• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    RDX/BAMO推進劑結(jié)合能、力學(xué)性質(zhì)和能量性能的分子動力學(xué)模擬

    2011-11-30 10:49:04李苗苗沈瑞琪李鳳生
    物理化學(xué)學(xué)報 2011年6期
    關(guān)鍵詞:化工學(xué)院結(jié)合能苗苗

    李苗苗 沈瑞琪 李鳳生

    (南京理工大學(xué)化工學(xué)院,南京210094)

    RDX/BAMO推進劑結(jié)合能、力學(xué)性質(zhì)和能量性能的分子動力學(xué)模擬

    李苗苗*沈瑞琪 李鳳生

    (南京理工大學(xué)化工學(xué)院,南京210094)

    利用分子動力學(xué)方法研究了著名的含能材料環(huán)三亞甲基三硝胺(RDX)、3,3′-雙-(疊氮甲基)-氧雜環(huán)丁烷(BAMO)和RDX/BAMO推進劑.結(jié)果表明,BAMO與RDX(010)面之間分子相互作用最強,其次是(100)和(001)面.以對相關(guān)函數(shù)g(r)描述了RDX和BAMO之間的相互作用.計算了RDX/BAMO推進劑的彈性系數(shù)、模量、柯西壓、泊松比等性能.結(jié)果表明,BAMO的加入能夠改善RDX的彈性力學(xué)性能,相對改善效應(yīng)的順序為(100)>

    (001)>(010).RDX/BAMO推進劑的能量性能結(jié)果顯示,BAMO的加入降低了RDX的比沖,但仍高于著名的雙基推進劑的比沖.

    分子動力學(xué);RDX;BAMO;結(jié)合能;力學(xué)性能

    1 Introduction

    Fig.1 Molecular configurations of RDX(a)and crystal(b)

    Fig.2 Molecular configurations of BAMO

    Cyclotrimethylene trinitramine(RDX,Fig.1),an important modern molecular explosive,has been widely used as the propellant ingredients in applications such as gun and rocket motors.It offers many advantages for advanced propulsion,including high energy,high specific impulse,low sensitivity,and environment friendliness.In particular,RDX is also attractive because of its low cost.However,RDX has low burning rate (~1.19 cm·s-1at 6.08 MPa)coupled with a relatively high and undesirable burning rate exponent(~0.74).1In the search for new binder materials for the nitramine propellant,a great deal of interest has recently centered on azido compounds,which contain―N=N≡N bonds in their chemical structure,such as 3,3′-bis-azidomethyl-oxetane(BAMO,Fig.2).This nitramine/ azide combination propellant is characterized by high velocity of combustion,low vulnerability,and good thermal stability. These characteristics are especially useful as rocket propellants,since they provide high specific impulse while generating minimum smoke.Heretofore,a number of experimental measurements and theoretical studies2-12have paid attention to this kind of propellant.However,previous studies mainly focused on thermal decomposition and combustion characteristics of nitramine/azide propellant,and there are few reports on the structure performance for nitramine/azide using the MD simulation.In this paper,we chose RDX/BAMO propellant as an example to investigate the correlations between the structure and performance for propellants.It is hoped that our studies provide some information and guidance for composite propellant formulation design.

    2 Modeling and simulation

    2.1 Computational model

    The initial models were built by using materials studio(MS) package.13The initial RDX structure used in the condensed phase simulations was taken from the experimental result by Choi and Prince,14which crystallized in the orthorhombic space group of Pbca with four independent lattice parameters a=1.3182 nm,b=1.1574 nm,c=1.0709 nm and α=β=γ=90°. There are eight irreducible molecules in the unit cell,see Fig.1 (b).The RDX crystal was cut along three crystalline surfaces

    (100),(010),and(001),respectively,with the“cutting”method in MS 3.0.1 and put in the periodic cells with 3.0 nm vacuum layer along the z-axis(c direction),and the periodic MD simulation cells contain 96 RDX molecules,corresponding to (2×2×3)unit cells.BAMO involving six-chain segments was processed by amorphous cell module and simulated by 2.5×106fs using the MD method to get the equilibrium conformation, and the end groups of BAMO polymer were saturated with H and OH groups.According to the practical formulation of nitramine/binder propellant,we embed five equilibrium chains of BAMO into the supercell model in parallel with different RDX crystalline surfaces.A total of three different initial RDX/BAMO configurations with 2631 atoms,and with mass fractions of 80.6%RDX and 19.4%BAMO,respectively,were obtained.

    2.2 MD simulations

    The COMPASS force field was used to study the structures and properties of the RDX,BAMO,and RDX/BAMO.Its parameters were debugged and ascertained from the ab initio calculations,optimized according to the experimental values,and parameterized using extensive data for molecules in condensed phase.Its nonbonded parameters were further amended and validated by the thermal physical properties of the molecules in liquid and solid phases obtained using the MD method.Consequently,COMPASS is able to accurately predict the structural,conformational,vibrational,and thermophysical properties for a broad range of compounds in both isolation and condensed phases.15-18Moreover,the nitro(―NO2)functional groups required to model energetic materials have been specifically parameterized and included in the COMPASS force field.17Up to now,this force field has been successfully employed to investigate the nitramine.19-25It is therefore suitable for performing MD simulations on them.

    The molecular dynamics simulations of RDX,BAMO,and RDX/BAMO were performed using the COMPASS force field and periodic boundary conditions.Minimizations were initially carried out for 5000 iterations to equilibrate the RDX/BAMO models and then the simulation boxes were compressed slightly(0.3%)along the c direction.Afterward,another 5000 iterations of minimizations were carried out to reach the equilibrium state and the boxes were compressed further along the c direction.The above processes were repeated step by step until the density approached the theoretical maximum value,which can be predicted according to the mass fraction of each component in the propellant.Starting from the above-minimized structures,the MD simulations were conducted at constant volume and constant temperature(NVT)conditions.After an equilibrium run,the module allowed one to collect the results of the dynamics simulation in a trajectory file.Through analyzing trajectory files,the static elastic properties and pair correlation functions were obtained.Considering the condition of equilibrium and spend of CPU time,all the simulation time was added to 4×105fs.A fixed time step size of 1 fs was used in all the cases.In the above-mentioned MD simulations,the Andersen thermostat method26was employed to control the system at the temperature of 298 K.The Coulomb and van der Waals longrange,nonbond interactions were handled by using the standard Ewald and atom-based summation methods,respectively. Nonbonded interactions,spline width,and buffer width were truncated at 0.95,0.1,and 0.05 nm,respectively.All the calculations were implemented on a Pentium IV computer.

    3 Results and discussion

    3.1 Criteria of system equilibrium

    There are two criteria to judge the equilibrium:one is the equilibrium of temperature and the other is the equilibrium of energy.The fluctuations of temperature and energy are in the range of 5%-10%,that is to say,the fluctuation of temperature is within±15 K and the energy is invariable or small fluctuation around the average energy value.For instance,Fig.3 shows the fluctuation curves of temperature and energy in the MD simulation of BAMO on the molecule layers parallel to (100)crystalline surface of RDX.It can be found that both the fluctuation curves of temperature and energy trend to be smooth,and the temperature reaches equilibrium state indeed as it is fluctuating 10 K or so.

    3.2 Equilibrium configuration and interactions between constituents

    After the MD simulations,one can get the equilibrium configurations of the models.Fig.4 illustrates the equilibrium configurations of RDX/BAMO with BAMO on RDX crystalline surfaces of(100),(010),(001),respectively.As can be seen from Fig.4,BAMO polymer binder is closely contacted with the RDX crystalline surface and consequently extensive interactions exist between BAMO polymer and RDX.Binding energy(Ebinding)can well reflect the capacity of the two components blending with each other,which is defined as the negative value of the intermolecular interaction energy(Einter),Ebinding=-Einter. The intermolecular interaction energy can be evaluated by the total energies of the composite and each component in the equilibrium state.So the Ebindingbetween RDX and BAMO polymer can be determined as follows:

    where Etotalis the total energy of RDX/BAMO mixed system. ERDXand EBAMOare the total energies of RDX and BAMO polymer,respectively.

    For visualization,Etotal,ERDX,EBAMO,and Ebindingfor different crystalline surfaces are presented in Table 1.It can be found that the RDX(010)surface has a stronger capability to blend with BAMO than(001)and(100)surfaces due to the larger binding energies.In other words,when BAMO polymers are put into the RDX crystal,they tends to concentrate on the RDX(010)surface due to their stronger intermolecular interactions.

    Fig.3 Plots of temperature and energy vs simulation time for RDX/BAMO with BAMO on RDX(100)crystalline surface at the temperature of 298 K

    Fig.4 Equilibrium structures of RDX/BAMO with BAMO on different crystalline surfaces of RDX at 298 K

    Table 1 Binding energies for RDX/BAMO with BAMO on three different crystalline surfaces of RDX at 298 K

    The interactions between each constituent can be further analyzed by examining pair correlation function g(r).The pair correlation function gives a measure of the probability of finding another atom at a distance r from a specific atom.It has many applications in structural investigations of both solid and liquid packings(local structure),in studying specific interactions such as hydrogen bonding,and in statistical mechanical theories of liquids and mixtures.

    To be compact,only g(r)-r relations with important interaction of the crystalline surfaces(100)are described in Fig.5. The corresponding atoms are named as follows:(1)O,N,and H atoms in RDX are noted as O1,N1,and H1,respectively;(2) O(―OH),N,and H in BAMO are noted as O2H,N2,and H2,respectively.

    In general,intermolecular actions include hydrogen bonding action and van der Waals(vdw)force,in which the vdw force is composed of dipole-dipole,induction,and dispersion force. If the distance between atoms is 0.26-0.31 nm,0.31-0.50 nm, or above 0.50 nm,the interaction belongs to hydrogen bonding,strong vdw,or weak vdw force,respectively.Although the hydrogen bonding action is weaker than chemical bond,it is the strongest force among intermolecular actions and can strengthen them.

    From Fig.5(a),it is found that probability for N1in RDX and O2Hin BAMO to simultaneously arise in the distance of 0.29-0.39 nm is high to 2.5 or so,predicting the strong van der Waals interaction between them.In the region of 0.29-0.40 nm,a comparative high peak arises in the g(r)describing theatom pair(Fig.5(b)),predicting the strong van der Waals interaction.As seen from Fig.5(c),in the region of 0.25-0.29 nm,the high peak value arises in the g(r)curve ofindicating the strong hydrogen bond interaction between this atom pair;in the region of van der Waals,high peak arises again,predicting that certain van der Waals interaction exists between them.Fig.5(d)shows that mainly hydrogen bond and van der Waals interactions exist in O1-H2.In all,van der Waals and hydrogen bonds are the main interactions between RDX and BAMO,especially the van der Waals and hydrogen bond interactions exist in N1-O2Hand O1

    -H2.

    3.3 Mechanical properties

    The material stress and strain tensor are denoted by σ and ε, respectively.From the statistical mechanics of elasticity,27the generalized Hooke′s law is often written as

    [Cij]is symmetric,and hence a maximum of 21 constants is required to fully describe the stress-strain behavior of an arbitrary material.

    The effective isotropic compliances in terms of single-crystal compliances averaged over all orientations can be obtained by Reuss average.The effective bulk and shear moduli are given by:

    The subscript R denotes the Reuss average.The compliance matrix S is equal to the inverse matrix of elastic coefficient matrix C,i.e.,S=C?1.Note that for the most general crystal struc-ture(all 21 constants are independent)the Reuss modulus depends on only nine of the single-crystal compliances.From the rules of isotropic linear elasticity we have

    Fig.5 Pair correlation function of RDX(100)/BAMO propellant

    E=2G(1+n)=3K(1-2n) (5) where E is tensile modulus and n is the Poisson′s ratio,so that after the bulk and shear moduli are calculated,the tensile modulus and Poisson′s ratio can be obtained.

    Such plastic properties as hardness,tensile strength,fracture strength,and elongation in tension,can be related to the elastic modulus.28Hardness and tensile strength representing the resistance to plastic deformation are proportional to the shear modulus G.Fracture strength is proportional to the bulk modulus K. The quotient K/G indicates the extent of the plastic range(elongation in tension),so that a high value of K/G is associated with ductibility and a low value with brittleness.

    The predicted value of elastic constants and effective isotropic mechanical properties(tensile modulus,bulk modulus, shear modulus,and Poisson′s ratio)are summarized in Table 2 and Table 3,respectively.

    From the elastic coefficients matrices for RDX in Table 2,it can be found that the diagonal elements Ciiand C12,C13,C23(nine elements totally)are larger but the other coefficients are smaller,which indicate that the crystal has anisotropy to some extent.In addition,the larger C11,C22,and C33imply that,to reach the same strain,RDX needs a larger stress.This characteristic can also be further validated by the differences of elastic coefficients of the RDX/BAMO propellant with BAMO on different crystalline surfaces.Compared with the pure RDX, the smaller diagonal elements C22and C55increase for RDX/ BAMO,while other diagonal elements Ciiall decrease.Moreover,the off-diagonal elements C13and C23increase while C12, C15,C25,C35,and C46decrease or increase to some extent.This evolution tendency of elastic coefficients shows that adding some amounts of BAMO can reduce the anisotropy of the system.

    Cauchy pressure(C12-C44)can be used as a criterion to evaluate the ductibility or brittleness of a material.As a rule,the value of(C12

    -C44)for a ductile material is positive;on the contrary,that is negative for a brittle material.Meanwhile,the more positive the(C12-C44)value is,the more ductile the material is.According to this,the data in the last column of Table 2 indicate that the pure RDX and the obtained RDX/BAMO are all ductile due to their positive(C12-C44).But,the Cauchy pressures of the RDX/BAMO are all larger than that of the pure RDX crystal.This indicates that the ductibility of RDX is greatly improved by adding some quantities of BAMO polymer. Comparing the values of(C12-C44),we find that the ductibility of RDX/BAMO depends on different surfaces,and it changes in the following order:(010)>(100)>(001).

    As can be also seen from Table 3,all moduli of the obtained RDX/BAMO decrease in comparison with the pure crystal except K for(010).For example,the tensile modulus E decreases from 8.51 to 6.38 GPa as the system changes from the pure crystal to the RDX/BAMO mixture,the shear modulus G decreases from 3.29 to 2.37 GPa,and the bulk modulus K decreases or increases slightly as compared to the former two moduli.This further indicates that the rigidity and brittleness of RDX/BAMO propellant decrease,while its elasticity and plasticity strengthen.Meanwhile,these variations also suggest that the materials will deform more easily when they are subjected to an external force,because the resistance to plastic deformation is proportional to the elastic shear modulus G and the fracture strength for materials is proportional to the bulk modulus K.29As a whole,the effect of BAMO on improving the mechanical properties of different crystal surfaces is somewhat different and changes in the order of(100)>(001)>(010).

    In addition,the ratio(bulk modulus/shear modulus,K/G) can be used to evaluate the tenacity of a material.A higher value of K/G is associated with malleability and a lower value with brittleness.According to this,it can be deduced from the K/G values in Table 3 that RDX/BAMO has better malleability than the pure RDX.On the whole,the malleability of RDX/ BAMO propellant with BAMO on three different crystalline surfaces decreases as follows:(100)>(001)≈(010).

    3.4 Energetic properties

    Energetic properties are the much important factors to evaluate the propellant performances.The calculations of propellant energetic properties can be approximately divided into foursteps.Firstly,calculate the assumed chemical formula,oxygen balances(OB100)and initial total enthalpy of 1000 g propellant. For1000 g RDX,the assumed chemicalformula is C13.506H27.013O27.013N27.013,and for 1000 g RDX/BAMO(80.6/19.4) propellant,that is C16.659H31.011O22.927N28.701.Next,compute the thermochemical properties of propellant combustion process in the combustion chamber.Propellant isenthalpic combustion decomposes into high temperature working fluid,which is heat balance and chemical equilibrium(energy conservation and mass conservation).According to the principle of minimum free energy function of balance system,the equilibrium composition,chamber temperature(Tc)and other thermodynamic functions in the combustion chamber can be further calculated. Thirdly,calculate the thermochemical properties of combustion products expansion process(isentropic expansion)in the nozzle.Using the entropy difference inserting method,one can get the outlet temperature(Te),outlet species composition,etc. Lastly,calculate specific heat ratio,standard theoretical specific impulse(Isp),etc.

    Table 2 Elastic constants(GPa)of pure crystal RDX and RDX/BAMO propellant with BAMO on different crystalline surfaces at 298 K

    Table 3 Elastic properties of RDX crystal and RDX/BAMO mixture system with BAMO on different crystalline surfaces at 298 K

    Table 4 Energetic properties of RDX/BAMO propellant

    Among above parameters,standard theoretical specific impulse(Isp),equal to units of thrust per unit mass of propellant consumed per unit time,is the most important parameter to evaluate energy characteristics of propellants.Isphas great influence on the rocket range,the higher Isp,the farther rocket range.The calculation standard of Ispis as follows:(1)the combustion chamber pressure equals to 6.86 MPa;(2)environment pressure equals to 0.1 MPa;(3)nozzle expansion ratio is optimal,that exit pressure equals to environment pressure;(4)nozzle exit spread angle equals to 0°.The predicted energetic properties are listed in Table 4.

    From Table 4,it can be seen that Ispof RDX is relatively high(2608 N·s·kg-1)due to its high density(ρ),oxygen balances(OB100),and chamber temperature.Compared with RDX, BAMO has positive heat of formation(ΔHf,2460.0 kJ·kg-1), yet it also has large negative oxygen balances(OB100=-123.8), which will cause the incomplete combustion and reduce the chamber temperature,and so BAMO has lower Isp(2137 N·s· kg-1).When adding BAMO polymer to RDX crystal,the OB100, Tc,and Ispof RDX/BAMO propellant are smaller than those of the pure RDX crystal.But,compared with the famous double base(DB)propellant(Isp=2100-2270 N·s·kg-1)30,it is obvious that RDX/BAMO propellant has better energetic performances than DB propellant.

    4 Conclusions

    In this study,we have performed MD simulations to study the binding energies,mechanical properties,and energetic properties of RDX/BAMO propellant.The effects of BAMO on different crystalline surfaces of RDX were investigated,the major findings can be summarized as follows:

    (1)The binding energies between RDX and BAMO are obtained,and the order of binding energies is(010)>(100)>(001).

    (2)The pair correlation function g(r)analysis shows that hydrogen bond and van der Waals interactions exist between RDX and BAMO.

    (3)The mechanical properties of the pure RDX can be effectively improved by adding BAMO ploymer.On three different cyrstalline surfaces,the effect of BAMO on improving the mechanical properties is approximately(100)>(001)>(010). Whereas the improvement in the ductibility(C12-C44)made by BAMO polymers changes in the sequence of(010)>(100)>

    (001).

    (4)The calculations on energetic properties for RDX/ BAMO propellant show that its energetic properties can be lowered by blending some amount of BAMO polymer,but it is still superior to the double base propellant and can be used as advanced propellant.

    In a word,the MD simulations on the RDX and RDX/ BAMO propellant provide us much information about its mechanical properties,binding energies,and energetic properties. These may be useful for guiding composite propellant design.

    (1) Luca,L.D.;Cozzi,F.;Germiniasi,G.Combust.Flame 1999, 118,248.

    (2) Oyumi,Y.;Brill,T.B.Combust.Flame 1986,65,127.

    (3) Chen,J.K.;Brill,T.B.Combust.Flame 1991,87,157.

    (4) Miyazaki,T.;Kubota,N.Propell.Explos.Pyrotech.1992,17,5.

    (5)Oyumi,Y.;Inokami,K.;Yamazaki,K.;Matsumoto,K.Propell. Explos.Pyrotech.1993,18,62.

    (6)Shen,S.M.;Chiu,Y.S.;Wang,S.W.;Chen,S.I.Thermochim. Acta 1993,221,275.

    (7) Kimura,E.;Oyumi,Y.Propell.Explos.Pyrotech.1995,20,322.

    (8) Kubota,N.J.Propul.Power 1995,11,677.

    (9) Liu,Y.L.;Hsiue,G.H.;Chiu,Y.S.J.Appl.Polym.Sci.1995, 58,579.

    (10) Oyumi,Y.;Kimura,E.;Nagayama,K.Propell.Explos. Pyrotech.1998,23,123.

    (11) Pisharath,S.;Ang,H.G.Polym.Degrad.Stabil.2007,92,1365.

    (12) Zhai,J.;Yang,R.;Li,J.Combust.Flame 2008,154,473.

    (13) Material Studio 3.0 discover;Accelrys Inc.:San Diego,2004.

    (14) Choi,C.S.;Prince,E.Acta Crystallogr.B 1972,28,2857.

    (15) Sun,H.;Ren,P.;Fried,J.R.Comput.Theor.Polym.Sci.1998, 8,229.

    (16) Bunte,S.W.;Sun,H.J.Phys.Chem.B 2000,104,2477.

    (17)Yang,J.;Ren,Y.;Tian,A.M.;Sun,H.J.Phys.Chem.B 2000, 104,4951.

    (18)Mcquaid,M.J.;Sun,H.;Rigby,D.J.Comput.Chem.2004,25, 61.

    (19) Sun,H.J.Phys.Chem.B 1998,102,7338.

    (20) Zhu,W.;Xiao,J.;Zhu,W.;Xiao,H.J.Hazard.Mater.2009, 164,1082.

    (21) Xu,X.J.;Xiao,H.M.;Xiao,J.J.;Zhu,W.;Huang,H.;Li,J.S. J.Phys.Chem.B 2006,110,7203.

    (22)Qiu,L.;Zhu,W.H.;Xiao,J.J.;Zhu,W.;Xiao,H.M.;Huang, H.;Li,J.S.J.Phys.Chem.B 2007,111,1559.

    (23)Zhu,W.;Wang,X.;Xiao,J.;Zhu,W.;Sun,H.;Xiao,H. J.Hazard.Mater.2009,167,810.

    (24) Xiao,J.;Huang,H.;Li,J.;Zhang,H.;Zhu,W.;Xiao,H.J.Mol. Struct.-Theothem 2008,851,242.

    (25) Qiu,L.;Xiao,H.J.Hazard.Mater.2009,164,329.

    (26)Andersen,H.C.J.Chem.Phys.1980,72,2384.

    (27) Weiner,J.H.Statistical Mechanics of Elasticity;John Wiley: New York,2002.

    (28) Pugh,S.F.Philos.Mag.Series 7 1954,45,823.

    (29) Weiner,J.H.Statistical Mechanics of Elasticity;John Wiley: New York,1983.

    (30) Tian,D.Y.;Liu,J.H.Energetics Calculation of Chemical Propellants;Henan Scientific and Technical Publishers: Zhengzhou,1999.[田德余,劉劍洪.化學(xué)推進劑計算能量學(xué).鄭州:河南科學(xué)技術(shù)出版社,1999.]

    January 21,2011;Revised:March 28,2011;Published on Web:April 15,2011.

    Molecular Dynamics Simulation of Binding Energies,Mechanical Properties and Energetic Performance of the RDX/BAMO Propellant

    LI Miao-Miao*SHEN Rui-Qi LI Feng-Sheng
    (School of Chemical Engineering Nanjing University of Science and Technology,Nanjing 210094,P.R.China)

    Molecular dynamics(MD)simulations were performed to investigate the well-known energetic material cyclotrimethylene trinitramine(RDX)crystal,3,3′-bis-azidomethyl-oxetane(BAMO)and the RDX/ BAMO propellant.The results show that the binding energies of RDX with BAMO on different crystalline surfaces change as follows:(010)>(100)>(001).The interactions between RDX and BAMO were analyzed by pair correlation functions g(r).The mechanical properties of the RDX/BAMO propellant,such as the elastic coefficients,modulus,Cauchy pressure,and Poisson?s ratio,were obtained.We find that the mechanical properties are effectively improved by adding some BAMO polymer and the overall effect of BAMO on the three crystalline surfaces of RDX changes as follows:(100)>(001)>(010).The energetic performance of the RDX/BAMO propellant was also calculated and the results show that compared with the pure RDX crystal,the standard theoretical specific impulse(Isp)of the RDX/BAMO propellant decreases but it is still superior to that of the double base propellant.

    Molecular dynamics;RDX;BAMO;Binding energy;Mechanical property

    O641

    ?Corresponding author.Email:lmm406@126.com;Tel/Fax:+86-25-84315942.

    The project was supported by the Jiangsu Postdoctoral Sustentation Fund,China(0902018C).江蘇省博士后基金(0902018C)資助項目

    猜你喜歡
    化工學(xué)院結(jié)合能苗苗
    使固態(tài)化學(xué)反應(yīng)100%完成的方法
    晶體結(jié)合能對晶格動力學(xué)性質(zhì)的影響
    《重拾》
    國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心列表
    【鏈接】國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心(第四批)名單
    借鑒躍遷能級圖示助力比結(jié)合能理解*
    物理通報(2020年7期)2020-07-01 09:28:02
    愛幫忙的蠟燭
    My Dream
    出類拔萃
    《化工學(xué)報》贊助單位
    麻豆av在线久日| 少妇猛男粗大的猛烈进出视频| 老司机在亚洲福利影院| 日韩 欧美 亚洲 中文字幕| 成人免费观看视频高清| 美女主播在线视频| 我的亚洲天堂| 少妇 在线观看| tube8黄色片| 在线天堂中文资源库| 一边摸一边抽搐一进一小说 | 热re99久久国产66热| 精品国产超薄肉色丝袜足j| 一区二区日韩欧美中文字幕| 一边摸一边抽搐一进一小说 | 成年人午夜在线观看视频| 国产日韩欧美亚洲二区| 日韩视频一区二区在线观看| e午夜精品久久久久久久| 国产免费视频播放在线视频| 国产亚洲一区二区精品| 亚洲久久久国产精品| 最近最新免费中文字幕在线| √禁漫天堂资源中文www| 欧美 亚洲 国产 日韩一| 中文字幕制服av| 亚洲成av片中文字幕在线观看| 国产成人影院久久av| 国产亚洲欧美精品永久| 亚洲午夜精品一区,二区,三区| 丁香六月天网| 亚洲九九香蕉| 日本wwww免费看| 脱女人内裤的视频| 久久婷婷成人综合色麻豆| 午夜福利,免费看| 久久久久国内视频| 久久午夜综合久久蜜桃| 免费在线观看影片大全网站| 五月开心婷婷网| 亚洲天堂av无毛| 久久人妻av系列| 又紧又爽又黄一区二区| 18禁国产床啪视频网站| 久久午夜亚洲精品久久| 国产av国产精品国产| 黄色 视频免费看| 91精品三级在线观看| 两性夫妻黄色片| 黄色丝袜av网址大全| 黄色成人免费大全| 精品乱码久久久久久99久播| 青草久久国产| 啦啦啦中文免费视频观看日本| 久久婷婷成人综合色麻豆| 99国产精品免费福利视频| 久久性视频一级片| 午夜福利视频精品| 老熟女久久久| 精品国产乱码久久久久久男人| e午夜精品久久久久久久| 咕卡用的链子| 男女无遮挡免费网站观看| 男女下面插进去视频免费观看| 老司机福利观看| 窝窝影院91人妻| 老熟妇乱子伦视频在线观看| 久久精品亚洲精品国产色婷小说| 女性被躁到高潮视频| 亚洲精品一卡2卡三卡4卡5卡| av免费在线观看网站| 久久久久久免费高清国产稀缺| 亚洲av成人不卡在线观看播放网| 天天影视国产精品| 欧美变态另类bdsm刘玥| 亚洲中文av在线| 久久中文字幕一级| 色精品久久人妻99蜜桃| 男人操女人黄网站| 老司机午夜十八禁免费视频| 男女高潮啪啪啪动态图| 国产精品久久久久久精品电影小说| 精品国产一区二区三区四区第35| 母亲3免费完整高清在线观看| 777米奇影视久久| 757午夜福利合集在线观看| 久久国产精品男人的天堂亚洲| 国产伦人伦偷精品视频| 亚洲avbb在线观看| 黄色成人免费大全| 国产精品九九99| 女警被强在线播放| 9191精品国产免费久久| 日韩精品免费视频一区二区三区| 99riav亚洲国产免费| 国产一区二区 视频在线| 国产成人欧美| 国产有黄有色有爽视频| 国产精品久久电影中文字幕 | 不卡一级毛片| 久久久国产精品麻豆| 色婷婷av一区二区三区视频| 亚洲一区中文字幕在线| 亚洲男人天堂网一区| 后天国语完整版免费观看| 脱女人内裤的视频| 国产成人系列免费观看| 十八禁人妻一区二区| 精品一区二区三区av网在线观看 | 男女边摸边吃奶| 制服人妻中文乱码| 美女国产高潮福利片在线看| 国产精品国产高清国产av | 国产成人免费观看mmmm| 国产在线精品亚洲第一网站| 高清欧美精品videossex| 老熟妇仑乱视频hdxx| 精品人妻熟女毛片av久久网站| 亚洲五月婷婷丁香| 色综合欧美亚洲国产小说| 9色porny在线观看| 咕卡用的链子| 女性被躁到高潮视频| 国产极品粉嫩免费观看在线| 久久久久精品国产欧美久久久| 中文字幕av电影在线播放| 国产精品亚洲一级av第二区| 丁香欧美五月| 亚洲精品自拍成人| 黄色毛片三级朝国网站| 日韩 欧美 亚洲 中文字幕| 麻豆av在线久日| 国产成人av激情在线播放| 嫩草影视91久久| 中文字幕人妻丝袜制服| 国产日韩一区二区三区精品不卡| 亚洲伊人色综图| 少妇裸体淫交视频免费看高清 | 在线看a的网站| 多毛熟女@视频| 亚洲欧美激情在线| 国产精品自产拍在线观看55亚洲 | 岛国在线观看网站| 99国产精品免费福利视频| 国产麻豆69| 美国免费a级毛片| av欧美777| 91国产中文字幕| 成人精品一区二区免费| 久久亚洲精品不卡| 国产极品粉嫩免费观看在线| 曰老女人黄片| 成人亚洲精品一区在线观看| 亚洲avbb在线观看| 天天躁夜夜躁狠狠躁躁| 精品福利永久在线观看| 亚洲欧美日韩高清在线视频 | 国产精品久久电影中文字幕 | 少妇精品久久久久久久| 91国产中文字幕| 亚洲av成人一区二区三| 黄片小视频在线播放| 日韩有码中文字幕| 久久精品亚洲熟妇少妇任你| 18禁国产床啪视频网站| 如日韩欧美国产精品一区二区三区| 精品欧美一区二区三区在线| 色综合婷婷激情| 亚洲欧美日韩另类电影网站| 日韩欧美三级三区| 夜夜夜夜夜久久久久| 精品福利观看| 国产伦理片在线播放av一区| 一级,二级,三级黄色视频| 精品一区二区三区av网在线观看 | 天堂动漫精品| 一本色道久久久久久精品综合| 国产精品一区二区精品视频观看| 国产男女超爽视频在线观看| 最近最新中文字幕大全电影3 | 成人18禁在线播放| 在线天堂中文资源库| 蜜桃在线观看..| 黑丝袜美女国产一区| 亚洲精华国产精华精| 热99re8久久精品国产| 久久久精品94久久精品| 亚洲 欧美一区二区三区| 曰老女人黄片| 精品人妻1区二区| 亚洲久久久国产精品| 丝袜人妻中文字幕| 久久久久视频综合| 午夜福利视频精品| 亚洲精品国产区一区二| 18禁国产床啪视频网站| 亚洲av国产av综合av卡| 国产高清国产精品国产三级| 久久国产精品影院| 国产精品久久久人人做人人爽| 欧美久久黑人一区二区| 亚洲国产av影院在线观看| 国产熟女午夜一区二区三区| 精品欧美一区二区三区在线| 色视频在线一区二区三区| 午夜91福利影院| 少妇粗大呻吟视频| 亚洲精品一二三| 露出奶头的视频| 精品久久久久久电影网| 一本久久精品| 欧美av亚洲av综合av国产av| 久久热在线av| 香蕉久久夜色| 欧美 日韩 精品 国产| 久久狼人影院| 久久99一区二区三区| 91麻豆av在线| 亚洲欧美激情在线| 精品一品国产午夜福利视频| 免费观看av网站的网址| 如日韩欧美国产精品一区二区三区| 我的亚洲天堂| 美女国产高潮福利片在线看| 激情视频va一区二区三区| 久久人妻熟女aⅴ| 亚洲精品在线美女| 久久精品成人免费网站| 一区二区三区激情视频| 制服人妻中文乱码| 少妇被粗大的猛进出69影院| 最近最新中文字幕大全电影3 | 亚洲欧美日韩另类电影网站| 欧美黄色片欧美黄色片| 欧美乱码精品一区二区三区| 精品久久久久久电影网| 国产有黄有色有爽视频| 欧美av亚洲av综合av国产av| 国产精品久久久久成人av| 人妻久久中文字幕网| 电影成人av| 久久精品国产亚洲av香蕉五月 | 自拍欧美九色日韩亚洲蝌蚪91| 天堂中文最新版在线下载| 国产精品亚洲一级av第二区| 777米奇影视久久| 亚洲国产欧美一区二区综合| 另类亚洲欧美激情| 精品国产超薄肉色丝袜足j| 精品国产乱码久久久久久小说| 午夜福利免费观看在线| 国产亚洲精品第一综合不卡| 亚洲专区字幕在线| 人妻久久中文字幕网| 免费看十八禁软件| 亚洲熟妇熟女久久| 亚洲专区中文字幕在线| 亚洲av成人一区二区三| 久久久久国产一级毛片高清牌| 免费看十八禁软件| 99精品欧美一区二区三区四区| 一边摸一边做爽爽视频免费| 国产成人免费无遮挡视频| 国产精品亚洲av一区麻豆| 久久精品国产亚洲av高清一级| 日韩精品免费视频一区二区三区| 亚洲熟女毛片儿| 久久青草综合色| 国产一区二区在线观看av| 久久人妻熟女aⅴ| 欧美国产精品va在线观看不卡| 国产精品免费大片| 亚洲人成电影观看| 女人久久www免费人成看片| 极品少妇高潮喷水抽搐| 亚洲欧美日韩另类电影网站| 国精品久久久久久国模美| 精品欧美一区二区三区在线| 欧美日韩视频精品一区| 91av网站免费观看| 1024香蕉在线观看| 中文字幕制服av| 欧美激情久久久久久爽电影 | 中文字幕另类日韩欧美亚洲嫩草| 国产高清视频在线播放一区| 女人精品久久久久毛片| 欧美av亚洲av综合av国产av| 亚洲欧美日韩高清在线视频 | 十八禁网站网址无遮挡| 亚洲国产av新网站| 男女下面插进去视频免费观看| 欧美+亚洲+日韩+国产| 999久久久精品免费观看国产| 久久青草综合色| 国产视频一区二区在线看| 国产真人三级小视频在线观看| 女性生殖器流出的白浆| 欧美成狂野欧美在线观看| 国产亚洲午夜精品一区二区久久| av电影中文网址| 黑人巨大精品欧美一区二区蜜桃| 国产在线视频一区二区| 亚洲五月婷婷丁香| 最近最新中文字幕大全电影3 | 免费在线观看日本一区| 国产成人精品久久二区二区91| 欧美日本中文国产一区发布| 亚洲人成77777在线视频| 久久精品91无色码中文字幕| 成人黄色视频免费在线看| 国产男女内射视频| 成人精品一区二区免费| 老汉色av国产亚洲站长工具| 最新美女视频免费是黄的| 丁香欧美五月| 夜夜夜夜夜久久久久| 久久久久久人人人人人| 成人黄色视频免费在线看| 一级a爱视频在线免费观看| 91av网站免费观看| 一本久久精品| 亚洲九九香蕉| 天天躁日日躁夜夜躁夜夜| 国产在线免费精品| 窝窝影院91人妻| 免费在线观看完整版高清| 亚洲精品国产一区二区精华液| 新久久久久国产一级毛片| 99香蕉大伊视频| 亚洲欧美日韩另类电影网站| 久久精品91无色码中文字幕| 亚洲精品一卡2卡三卡4卡5卡| 免费观看av网站的网址| 一本大道久久a久久精品| 成人免费观看视频高清| 丁香六月欧美| 五月开心婷婷网| 高潮久久久久久久久久久不卡| 国产高清激情床上av| 国产单亲对白刺激| 国产成人系列免费观看| 欧美黄色淫秽网站| 丁香六月天网| 最新在线观看一区二区三区| 午夜免费成人在线视频| 操美女的视频在线观看| videos熟女内射| 18禁黄网站禁片午夜丰满| 美女视频免费永久观看网站| 亚洲色图 男人天堂 中文字幕| 97人妻天天添夜夜摸| 精品免费久久久久久久清纯 | 午夜两性在线视频| 视频在线观看一区二区三区| 在线观看免费视频日本深夜| 久久免费观看电影| 精品福利观看| 久久精品91无色码中文字幕| 精品少妇一区二区三区视频日本电影| 视频在线观看一区二区三区| 国产视频一区二区在线看| 电影成人av| 激情在线观看视频在线高清 | 狂野欧美激情性xxxx| 亚洲专区国产一区二区| 老司机靠b影院| 女人被躁到高潮嗷嗷叫费观| 老汉色∧v一级毛片| 侵犯人妻中文字幕一二三四区| 一二三四在线观看免费中文在| 黄色成人免费大全| 一边摸一边做爽爽视频免费| 成人18禁在线播放| 国产国语露脸激情在线看| 亚洲人成电影观看| 这个男人来自地球电影免费观看| 久久精品国产亚洲av高清一级| 婷婷成人精品国产| 黄片播放在线免费| 正在播放国产对白刺激| 国产成人啪精品午夜网站| www.精华液| 国产日韩一区二区三区精品不卡| 日韩欧美国产一区二区入口| 男女边摸边吃奶| 中文字幕av电影在线播放| 在线观看一区二区三区激情| 如日韩欧美国产精品一区二区三区| 午夜91福利影院| 日韩欧美一区二区三区在线观看 | 久久久久久亚洲精品国产蜜桃av| 亚洲精品在线观看二区| 日韩大片免费观看网站| 在线观看一区二区三区激情| 亚洲国产中文字幕在线视频| 在线永久观看黄色视频| 国产精品一区二区在线不卡| 男女床上黄色一级片免费看| 国精品久久久久久国模美| 国产精品九九99| 少妇猛男粗大的猛烈进出视频| 亚洲av日韩精品久久久久久密| 真人做人爱边吃奶动态| 成在线人永久免费视频| 久久精品亚洲精品国产色婷小说| 国产成人精品久久二区二区91| 久久久久网色| 又大又爽又粗| 超碰97精品在线观看| 免费观看a级毛片全部| 免费在线观看影片大全网站| 国产麻豆69| 极品少妇高潮喷水抽搐| 欧美成人免费av一区二区三区 | 18禁国产床啪视频网站| 亚洲欧美日韩高清在线视频 | 国产精品久久久久成人av| 亚洲精品中文字幕一二三四区 | 国产男女超爽视频在线观看| 精品一区二区三区av网在线观看 | 母亲3免费完整高清在线观看| 国产1区2区3区精品| 国产主播在线观看一区二区| 18禁黄网站禁片午夜丰满| 国产亚洲精品一区二区www | 欧美黑人欧美精品刺激| 国产区一区二久久| 成人特级黄色片久久久久久久 | 我的亚洲天堂| 岛国毛片在线播放| 香蕉久久夜色| av网站免费在线观看视频| 一级黄色大片毛片| 超色免费av| 蜜桃国产av成人99| 精品久久久久久电影网| 啦啦啦免费观看视频1| 夫妻午夜视频| 亚洲,欧美精品.| 国产99久久九九免费精品| 亚洲av日韩精品久久久久久密| 亚洲精品久久午夜乱码| 国产成人精品在线电影| 超碰成人久久| a级毛片在线看网站| 亚洲中文字幕日韩| 中文字幕人妻熟女乱码| 少妇粗大呻吟视频| 日韩大码丰满熟妇| 欧美性长视频在线观看| 老汉色av国产亚洲站长工具| 人妻久久中文字幕网| 中文字幕制服av| 久久免费观看电影| 成人永久免费在线观看视频 | 人人澡人人妻人| 久久狼人影院| 女人精品久久久久毛片| 久久久久久久大尺度免费视频| 国产精品 国内视频| 久热爱精品视频在线9| 香蕉国产在线看| 国产欧美日韩一区二区三区在线| e午夜精品久久久久久久| 精品一区二区三卡| 91大片在线观看| www.999成人在线观看| 久久国产亚洲av麻豆专区| 大陆偷拍与自拍| 一边摸一边抽搐一进一出视频| 久久天躁狠狠躁夜夜2o2o| 超碰97精品在线观看| 国产精品秋霞免费鲁丝片| 亚洲成人免费av在线播放| 国产成人啪精品午夜网站| 少妇被粗大的猛进出69影院| 欧美成人免费av一区二区三区 | 91九色精品人成在线观看| 黄片小视频在线播放| 国产亚洲午夜精品一区二区久久| 国产亚洲精品第一综合不卡| 免费在线观看黄色视频的| 国产精品亚洲一级av第二区| 交换朋友夫妻互换小说| 亚洲欧美精品综合一区二区三区| 91国产中文字幕| www.自偷自拍.com| 大片电影免费在线观看免费| 男女床上黄色一级片免费看| 咕卡用的链子| 1024视频免费在线观看| 999久久久国产精品视频| 久久久久视频综合| 久久中文看片网| 丁香六月欧美| 久久99一区二区三区| 亚洲三区欧美一区| 老司机午夜十八禁免费视频| 日韩欧美一区视频在线观看| 久久青草综合色| 国产在线免费精品| 窝窝影院91人妻| 久久久水蜜桃国产精品网| 亚洲少妇的诱惑av| 国产成人影院久久av| av免费在线观看网站| 51午夜福利影视在线观看| 成人精品一区二区免费| 久久精品国产亚洲av香蕉五月 | 久久性视频一级片| 欧美日韩av久久| 亚洲国产精品一区二区三区在线| 一本综合久久免费| 国产伦理片在线播放av一区| 99久久99久久久精品蜜桃| 久久亚洲真实| 老熟妇仑乱视频hdxx| 777米奇影视久久| 欧美黑人欧美精品刺激| 中文字幕精品免费在线观看视频| 免费人妻精品一区二区三区视频| 人人妻,人人澡人人爽秒播| 黑人猛操日本美女一级片| 成年人免费黄色播放视频| 国产精品熟女久久久久浪| 欧美乱妇无乱码| 午夜福利视频在线观看免费| 精品第一国产精品| 俄罗斯特黄特色一大片| 一区二区三区乱码不卡18| 亚洲性夜色夜夜综合| 午夜日韩欧美国产| 欧美激情极品国产一区二区三区| 淫妇啪啪啪对白视频| 亚洲视频免费观看视频| 久久久久精品国产欧美久久久| 另类亚洲欧美激情| 成人三级做爰电影| 大型黄色视频在线免费观看| 最黄视频免费看| 黄网站色视频无遮挡免费观看| 超色免费av| 热re99久久精品国产66热6| 亚洲av国产av综合av卡| 国产精品亚洲一级av第二区| 欧美日韩福利视频一区二区| 国产又色又爽无遮挡免费看| 丁香六月欧美| av超薄肉色丝袜交足视频| 国产欧美日韩精品亚洲av| 不卡av一区二区三区| 亚洲色图 男人天堂 中文字幕| 国产成人系列免费观看| 怎么达到女性高潮| 国产成人精品无人区| 老司机靠b影院| 人妻久久中文字幕网| 国产午夜精品久久久久久| 下体分泌物呈黄色| bbb黄色大片| 考比视频在线观看| 黑人操中国人逼视频| 国产成人影院久久av| 精品亚洲成国产av| 我的亚洲天堂| 久久久久久久精品吃奶| 在线亚洲精品国产二区图片欧美| 2018国产大陆天天弄谢| 久久久水蜜桃国产精品网| 亚洲午夜精品一区,二区,三区| 免费在线观看黄色视频的| 一区二区日韩欧美中文字幕| 亚洲国产欧美网| 亚洲人成电影观看| 亚洲国产毛片av蜜桃av| 国产99久久九九免费精品| 欧美精品一区二区大全| 日韩制服丝袜自拍偷拍| 丰满人妻熟妇乱又伦精品不卡| 黑丝袜美女国产一区| 天堂俺去俺来也www色官网| 中文字幕色久视频| 中文字幕人妻丝袜一区二区| 国产精品国产高清国产av | 亚洲色图综合在线观看| 电影成人av| 精品人妻1区二区| 欧美精品av麻豆av| 老司机影院毛片| 动漫黄色视频在线观看| 午夜激情久久久久久久| 亚洲av日韩精品久久久久久密| 久热爱精品视频在线9| 国产成人免费观看mmmm| 99re6热这里在线精品视频| 在线 av 中文字幕| 国产成人一区二区三区免费视频网站| 亚洲精品一二三| 热99国产精品久久久久久7| 99精品久久久久人妻精品| 日韩欧美一区视频在线观看| 丰满少妇做爰视频| 后天国语完整版免费观看| 在线观看一区二区三区激情| 日日摸夜夜添夜夜添小说| 久久久久国内视频| 丁香欧美五月| 午夜福利视频精品| 桃红色精品国产亚洲av| 天天影视国产精品| 久久青草综合色| 麻豆av在线久日| 一个人免费看片子| 中文字幕av电影在线播放| 国产成人影院久久av|