清| 狂野欧美激情性xxxx在线观看| 身体一侧抽搐| 国产一级毛片在线| 综合色丁香网| 久久这里只有精品中国| 美女脱内裤让男人舔精品视频| 国产精品久久久久久久电影| 久久久久久久久久久免费av| 国产亚洲5aaaaa淫片| 亚洲国产欧美人成| 一级黄片播放器| 美女被艹到高潮喷水动态| av.在线天堂| 一级毛片 在线播放| 国产免费视频播放在线视频 | 尾随美女入室| 国产一级毛片七仙女欲春2| 国产伦精品一区二区三区视频9| 啦啦啦中文免费视频观看日本| 亚洲精品成人av观看孕妇| 欧美潮喷喷水| 在线a可以看的网站| 亚洲欧洲国产日韩| 美女内射精品一级片tv| 免费黄频网站在线观看国产| 免费观看av网站的网址| 天堂√8在线中文| 春色校园在线视频观看| 久久久久久久久久久丰满| 精品酒店卫生间| 成人毛片60女人毛片免费| 久久鲁丝午夜福利片| 男女边摸边吃奶| 又粗又硬又长又爽又黄的视频| 国产精品国产三级国产av玫瑰| 街头女战士在线观看网站| 久久久亚洲精品成人影院| 高清午夜精品一区二区三区| 一级毛片黄色毛片免费观看视频| 日本黄大片高清| 久久久久久伊人网av| 免费观看无遮挡的男女| 精品人妻一区二区三区麻豆| 日本免费在线观看一区| 亚洲av成人av| 高清欧美精品videossex| 午夜老司机福利剧场| 97热精品久久久久久| 一区二区三区四区激情视频| 一级二级三级毛片免费看| 亚洲精品乱久久久久久| 一夜夜www| 水蜜桃什么品种好| 中文字幕制服av| 日韩视频在线欧美| 人妻一区二区av| 插逼视频在线观看| freevideosex欧美| 日本av手机在线免费观看| 国产精品伦人一区二区| 老司机影院毛片| 久久这里只有精品中国| 五月天丁香电影| 亚洲三级黄色毛片| av在线观看视频网站免费| 搡老乐熟女国产| 99热全是精品| 黄色配什么色好看| 丰满人妻一区二区三区视频av| 精品久久久精品久久久| 国产探花在线观看一区二区| 2022亚洲国产成人精品| 欧美zozozo另类| 中文字幕制服av| 亚洲色图av天堂| 精品久久久久久电影网| 国产精品美女特级片免费视频播放器| 午夜免费观看性视频| 亚洲av日韩在线播放| 久久久国产一区二区| av女优亚洲男人天堂| 日韩一区二区视频免费看| 国产永久视频网站| 男女国产视频网站| 中文字幕亚洲精品专区| 国产精品久久久久久久电影| 亚洲最大成人av| 国产精品一二三区在线看| 高清视频免费观看一区二区 | 久久99热6这里只有精品| 国产伦一二天堂av在线观看| 日韩制服骚丝袜av| 中文乱码字字幕精品一区二区三区 | 天天一区二区日本电影三级| 色综合亚洲欧美另类图片| 久久久久九九精品影院| 国产色婷婷99| 2021天堂中文幕一二区在线观| 狂野欧美激情性xxxx在线观看| 91久久精品国产一区二区三区| 日韩视频在线欧美| 中文字幕久久专区| 天堂影院成人在线观看| 蜜桃亚洲精品一区二区三区| 韩国高清视频一区二区三区| 又爽又黄a免费视频| 日韩,欧美,国产一区二区三区| 久久精品国产亚洲av涩爱| 好男人视频免费观看在线| 午夜精品在线福利| 久久精品国产亚洲网站| 午夜久久久久精精品| 欧美人与善性xxx| 免费大片黄手机在线观看| 成人亚洲精品一区在线观看 | 美女cb高潮喷水在线观看| 天堂网av新在线| 日韩av在线免费看完整版不卡| 欧美性感艳星| 国产高清三级在线| 街头女战士在线观看网站| 一夜夜www| 久久久久久久久久久丰满| 国产免费福利视频在线观看| 国产亚洲午夜精品一区二区久久 | 成人一区二区视频在线观看| 三级男女做爰猛烈吃奶摸视频| 日韩成人av中文字幕在线观看| 日韩欧美 国产精品| 亚洲精品视频女| 18+在线观看网站| 日日啪夜夜爽| 成人无遮挡网站| 日本av手机在线免费观看| 久久午夜福利片| 久久精品久久久久久久性| 午夜久久久久精精品| 国产黄片美女视频| 亚洲av免费在线观看| 国产成人aa在线观看| 欧美人与善性xxx| 亚洲伊人久久精品综合| 人妻系列 视频| www.av在线官网国产| 亚洲av.av天堂| 简卡轻食公司| 伦理电影大哥的女人| 七月丁香在线播放| 婷婷色av中文字幕| 最近中文字幕2019免费版| 国产av不卡久久| 国产69精品久久久久777片| 精品酒店卫生间| av又黄又爽大尺度在线免费看| 一区二区三区乱码不卡18| 免费在线观看成人毛片| 在线 av 中文字幕| 建设人人有责人人尽责人人享有的 | 波多野结衣巨乳人妻| 国产黄频视频在线观看| 一区二区三区四区激情视频| 午夜免费观看性视频| av国产免费在线观看| 国模一区二区三区四区视频| 天堂av国产一区二区熟女人妻| 91av网一区二区| 国语对白做爰xxxⅹ性视频网站| 亚洲av中文字字幕乱码综合| 亚洲av.av天堂| 亚洲精品第二区| 国产精品一区二区三区四区免费观看| 2021少妇久久久久久久久久久| 精品久久久噜噜| 伦理电影大哥的女人| 国产熟女欧美一区二区| 亚洲精品一区蜜桃| 人人妻人人看人人澡| 三级男女做爰猛烈吃奶摸视频| av播播在线观看一区| 国产男人的电影天堂91| 99九九线精品视频在线观看视频| 国产成人福利小说| 两个人视频免费观看高清| 熟妇人妻不卡中文字幕| 亚洲精品自拍成人| 好男人视频免费观看在线| 99久久精品一区二区三区| 久久99精品国语久久久| av卡一久久| 久久久精品免费免费高清| 少妇被粗大猛烈的视频| 麻豆乱淫一区二区| 国产av码专区亚洲av| 搡老乐熟女国产| 高清在线视频一区二区三区| 国产 一区精品| 国产亚洲av嫩草精品影院| 尾随美女入室| 国产精品三级大全| 国产色爽女视频免费观看| av播播在线观看一区| 最近手机中文字幕大全| 亚洲欧美日韩东京热| 精品午夜福利在线看| 国产一级毛片在线| 男人舔奶头视频| 97热精品久久久久久| 亚洲精华国产精华液的使用体验| 99久久中文字幕三级久久日本| 天堂俺去俺来也www色官网 | 国产精品爽爽va在线观看网站| 久久精品国产鲁丝片午夜精品| 午夜福利高清视频| 美女cb高潮喷水在线观看| 熟妇人妻久久中文字幕3abv| 国产亚洲午夜精品一区二区久久 | .国产精品久久| 狂野欧美激情性xxxx在线观看| 精品人妻一区二区三区麻豆| 街头女战士在线观看网站| 2021少妇久久久久久久久久久| 欧美激情国产日韩精品一区| av一本久久久久| 久久久久久久久久久丰满| 国产黄色免费在线视频| 精品欧美国产一区二区三| 九草在线视频观看| 久久综合国产亚洲精品| 国产欧美日韩精品一区二区| 亚洲av国产av综合av卡| or卡值多少钱| 国产v大片淫在线免费观看| 国产午夜福利久久久久久| 69人妻影院| 中文字幕久久专区| 日本色播在线视频| 一夜夜www| 国产精品一区二区性色av| 亚洲精品日韩av片在线观看| 中文精品一卡2卡3卡4更新| av卡一久久| av线在线观看网站| 老司机影院毛片| 国产精品久久久久久精品电影| 日韩欧美精品免费久久| 十八禁国产超污无遮挡网站| 热99在线观看视频| 亚洲精品456在线播放app| 男的添女的下面高潮视频| 99九九线精品视频在线观看视频| 国产精品伦人一区二区| 国产又色又爽无遮挡免| 欧美xxⅹ黑人| 国产一区亚洲一区在线观看| 两个人视频免费观看高清| 只有这里有精品99| 99热网站在线观看| 青春草亚洲视频在线观看| 麻豆精品久久久久久蜜桃| 真实男女啪啪啪动态图| 久久鲁丝午夜福利片| 国产午夜精品久久久久久一区二区三区| 久久久久久久午夜电影| 午夜爱爱视频在线播放| av专区在线播放| 人人妻人人澡欧美一区二区| 免费黄色在线免费观看| 国产高潮美女av| 欧美成人一区二区免费高清观看| 久久久久国产网址| 日本免费a在线| 日韩一区二区视频免费看| 我的女老师完整版在线观看| 亚洲不卡免费看| 亚洲自拍偷在线| 精品一区二区三区视频在线| 国产免费福利视频在线观看| 午夜福利视频1000在线观看| 一级毛片aaaaaa免费看小| 九九在线视频观看精品| 中文精品一卡2卡3卡4更新| 国产美女午夜福利| 精品一区二区三卡| 日本色播在线视频| 女人被狂操c到高潮| 日韩av不卡免费在线播放| 国产亚洲av嫩草精品影院| 国产精品.久久久| 国产视频首页在线观看| 午夜福利成人在线免费观看| 夫妻性生交免费视频一级片| 亚洲精品亚洲一区二区| 国产成人免费观看mmmm| 色播亚洲综合网| 高清毛片免费看| 亚洲在久久综合| 欧美日韩精品成人综合77777| 久久精品综合一区二区三区| 亚洲综合精品二区| 精品国内亚洲2022精品成人| 国产精品一及| 精品人妻一区二区三区麻豆| 国产成人91sexporn| 男人狂女人下面高潮的视频| 亚洲国产精品sss在线观看| 午夜激情欧美在线| 边亲边吃奶的免费视频| 日韩亚洲欧美综合| 欧美区成人在线视频| 国产免费视频播放在线视频 | 国产乱人视频| 日韩成人av中文字幕在线观看| 男女那种视频在线观看| 丰满人妻一区二区三区视频av| 高清毛片免费看| 婷婷色综合大香蕉| 久热久热在线精品观看| 日韩国内少妇激情av| 日韩强制内射视频| 少妇的逼水好多| 一边亲一边摸免费视频| 久久精品熟女亚洲av麻豆精品 | 免费看av在线观看网站| 亚洲欧美精品专区久久| 婷婷色av中文字幕| 精华霜和精华液先用哪个| 国产亚洲一区二区精品| 亚洲自拍偷在线| 建设人人有责人人尽责人人享有的 | 秋霞在线观看毛片| 亚洲精品乱码久久久久久按摩| 亚洲精品日本国产第一区| 精品酒店卫生间| 精品久久国产蜜桃| 在线免费观看不下载黄p国产| 80岁老熟妇乱子伦牲交| 精品人妻偷拍中文字幕| 黑人高潮一二区| 亚洲va在线va天堂va国产| 夜夜爽夜夜爽视频| 永久免费av网站大全| 观看美女的网站| 99久久人妻综合| 天天躁夜夜躁狠狠久久av| 丝袜美腿在线中文| 久久精品熟女亚洲av麻豆精品 | 亚洲av电影不卡..在线观看| 婷婷色综合大香蕉| 成年av动漫网址| 国产不卡一卡二| 国产单亲对白刺激| 久久精品国产自在天天线| 一级av片app| 亚洲国产精品sss在线观看| 亚洲一区高清亚洲精品| 亚洲精品成人久久久久久| 午夜激情福利司机影院| 国产高清不卡午夜福利| 久久久久久伊人网av| 亚洲aⅴ乱码一区二区在线播放| 伊人久久国产一区二区| 亚洲精品亚洲一区二区| 插阴视频在线观看视频| 国产伦精品一区二区三区四那| 久久久久精品久久久久真实原创| 少妇熟女欧美另类| 亚洲成人av在线免费| 我要看日韩黄色一级片| 国产成人a区在线观看| av国产免费在线观看| 非洲黑人性xxxx精品又粗又长| 欧美日韩一区二区视频在线观看视频在线 | 国产男女超爽视频在线观看| a级毛片免费高清观看在线播放| 亚洲精品国产av蜜桃| av.在线天堂| 搡老乐熟女国产| 成人一区二区视频在线观看| 亚洲欧洲国产日韩| 三级国产精品片| 国产女主播在线喷水免费视频网站 | 精品久久久久久久久久久久久| 直男gayav资源| 亚洲精品日韩av片在线观看| 人妻系列 视频| 欧美日韩一区二区视频在线观看视频在线 | 国产一级毛片七仙女欲春2| 国模一区二区三区四区视频| 91狼人影院| 丰满人妻一区二区三区视频av| 高清毛片免费看| 欧美日韩在线观看h| 水蜜桃什么品种好| 亚洲av日韩在线播放| 国模一区二区三区四区视频| 伦精品一区二区三区| 精品久久久久久电影网| 国产精品嫩草影院av在线观看| 久久久久久久久中文| 亚洲成人中文字幕在线播放| av国产久精品久网站免费入址| 亚洲最大成人中文| 国产精品精品国产色婷婷| 亚洲在线观看片| 黄片wwwwww| 日韩亚洲欧美综合| 在线a可以看的网站| 听说在线观看完整版免费高清| 简卡轻食公司| .国产精品久久| 日韩av在线大香蕉| 中国美白少妇内射xxxbb| 丰满乱子伦码专区| 蜜桃久久精品国产亚洲av| 亚洲av国产av综合av卡| 一本久久精品| 久久久久国产网址| 青青草视频在线视频观看| 午夜精品一区二区三区免费看| 亚洲熟女精品中文字幕| 禁无遮挡网站| 国产伦在线观看视频一区| 五月玫瑰六月丁香| 国产综合懂色| 搡女人真爽免费视频火全软件| 建设人人有责人人尽责人人享有的 | 亚洲欧美一区二区三区黑人 | 色吧在线观看| a级毛色黄片| 一区二区三区高清视频在线| 亚洲aⅴ乱码一区二区在线播放| 美女被艹到高潮喷水动态| 最近最新中文字幕免费大全7| 成人亚洲精品av一区二区| 男人舔奶头视频| 国产片特级美女逼逼视频| 日本熟妇午夜| 日韩成人av中文字幕在线观看| 国产成人午夜福利电影在线观看| 丰满人妻一区二区三区视频av| 国产久久久一区二区三区| 欧美bdsm另类| 91精品国产九色| 日产精品乱码卡一卡2卡三| av女优亚洲男人天堂| 日本-黄色视频高清免费观看| 97热精品久久久久久| 搞女人的毛片| 国产黄a三级三级三级人| av线在线观看网站| av国产免费在线观看| 欧美丝袜亚洲另类| 身体一侧抽搐| 成人无遮挡网站| 女人久久www免费人成看片| 日本av手机在线免费观看| 内射极品少妇av片p| 激情五月婷婷亚洲| 高清在线视频一区二区三区| 日产精品乱码卡一卡2卡三| 你懂的网址亚洲精品在线观看| 我的女老师完整版在线观看| av黄色大香蕉| 欧美bdsm另类| 欧美极品一区二区三区四区| 看非洲黑人一级黄片| 欧美极品一区二区三区四区| 国产精品av视频在线免费观看| 尤物成人国产欧美一区二区三区| 深夜a级毛片| 午夜激情福利司机影院| 两个人的视频大全免费| 久久久久网色| 国产高潮美女av| 在线免费观看不下载黄p国产| 免费看a级黄色片| 能在线免费观看的黄片| 神马国产精品三级电影在线观看| 久久99热6这里只有精品| 亚洲欧美日韩无卡精品| 女的被弄到高潮叫床怎么办| 26uuu在线亚洲综合色| 99久久人妻综合| 97超视频在线观看视频| 午夜精品一区二区三区免费看| 国产成人福利小说| 久久久欧美国产精品| 91久久精品国产一区二区三区| 久久久久免费精品人妻一区二区| 久久99热这里只频精品6学生| 亚洲最大成人中文| 亚洲婷婷狠狠爱综合网| 免费观看av网站的网址| 在线免费十八禁| 日韩av在线免费看完整版不卡| 建设人人有责人人尽责人人享有的 | 国产一区亚洲一区在线观看| 国产 一区 欧美 日韩| 亚洲怡红院男人天堂| 久久久久久久久久久丰满| 国产精品久久久久久精品电影| videos熟女内射| 亚洲av.av天堂| 丝袜喷水一区| 日韩大片免费观看网站| 欧美一级a爱片免费观看看| 国产成人免费观看mmmm| 男女那种视频在线观看| 国产精品一区二区三区四区久久| 国产成人精品一,二区| 国产男人的电影天堂91| 国产探花在线观看一区二区| 麻豆国产97在线/欧美| 国产成人午夜福利电影在线观看| 亚洲av电影在线观看一区二区三区 | 人妻少妇偷人精品九色| 永久免费av网站大全| 久久久久九九精品影院| 人妻一区二区av| 欧美一区二区亚洲| 国产成人午夜福利电影在线观看| 国国产精品蜜臀av免费| 联通29元200g的流量卡| 国产亚洲91精品色在线| 午夜免费观看性视频| 亚洲av福利一区| 又黄又爽又刺激的免费视频.| 国产精品国产三级国产av玫瑰| 天堂影院成人在线观看| 日韩欧美三级三区| 亚洲在线观看片| 一边亲一边摸免费视频| 小蜜桃在线观看免费完整版高清| 综合色av麻豆| 国产伦一二天堂av在线观看| 日日干狠狠操夜夜爽| 国产成人精品福利久久| 国产亚洲av嫩草精品影院| 亚洲自拍偷在线| 一级爰片在线观看| 久久精品久久精品一区二区三区| 国产免费福利视频在线观看| 特大巨黑吊av在线直播| 国产成人福利小说| 亚洲av二区三区四区| 亚洲精品成人av观看孕妇| 美女国产视频在线观看| 亚洲无线观看免费| 2021少妇久久久久久久久久久| 国产 一区精品| 亚洲三级黄色毛片| 卡戴珊不雅视频在线播放| 日韩av不卡免费在线播放| 亚洲精品一区蜜桃| av在线天堂中文字幕| 成年女人看的毛片在线观看| 超碰97精品在线观看| 欧美精品国产亚洲| 九草在线视频观看| 亚洲人与动物交配视频| 久久久久久久久大av| 麻豆成人av视频| 在线 av 中文字幕| 精品国产三级普通话版| 国产在线男女| 久久午夜福利片| av播播在线观看一区| 亚洲在线观看片| 丝袜美腿在线中文| 亚洲精品日韩在线中文字幕| 在线观看人妻少妇| 免费观看性生交大片5| 午夜福利高清视频| 尤物成人国产欧美一区二区三区| 一级毛片久久久久久久久女| 两个人的视频大全免费| 别揉我奶头 嗯啊视频| 18禁在线播放成人免费| 精品一区二区三区人妻视频| 免费黄网站久久成人精品| 国产高清国产精品国产三级 | 成人高潮视频无遮挡免费网站| 亚洲成人久久爱视频| 高清日韩中文字幕在线| 国产探花极品一区二区| 久99久视频精品免费| 亚洲av男天堂| 免费看光身美女| 人妻少妇偷人精品九色| 亚洲综合色惰| 亚洲欧美日韩东京热| 久久精品夜色国产| 久久久久久久久久黄片| 国产毛片a区久久久久| 久久人人爽人人片av| 亚洲18禁久久av| 一个人看的www免费观看视频| 成年免费大片在线观看| 少妇的逼好多水| 色网站视频免费| 免费看日本二区| 久久精品综合一区二区三区| 你懂的网址亚洲精品在线观看| 亚洲国产成人一精品久久久| 亚洲最大成人av| 人妻夜夜爽99麻豆av| 免费看日本二区| 亚洲精品国产成人久久av|