• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Na促進(jìn)的CuCoMn催化劑催化生物質(zhì)合成氣合成高醇

    2011-11-30 10:49:06葉同奇張朝霞顏世志朱九方李全新
    物理化學(xué)學(xué)報(bào) 2011年6期
    關(guān)鍵詞:合成氣合肥生物質(zhì)

    葉同奇 張朝霞 徐 勇 顏世志 朱九方 劉 勇 李全新,*

    (1中國科學(xué)技術(shù)大學(xué)化學(xué)物理系,生物質(zhì)潔凈能源安徽省重點(diǎn)實(shí)驗(yàn)室,合肥230026; 2合肥天焱綠色能源開發(fā)有限公司,合肥230026)

    Na促進(jìn)的CuCoMn催化劑催化生物質(zhì)合成氣合成高醇

    葉同奇1張朝霞1徐 勇1顏世志1朱九方1劉 勇2李全新1,*

    (1中國科學(xué)技術(shù)大學(xué)化學(xué)物理系,生物質(zhì)潔凈能源安徽省重點(diǎn)實(shí)驗(yàn)室,合肥230026;2合肥天焱綠色能源開發(fā)有限公司,合肥230026)

    研究鈉促進(jìn)的CuCoMn催化劑的特性及其在生物質(zhì)氣化合成氣合成高醇中的應(yīng)用.研究了催化劑中Na含量及合成條件(溫度、壓力和空速)對(duì)生物質(zhì)基合成氣合成高醇性能的影響.發(fā)現(xiàn)CuCoMnNa0.1催化劑較適合高醇合成,在300°C以下,隨著溫度的上升,碳轉(zhuǎn)化率增大,而醇選擇性降低.壓力的增加有利于醇的合成,增大空速會(huì)明顯降低碳轉(zhuǎn)化率,但醇時(shí)空產(chǎn)率則因轉(zhuǎn)換頻率的增加而增大.在所考察的范圍內(nèi),醇產(chǎn)率最高達(dá)到304.6 g·kg-1·h-1,其中C2+高醇(C2-C6醇)占64.4%(w,質(zhì)量分?jǐn)?shù)).醇產(chǎn)物和烴產(chǎn)物均符合ASF(Anderson-Schulz-Flory)分布關(guān)系.根據(jù)催化劑性能與表征分析,Na的加入有利于提高生物質(zhì)氣化合成氣合成高醇的選擇性和活性元素Cu、Co的分散性.X射線光電子譜(XPS)測(cè)試結(jié)果顯示反應(yīng)后的催化劑表面上,Cu以Cu+和Cu0的混合形式存在,而Co則是Co2+/Co3+和Co0的混合物.增加Na的含量,Cu0/Cu+比率和Co0的強(qiáng)度均隨之減小.

    生物質(zhì);生物質(zhì)合成氣;高醇;ASF分布;CuCoMnNa催化劑

    1 Introduction

    With the gradual depletion of fossil fuel resources,increasing energy demand and global climate change,renewable energy such as biomass energy will play a more important role in the future energy scenario of the world.1Based on the thermochemical and biochemical processes,biomass can be converted into a wide range of liquid fuels(called as bio-fuels)or chemicals,such as bio-oil,bio-ethanol,bio-diesel,mixed alcohols,dimethyl ether(DME),etc.2,3However,the raw bio-oil from various biomass by pyrolysis processes can not be directly used in gasoline or diesel engines because of low heating value,poor volatility,high viscosity,coking,corrosiveness,and high water content,and it must be upgraded prior to being used as a replacement for diesel and gasoline fuels.4Another important route for the conversion of biomass to fuels is through its conversion to an intermediate synthesis gas,a mixture of CO and H2named bio-syngas.Bio-syngas can be further catalytically converted into various bio-fuels and chemicals,especially to methanol,ethanol,mixed alcohols,and Fischer-Tropsch(FT) fuels.5The unstinted feedstock type of biomass is one major advantage of this synthesis route.6,7

    With stringent restrictions on pollution emissions,alcohols appear to not only be environmentally friendly fuel additives, but also effective as potential octane number enhancer for motor fuels.As a potential alternative fuel/additive or chemical raw materials,the higher alcohols have many advantages including complete combustion,higher octane numbers,volatility control,lower toxic exhaust gas(CO,NOx)emissions,excellent substitutes for methyl tert-butyl ether(MTBE)and higher added value.8,9So the catalytic conversion of synthesis gas to higher alcohols is now attracting renewed attention for both industrial application and fundamental research.

    A wide range of homogeneous and heterogeneous catalysts for higher alcohol synthesis from syngas have been explored and well reviewed in recent papers.10These catalysts can be broadly classified into four types:noble metals-based catalysts,11-13modified Fischer-Tropsch catalysts,14-17modified methanol catalysts,18-20and Mo-based catalysts.21,22Among those alcohol synthesis catalysts,copper modified Fischer-Tropsch catalysts have drawn a wide attention because of their high activity and selectivity,such as CuCo-based catalysts developed by Institut Francais du Petrole.23For CuCo-based catalysts,cobalt was thought to provide the chain growth,while copper would be responsible for chain termination to produce alcohols.14The component synergism result from interaction between Cu and Co plays a very important role in alcohol synthesis.16However,the fact that these catalysts can be modified to increase their selectivity to higher alcohols suggests that they need to be further studied.

    Generally speaking,a catalyst active for higher oxygenate synthesis must contain both adsorbed molecular CO,and surface carbon species derived from dissociative adsorption of CO.So the catalyst must be able to balance the CO dissociation and CO insertion that is necessary for the synthesis of higher alcohols.24Thus besides copper and cobalt,a third component mainly including transition metal elements(such as Zn, Cr,Mn,etc.)and a forth promoter of alkaline metal are also needed,14,15although their functions are remained not quite clear.In the past decades,many attentions have been paid to the Al,Cr,and/or Zn promoted CuCo catalysts,including the preparation methods,25alkali promote effects,15and catalytic performances.26Some new types of CuCo-based catalysts such as CuCo/CNTs have also been reported.27However,to the best of our knowledge,alkali-promoted CuCoMn catalysts for higher alcohol synthesis are rarely reported.

    In our previous work,attention has been paid to produce syngas from the biomass gasification and the bio-oil reforming, both in lab and pilot plant scales.28-30Present work aims to efficiently produce higher alcohols over the CuCoMn-based catalyst from the bio-syngas.Moreover,the influences of sodium addition on catalyst structure and catalytic performance of alcohol synthesis were also investigated.Biomass gasification-synthesis route could produce higher alcohols through the use of any biomass resource in large quantities.However,the bio-syngas conversion to higher alcohols remains challenging,and no commercial process exists so far although there is a growing worldwide interest in this topic for the past decades.Further researches and developments in catalyst and processing need to be achieved to make this conversion commercially attractive.

    2 Experimental

    2.1 Catalyst preparation and characterization

    The CuCoMn-based mixed oxides catalysts with a settled molar ratio(nCu:nCo:nMn=1:1:1)were prepared by the co-precipitation method from two aqueous solutions,one of which contained metal nitrate solution(A.R.)and the other contained sodium carbonate solution(A.R.).The metal nitrate solution was added quickly to the sodium carbonate solution at about 70°C. The coprecipitates were left to age in the mother liquor for 1 h, dried at 120°C for 12 h,and calcined at 450°C for 4 h in air to obtain the corresponding mixed oxide catalysts.The mixed oxides catalysts were finally crushed into 40-60 mesh for the higher alcohol syntheses.Catalysts before calcination were impregnated with different amounts of Na2CO3(A.R.)for CuCoMnNa0.1and CuCoMnNa0.2.The molar ratios of Cu/Co/ Mn/Na are 1:1:1:0.1 and 1:1:1:0.2 for CuCoMnNa0.1and CuCoMnNa0.2,respectively.

    The Brunauer-Emmett-Teller(BET)surface area and pore volume were determined by the N2physisorption at-196°C using a COULTER SA 3100 analyzer.The X-ray diffraction (XRD)was measured on an X′pert Pro Philips diffractrometer with a Cu Kαradiation(λ=0.154 nm).The measurement conditions were in the range of 2θ=10°-80°,step counting time 5 s, and step size 0.017°at 25°C.The surface elements and their states were analyzed by X-ray photoelectron spectroscopy (XPS).The XPS measurements were performed on an ESCALAB-250(Thermo-VG Scientific,USA)spectrometer with Al Kα(1486.6 eV)irradiation source.The C 1s peak at 284.6 eV was generally used as a calibration standard for determining the peaks′position and the elemental concentration.

    2.2 Reaction system for higher alcohol syntheses

    As shown in Fig.1,the performance of higher alcohol syntheses from the selected bio-syngas over the different CuCoMnbased catalysts was evaluated in a fixed-bed continuous-flow reactor using an on-line gas chromatograph(GC)detection system.The cylindrical reactor was constructed from 316L with 40 cm length and an internal diameter of 1 cm.Gas flow rates were regulated using Seven Star 17B mass flow controllers.Reactor pressure was maintained by a back pressure regulator. The catalyst bed temperature was measured during reactions using a type K thermocouple positioned within the reactor itself,near the center of the catalyst bed.

    Fig.1 Schematic setup of the fixed-bed flow reaction system for mixed alcohol synthesis

    Usually,1.0 mL catalyst,diluted with 2.0 mL Pyrex beads, was loaded in the reactor in any cases.Prior to kinetic tests the catalysts were activated with 5%(volume fraction)H2/Ar at 320°C for 12 h.Then,bio-syngas was conducted to the reactor for the higher alcohol syntheses under a setup synthesis condition.The syntheses were carried out under typical operating conditions:T=260-320°C,p=3.0-7.0 MPa,GHSV(gas hourly space velocity)=3000-9000 h-1.Quantitative product analysis from the reactor outlet stream was on-line sampled every 15 min using two on-line gas chromatographs(GC1 and GC2). The gases of H2,CO,and CO2were detected by GC1(Model: SP6890,column:TDX-01)with a thermal conductivity detector(TCD),and gaseous hydrocarbons were detected by GC2 (Model:SP6890,column:PorapakQ-S,USA)with a flame ionization detector(FID).The condensable vapors(mainly consisting of higher alcohols and water)were cooled into a liquid tank and then detected offline by GC2 with a FID.The performance of higher alcohol syntheses was evaluated by the carbon conversion(CC),space time yield of higher alcohols(YAlc,g· kg-1·h-1),selectivity of alcohols(SAlc),and hydrocarbons(SHc), according to the following equations:

    2.3 Feedstock for higher alcohol syntheses

    In this work,one bio-syngas derived from the biomass gasification was used for the higher alcohol synthesis.The bio-syngas was produced by biomass gasification in a circulating fluidized bed using rice husks with the gasification temperature of 1000-1300°C and pressure of 1.5-3.0 MPa,followed by conditioning the syngas via water-gas shift(WGS)reaction and purification processes.31The main composition of the bio-syngas is H262.80%,CO 30.89%,CO22.96%,N21.75%,CH41.20%, and others 0.40%(volume fraction).

    3 Results and discussion

    3.1 Catalyst screening

    Catalysts were prepared with the sodium promoter concentration varied from 0 to 6%(molar fraction)and compared under constant conditions of 5.0 MPa,300°C and gas hourly space velocity(GHSV)of 6000 h-1.The CO hydrogenation performances summarized in Table 1 show that the catalyst with a 3%(molar fraction)Na loading produces the highest alcohol synthesis activity.The overall activity of the promoted catalyst increases as the Na loading increases from 0 to 3%,showing the highest carbon conversion of 36.2%,while decreases rapidly to 24.2%when the Na loading further increases to 6%.As shown in Table 1,Na promoter not only influences catalytic activity,but also promotes alcohol selectivity and inhibits hydro-carbon synthesis in CO hydrogenation reaction.The total alcohol selectivity(SC)increased from 24.3%to 46.8%as Na loading(xNa)increased from 0 to 3%,while the hydrocarbon selectivity decreased from 51.7%to 20.5%,respectively.

    Table 1 Performance of higher alcohol synthesis for various sodium loading

    Alkali addition has been demonstrated to influence the catalyst activity through two typical ways.One is to facilitate adsorption of CO molecules on the catalyst surface16,32thus resulting in a higher efficiency of hydrogenation,as the 3%Na loading catalyst shows.The other is to cover the active sites which induce a decrease of catalytic activity.As Boz14reported that the addition of K to the CuCoZnAl catalyst resulted in the suppression of overall catalytic activity on higher alcohol synthesis.And Chen et al.33proved the excessive K2O loading induced a serious accumulation of potassium on the catalyst surface by XPS characterization.The presence of Na additive strongly suppresses the formation of hydrocarbons(Table 1),possibly due to the decrease in the availability of H*atoms required for termination of growth chains via hydrogen addition reactions to produce paraffins.34,35However,another view proposed by Courty et al.36for the enhanced alcohol selectivity is that alkali addition suppresses alcohol dehydration by suppressing the acidic nature of the catalyst.

    3.2 Performance of higher alcohol synthesis

    Table 2 shows the influence of operating conditions(temperature,pressure,and GHSV)on the higher alcohol synthesis using bio-syngas over the 3%Na promoted catalyst under the synthesis conditions:T=260-320°C,p=3.0-7.0 MPa,and GHSV=3000-9000 h-1.Commonly,temperature is one of the most critical reaction parameters in the higher alcohol synthesis,which significantly affects the rate of kinetically controlled synthesis reactions.In the lower temperature region,an increasing temperature is conducive to the dissociative adsorption of CO and H2while promoting the formation of the specified intermediates(e.g.,alkyls and formyl species),37,38which leads to an increase of the CO hydrogenation.However,another important characteristic of higher alcohol synthesis is the unavoidable production of a large amount of hydrocarbons,and exorbitant temperature will greatly decrease the alcohol selectivity and enhance the formation of hydrocarbons.39,40Consequently, considering the balance of productivity and selectivity,an appropriate temperature needs to be determined through experimentation and then to be closely controlled at this value in the reactor.

    As shown in Table 2,the carbon conversion significantly increased from 11.9%to 59.7%with a rising temperature from 260 to 320°C.An increasing trend was also observed for the space time yield of higher alcohols in this range.The selectivity towards total alcohols(C1-C6alcohols)decreased from 61.8%to 28.3%with a rising temperature versus an opposite trend for the hydrocarbons selectivity.In the hydrocarbon distribution,products were almost C1-C4gaseous hydrocarbons besides a small quantity of liquid hydrocarbons.In the alcohols products,the C2+alcohols(C2-C6higher alcohols)contained with a mass fraction of 28.7%-63.9%(w)and main alcohol products were methanol,ethanol,and propanol under the tested synthesis conditions.When the temperature was fixed at 300°C,the carbon conversion and space time yield ascended monotonously as pressure increased,for the synthesis reactions involved a decrease in the number of molecules.In contrast, the carbon conversion decreased with the increase of the gas hourly space velocity,which was accompanied by an increase of the space time yield of higher alcohol.The negative impact of GHSV on the carbon conversion may result from shortening residence time in the catalyst bed,while the positive impact on the fuel yield can arise from the increase of the turnover frequency of the synthesis products with increasing GHSV.The maximum higher alcohol yield from bio-syngas was about 304.6 g·kg-1·h-1with the alcohol selectivity of 50.1%and C2+alcohols distribution of 64.4%(w)within our studied range. Apart from the alcohol and hydrocarbon products,only a small amount of other compounds including aldehydes,ketones,esters,and ethers were also detected.

    Moreover,the catalytic stability in the higher alcohol synthesis process was tested by measuring the CO conversion,selectivity of alcohols and hydrocarbons,yields of alcohols as a function of time on stream.As shown in Fig.2,the activity increases initially until it reaches the maximum at about 4-6 h of time on stream,and then it decreases very slowly in our tested 80 h.The selectivity of hydrocarbons increases gradually,however,both the alcohol selectivity and yields follow a trend of decrease.A long-term(80 h)reaction test led to about 5%-8% reduction in the higher alcohol synthesis activity compared tothe maximum values.Generally,the slow catalyst inactivation observed in the higher alcohol synthesis process could mainly ascribe to the sintering of active sites and deposition of the carbon16on the catalysts.

    Table 2 Performance of higher alcohol synthesis using bio-syngas over CuCoMnNa0.1catalyst

    Fig.2 Stability of the CuCoMnNa0.1catalyst in the higher alcohol synthesis(a)yield of higher alcohols,(b)selectivity of alcohols,(c)carbon conversion, (d)selectivity of hydrocarbons;synthesis conditions:T=300°C, GHSV=6000 h-1,p=5.0 MPa

    As shown in Fig.3,both alcohols and hydrocarbon products were consistent with the ASF distributions.41Interestingly,the rate of methanol formation was also in line with higher alcohols according to the ASF distribution.Using the ASF distribution we determined the chain growth probability(α)from the slope of the linear part of the plot.The α values of alcohols were found to be increased(from 0.196 to 0.362)while those of hydrocarbons remained nearly constant(α=0.460±0.020)for the CuCoMnNa0.1catalyst when temperature increased from 260 to 300°C.This fact can be taken as an indirect evidence that alcohols and hydrocarbons were formed on different active sites for CuCo-based catalysts as Boz14proposed.

    3.3 Catalyst characterization

    Fig.3 Anderson-Schulz-Flory plots of(a)hydrocarbons and(b)alcohols over CuCoMnNa0.1catalyst at different temperatures Wnis the mass fraction of a product containing n carbon atoms.

    Table 3 Texture parameters of fresh and used CuCoMn-based catalysts

    Some of important physical and chemical properties,including BET surface area,pore volume,and the size of the crystallites were investigated for the CuCoMn-based catalysts before and after used.As shown in Table 3,the doping of sodium in the catalyst induced an obviously decrease of BET surface area and increase of pore size.The BET surface area decreased from 111 to 71 m2·g-1,while the pore size increased from 6.7 to 10.4 nm with the Na loading from 0 to 6%.Such an effect may be related to the clogging of micropores caused by sodium carbonate when considering the adsorption/desorption isotherm data.16

    Fig.4 shows the XRD patterns of the fresh CuCoMnNa0.1catalyst,the reduced ones(pure H2,320°C,8 h),and the used ones(T=300°C,p=5.0 MPa,GHSV=6000 h-1,t=20 h)for higher alcohol synthesis,corresponding patterns of CuCuMn catalyst were also shown.For the fresh samples,all the diffraction peaks can be assigned to spinal CuCoMnO4(JCPDS 47-0324).42Formation of the mixture oxide may be the cause of the excellent catalytic stability of CuCoMn catalysts.The addition of Na promoter did not present significant structural modification when compared with the diffractogram of none sodium addition sample.As suggested by Dalmon et al.16for the CoAl-based catalysts,alkali doping probably just coats the surface as sodium carbonate.For the catalysts reduced by H2, Cu(JCPDS 04-0836)and MnO(JCPDS 01-1206)were detected,but none of Co signals was found suggesting a high dispersion of Co species under reduction conditions.However,after being used at 300°C for higher alcohol synthesis,the diffraction peaks of Co3O4appeared probably due to a slightly sintering.Moreover,the Cu particle sizes for the used catalysts calculated by XRD line widths of the strongest peak(2θ=43.4°) using Debye-Scherrer equation are shown in Table 3.Compared with the none-sodium addition catalyst,the Na-promoted sample showed a smaller Cu particle size.It is well-known that catalysts with small crystallite sizes have an advantage to produce more alcohols while larger crystallites to hydrocarbons.43

    Fig.4 XRD patterns of(a)fresh CuCoMn catalyst,(b)reduced CuCoMn catalyst,(c)used CuCoMn catalyst, (d)fresh CuCoMnNa0.1catalyst,(e)reduced CuCoMnNa0.1catalyst,and(f)used CuCoMnNa0.1catalyst■CuCoMnO4,●Cu,□MnO,○Co3O4;synthesis conditions:(b)T=300°C,pure H2,p=0.5 MPa,(c)T=300°C,GHSV=6000 h-1,p=5.0 MPa,t=20 h, (e)T=300°C,pure H2,p=0.5 MPa,(f)T=300°C,GHSV=6000 h-1,p=5.0 MPa,t=20 h

    Fig.5 Cu 2pXPS spectra and Cu LMMAuger electron spectra for different catalysts (a)Cu 2p XPS spectra for fresh catalysts,(b)Cu 2p XPS spectra for used catalysts,(c)Cu LMMAuger electron spectra for used catalysts; synthesis conditions:T=300°C,p=0.5 MPa,GHSV=6000 h-1,t=20 h

    Fig.6 Co 2p XPS spectra for different catalysts (a)Co 2p XPS spectra for fresh catalysts,(b)Co 2p XPS spectra for used catalysts;synthesis conditions:T=300°C,p=0.5 MPa,GHSV=6000 h-1,t=20 h

    The alterations of the atomic states on the catalyst′s surfaces before and after the synthesis reaction were investigated by the XPS measurements.As can be seen from Fig.5(a),the binding energy at about 930.8 and 933.7 eV were observed for the pristine catalysts,which were assigned to the main line of Cu+(2p3/2) and Cu2+(2p3/2),44respectively.Note that no reduction was employed on the catalysts,the presence of Cu+should attribute to the internal reduction of Mn3+,which has been proved by Yang et al.42After the higher alcohol synthesis,the Cu2+on the surface was reduced as Fig.5(b)shows.For the Cu0and Cu+species can not be distinguished by the 2p3/2peak,Fig.5(c)shows the Cu LMM Auger electron spectra.It can be found that the used samples exhibit a double peak structure at kinetic energy values of 917.0 and 918.7 eV.According to Velu et al.,44these two peaks are corresponding to Cu+and Cu metal,respectively. With the increasing of sodium addition,the Cu+/Cu0ratio increased,indicating the stabilization of Cu+species.A similar internal reduction effect was also observed on Co as Fig.6(a) shows,the weak satellite of Co3+(2p2/3)was about 10 eV higher than its main peak,not as commonly 6 eV.In addition,the very weak satellite shows a mixture of Co2+and Co3+.44After the higher alcohol synthesis,as Fig.6(b)shows,a peak at binding energy(EB)value of 778.8 eV appeared,which could be assigned to Co0species.However,the intensity of Co0decreased with increasing the Na content.Some argue that Co0is an active site of hydrogenation that tends to formation of hydrocarbons.14

    4 Conclusions

    This work reports that higher alcohols can be efficiently produced from bio-syngas derived from the biomass gasification using Na-promoted CuCoMn catalysts.Appropriate amount of sodium enhances the total alcohol selectivity and productivity. CuCoMnNa0.1catalyst is moderately selective for production of higher alcohols under mild conditions.It was found that alcohol selectivity decreased monotonously with the temperature increasing,while the mass fraction of C2+(C2-C6)alcohols in total alcohol products increased.The optimum temperature was about 300°C based on the higher alcohol selectivity and productivity.The maximum higher alcohol yield from the biosyngas was about 304.6 g·kg-1·h-1with the alcohol selectivity of 50.1%and C2+alcohols distribution of 64.4%(w)within the tested conditions.Considering of the ASF distributions,there probably exists two different active sites with two distinctly chain growth probability factors for alcohols and hydrocarbons,respectively.According to XRD analysis,CuCoMnO4mixture oxide is the dominant phase for the fresh catalysts. XPS results suggest that Cu presents as mixture of Cu+and Cu0on the catalyst surface after being used,and Co presents as mixture of Co2+/Co3+and Co0.With increasing of sodium addition,the Cu0/Cu+ratio and the Co0intensity both decreased. The CuCoMnNa0.1catalyst may be one of the most suitable candidates for the higher alcohol synthesis from bio-syngas because this non-noble metal catalyst can efficiently produce higher alcohols through the hydrogenation of CO.The higher alcohols derived from bio-syngas with higher octane values could be used as transportation fuels or petrol additives.The bio-fuels synthesis is unstinted by the feedstocks of biomass, and potentially,may be one promising route to produce bio-fuels in future.

    (1) Navarro,R.M.;Pena,M.A.;Fierro,J.L.G.Chem.Rev.2007, 107,3952.

    (2) Zhang,Q.;Chang,J.;Wang,T.J.;Xu,Y.Energy Convers. Manage.2007,48,87

    (3)Li,H.Y.;Xu,Q.L.;Xue,H.S.;Yan,Y.J.Renewable Energy 2009,34,2872.

    (4) Czernik,S.;Bridgwater,A.V.Energy&Fuels 2004,18,590.

    (5)Zhou,M.;Yan,L.F.;Wang,Y.Q.;Guo,Q.X.;Zhu,Q.S.Chin. J.Chem.Phys.2005,18,69.[周 密,閆立峰,王益群,郭慶祥,朱清時(shí).化學(xué)物理學(xué)報(bào),2005,18,69.]

    (6)Tijmensen,M.J.A.;Faaij,A.P.C.;Hamelinck,C.N.;Van Hardeveld,M.R.M.Biomass Bioenergy 2002,23,129.

    (7) Steen,E.V.;Claeys,M.Chem.Eng.Technol.2008,31,655.

    (8) Xu,X.D.;Doesburg,E.B.M.;Sckolen,J.J.F.Catal.Today 1987,2,125.

    (9) Verkerk,A.N.;Jaeger,B.;Finkeldei,C.H.;Keim,W.Appl. Catal.A 1999,186,407.

    (10) Subramani,V.;Gangwal,S.K.Energy&Fuels 2008,22,814.

    (11) Li,Z.R.;Fu,Y.L.;Jiang,M.;Hu,T.D.;Liu,T.;Xie,Y.N. Chin.J.Chem.Phys.,2001,14,355.[李忠瑞,伏義路,姜明,胡天斗,劉 濤,謝亞寧.化學(xué)物理學(xué)報(bào),2001,14,355.]

    (12)Zhang,W.;Luo,H.Y.;Zhou,H.W.;Wu,Z.H.;Huang,S.Y.; Liu,C.Z.;Chu,H.P.;Lin,P.Z.;Lin,L.W.Chin.J.Catal. 1999,20,285.[張 偉,羅洪源,周煥文,吳治華,黃世煜,劉崇早,初惠萍,林培滋,林勵(lì)吾.催化學(xué)報(bào),1999,20,285.]

    (13) Ojeda,M.;Granados,M.L.;Rojas,S.;Terreros,P.; Garcia-Garcia,F.J.;Fierro,J.L.G.Appl.Catal.A 2004,261, 47.

    (14) Boz,I.Catal.Lett.2003,87,187.

    (15)Tien-Thao,N.;Zahedi-Niaki,M.H.;Alamdari,H.;Kaliaguine, S.J.Catal.2007,245,348.

    (16)Dalmona,J.A.;Chaumetteb,P.;Mirodatos,C.Catal.Today 1992,15,101.

    (17) Su,Y.L.;Liu,B.;Pei,S.P.;Wang,X.Y.;Liu,Z.M.Chin.J. Catal.2004,25,683.[蘇運(yùn)來,劉 博,裴素朋,王向宇,劉中民.催化學(xué)報(bào),2004,25,683.]

    (18)Xu,R.;Wei,W.;Li,W.H.;Hu,T.D.;Sun,Y.H.J.Mol.Catal. A 2005,234,75.

    (19) Gupta,M.;Spivey,J.J.Catal.Today 2009,147,126.

    (20)Chen,X.P.;Wu,G.S.;Wang,X.Z.;Sun,Y.H.;Zhong,B. Chin.J.Catal.2000,21,301.[陳小平,吳貴升,王秀芝,孫予罕,鐘 炳.催化學(xué)報(bào),2000,21,301.]

    (21) Li,D.B.;Qi,H.J.;Li,W.H.;Sun,Y.H.;Zhong,B.Acta Phys.-Chim.Sin.2006,22,1132.[李德寶,齊會(huì)杰,李文懷,孫予罕,鐘 炳.物理化學(xué)學(xué)報(bào),2006,22,1132.]

    (22) Ma,X.M.;Lin,G.D.;Zhang,H.B.Chin.J.Catal.2006,27, 1019.[馬曉明,林國棟,張鴻斌.催化學(xué)報(bào),2006,27,1019.]

    (23) Sugier,A.;Freund,E.;Malmaison,R.Process for ManufacturingAlcohols and More Particularly Saturated Linear PrimaryAlcohols from Synthesis Gas.US Pat.Appl.105312, 1981.

    (24) Spivey,J.J.;Kumar,C.S.S.R.;Balaji,G.;Subramanian,N.D. Catal.Today 2009,147,100.

    (25) Xu,H.Y.;Chu,W.;Deng,S.Y.Acta Phys.-Chim.Sin.2010,26, 345.[徐慧遠(yuǎn),儲(chǔ) 偉,鄧思玉.物理化學(xué)學(xué)報(bào),2010,26, 345.]

    (26) Mehr,J.Y.;Islami,M.;Peyrovi,M.H.;Mahdavi,V.Appl. Catal.A 2005,281,259.

    (27) Zhang,H.B.;Dong,X.;Lin,G.D.;Liang,X.L.;Li,H.Y. Chem.Commun.2005,5094.

    (28) Kan,T.;Xiong,J.X.;Li,X.L.;Ye,T.Q.;Yuan,L.X.; Torimoto,Y.;Yamamoto,M.;Li,Q.X.Int.J.Hydrog.Energy 2010,35,518.

    (29)Yuan,L.X.;Chen,Y.Q.;Song,C.F.;Ye,T.Q.;Guo,Q.X.; Zhu,Q.S.;Torimoto,Y.;Li,Q.X.Chem.Commun.2008,5215.

    (30)Ye,T.Q.;Yuan,L.X.;Chen,Y.Q.;Kan,T.;Tu,J.;Zhu,X.F.; Torimoto,Y.;Yamamoto,M.;Li,Q.X.Catal.Lett.2009,127, 323.

    (31) Liu,Y.;Chen,F.;Zhuang,S.X.;Wang,J.J.;Ma,R.G. AMethod and Equipment for Preparation of Syngas from Solid Biomass.CN Patent CN101191060A,2007.[劉 勇,陳 楓,莊叔賢,王家俊,馬仁貴.一種由固體生物質(zhì)制備合成氣的方法和設(shè)備:中國,CN101191060A[P],2007]

    (32)Aquino,A.D.;Cobo,A.J.G.Catal.Today 2001,65,209.

    (33) Chen,B.S.;Zhao,J.S.;Zhang,L.;Xiong,G.X.;Sheng,S.S. Chin.J.Catal.1990,11,265.[陳寶樹,趙九生,張 鎏,熊國興,盛世善.催化學(xué)報(bào),1990,11,265.]

    (34) Li,S.;Li,A.;Krishnamoorthy,S.;Iglesia,E.Catal.Lett.2001, 77,197.

    (35) Mross,W.D.Catal.Rev.Sci.Eng.1983,25,591.

    (36) Courty,P.;Durand,D.;Freund,E.;Sugier,A.J.Mol.Catal. 1982,17,241.

    (37) Laan,G.P.V.;Beenackers,A.A.C.M.Catal.Rev.Sci.Eng. 1999,41,255.

    (38)Sachtler,W.M.H.;Ichikawa,M.J.Phys.Chem.1986,90,4752.

    (39) Dry,M.E.Catal.Today 2002,71,227.

    (40) Huang,X.;Curtis,C.W.;Roberts,C.B.Fuel Chemistry Division Preprints 2002,47,150.

    (41) Schulz,H.Appl.Catal.A 1999,186,3.

    (42)Yang,B.L.;Chan,S.F.;Chang,W.S.;Chen,Y.Z.J.Catal. 1991,130,52.

    (43) Li,D.B.;Yang,C.;Li,W.H.;Sun,Y.H.;Zhong,B.Top.Catal. 2005,32,233.

    (44) Velu,S.;Suzuki,K.;Gopinath,C.S.J.Phys.Chem.B 2002, 106,12737

    January 20,2011;Revised:April 1,2011;Published on Web:April 22,2011.

    Higher Alcohol Synthesis from Bio-Syngas over Na-Promoted CuCoMn Catalyst

    YE Tong-Qi1ZHANG Zhao-Xia1XU Yong1YAN Shi-Zhi1ZHU Jiu-Fang1LIU Yong2LI Quan-Xin1,*
    (1Anhui Key Laboratory of Biomass Clean Energy,Department of Chemical Physics,University of Science and Technology of China, Hefei 230026,P.R.China;2Hefei Tianyan Green Energy Development Co.,Ltd.,Hefei 230026,P.R.China)

    Na-promoted CuCoMn catalysts were successfully applied to the highly efficient production of higher alcohols from bio-syngas,which was derived from biomass gasification.The influence of Na content and synthesis conditions(temperature,pressure,and gas hourly space velocity(GHSV))on higher alcohol synthesis was investigated.The CuCoMnNa0.1catalyst gave the best performance for higher alcohol synthesis.Carbon conversion increased significantly with an increase in temperature at lower than 300°C but alcohol selectivity showed an opposite trend.A higher pressure was found to be beneficial for higher alcohol synthesis.Increasing the GHSV reduced carbon conversion but increased the yield of higher alcohols.The maximum higher alcohol yield that was derived from bio-syngas was 304.6 g·kg-1·h-1with the C2+alcohols(C2-C6higher alcohols)of 64.4%(w,mass fraction)under the conditions used.The distributions of the alcohols and the hydrocarbons were consistent with Anderson-Schulz-Flory(ASF)plots.Adding Na to the CuCoMn catalysts led to an increase in the selectivity toward the higher alcohols and promoted the dispersion of the active elements,copper and cobalt.X-ray photoelectron spectroscopy(XPS)results suggested that Cu was present as a mixture of Cu+and Cu0on the catalyst′s surface after use and Co was present as a mixture of Co2+/Co3+and Co0.With an increase in sodium addition the Cu0/Cu+ratio and the Co0intensity both decreased.

    Biomass;Bio-syngas;Higher alcohol;ASF distribution;CuCoMnNa catalyst

    O643

    ?Corresponding author.Email:liqx@ustc.edu.cn;Tel:+86-551-3601118.

    The project was supported by the National Natural Science Foundation of China(50772107),National Key Basic Research Program of China(973) (2007CB210206)and National High-Tech Research and Development Program of China(863)(2009AA05Z435).

    國家自然科學(xué)基金(50772107),國家重點(diǎn)基礎(chǔ)研究發(fā)展規(guī)劃(973)(2007CB210206)及國家高技術(shù)研究發(fā)展計(jì)劃(863)(2009AA05Z435)資助項(xiàng)目

    猜你喜歡
    合成氣合肥生物質(zhì)
    BiZrOx/ZSM-5催化合成氣直接芳構(gòu)化的研究
    分子催化(2022年1期)2022-11-02 07:10:44
    合肥的春節(jié)
    生物質(zhì)揮發(fā)分燃燒NO生成規(guī)律研究
    能源工程(2021年5期)2021-11-20 05:50:44
    《生物質(zhì)化學(xué)工程》第九屆編委會(huì)名單
    《造紙與生物質(zhì)材料》(英文)2020年第3期摘要
    中國造紙(2020年9期)2020-10-20 05:33:36
    合成氣余熱回收器泄漏原因分析及維修方案
    合肥:打造『中國IC之都』
    生物質(zhì)碳基固體酸的制備及其催化性能研究
    醋酸甲酯與合成氣一步合成醋酸乙烯
    生態(tài)合肥
    国产精品久久久久久精品电影小说 | 日日啪夜夜撸| 特级一级黄色大片| 成人一区二区视频在线观看| 久久精品熟女亚洲av麻豆精品 | 青春草国产在线视频| 国产精品久久久久久精品电影小说 | 欧美日韩在线观看h| 中文精品一卡2卡3卡4更新| 国产成人a∨麻豆精品| 婷婷色av中文字幕| 国产亚洲精品av在线| 午夜福利网站1000一区二区三区| 免费电影在线观看免费观看| av卡一久久| 99热这里只有是精品在线观看| 看片在线看免费视频| 国内精品美女久久久久久| 七月丁香在线播放| 亚洲aⅴ乱码一区二区在线播放| 成人av在线播放网站| 99久国产av精品国产电影| 在线观看美女被高潮喷水网站| 六月丁香七月| 亚洲最大成人手机在线| 少妇人妻精品综合一区二区| 国产精品一区www在线观看| 精品一区二区三区视频在线| 国产精品国产三级国产专区5o | 欧美日韩精品成人综合77777| 高清日韩中文字幕在线| 汤姆久久久久久久影院中文字幕 | 少妇裸体淫交视频免费看高清| 亚洲av熟女| 久久久色成人| av线在线观看网站| 欧美日韩国产亚洲二区| 精品熟女少妇av免费看| 少妇被粗大猛烈的视频| 亚洲国产欧美人成| 97热精品久久久久久| 国产欧美日韩精品一区二区| 欧美成人a在线观看| 一个人免费在线观看电影| 亚洲伊人久久精品综合 | 久久久久免费精品人妻一区二区| 麻豆av噜噜一区二区三区| 99热全是精品| 亚洲国产精品久久男人天堂| av在线老鸭窝| 精品久久久久久久久久久久久| 久久久久久久久久久丰满| 18+在线观看网站| 中文字幕av成人在线电影| 日本猛色少妇xxxxx猛交久久| 老司机影院成人| 久久久精品大字幕| 国产一级毛片七仙女欲春2| 国产欧美另类精品又又久久亚洲欧美| 国产精华一区二区三区| 国产综合懂色| 你懂的网址亚洲精品在线观看 | 久久久a久久爽久久v久久| www.av在线官网国产| 欧美日本亚洲视频在线播放| 免费看美女性在线毛片视频| 又爽又黄无遮挡网站| 国产成人午夜福利电影在线观看| 国产精品国产高清国产av| 岛国毛片在线播放| 岛国毛片在线播放| 男的添女的下面高潮视频| 全区人妻精品视频| 在线观看一区二区三区| 天天躁日日操中文字幕| 99久久成人亚洲精品观看| 小说图片视频综合网站| 丰满人妻一区二区三区视频av| 成人无遮挡网站| av黄色大香蕉| 国产精品久久久久久久电影| 精品午夜福利在线看| 亚洲av免费高清在线观看| 青春草视频在线免费观看| 在线a可以看的网站| 国产私拍福利视频在线观看| 午夜福利视频1000在线观看| 啦啦啦观看免费观看视频高清| 亚洲av日韩在线播放| 日本猛色少妇xxxxx猛交久久| 国产麻豆成人av免费视频| 中文字幕av在线有码专区| 2022亚洲国产成人精品| 青青草视频在线视频观看| 蜜桃亚洲精品一区二区三区| 国产精品一区二区三区四区免费观看| 日本wwww免费看| 亚洲国产最新在线播放| 亚洲av成人精品一区久久| 国产高潮美女av| 欧美性猛交黑人性爽| 久久久久性生活片| 国产探花极品一区二区| 午夜a级毛片| 一区二区三区免费毛片| 男女那种视频在线观看| 日韩欧美 国产精品| a级毛片免费高清观看在线播放| 麻豆乱淫一区二区| 日韩国内少妇激情av| 久久久久精品久久久久真实原创| 亚洲va在线va天堂va国产| 99热这里只有是精品50| 精品人妻偷拍中文字幕| 视频中文字幕在线观看| 直男gayav资源| 全区人妻精品视频| 日本猛色少妇xxxxx猛交久久| 久久精品国产亚洲网站| 天天一区二区日本电影三级| 在线观看一区二区三区| 日本一二三区视频观看| 久久精品熟女亚洲av麻豆精品 | 最新中文字幕久久久久| 亚洲精品国产av成人精品| 啦啦啦观看免费观看视频高清| 午夜日本视频在线| 日韩成人av中文字幕在线观看| 如何舔出高潮| 一级黄色大片毛片| 中文精品一卡2卡3卡4更新| 非洲黑人性xxxx精品又粗又长| 一个人看视频在线观看www免费| 国内揄拍国产精品人妻在线| 久久国内精品自在自线图片| 可以在线观看毛片的网站| 人人妻人人澡欧美一区二区| 色播亚洲综合网| 国产又黄又爽又无遮挡在线| 国产爱豆传媒在线观看| 一级毛片久久久久久久久女| 国产在线一区二区三区精 | 一区二区三区免费毛片| 欧美潮喷喷水| 亚洲欧美精品专区久久| 99久久无色码亚洲精品果冻| av在线老鸭窝| 日日啪夜夜撸| 亚洲精品影视一区二区三区av| 国产精品麻豆人妻色哟哟久久 | 中文字幕熟女人妻在线| 亚洲人成网站在线播| 国产熟女欧美一区二区| 日本猛色少妇xxxxx猛交久久| 韩国高清视频一区二区三区| 亚洲av二区三区四区| 亚洲自偷自拍三级| 国产视频内射| av福利片在线观看| 一边亲一边摸免费视频| 超碰97精品在线观看| 亚洲成色77777| 国产亚洲91精品色在线| 免费看av在线观看网站| 三级男女做爰猛烈吃奶摸视频| 久久精品91蜜桃| 久久人人爽人人爽人人片va| 国产亚洲一区二区精品| 成人亚洲欧美一区二区av| 亚洲国产欧美人成| 午夜福利成人在线免费观看| 精品熟女少妇av免费看| 欧美性感艳星| 国产综合懂色| 日韩av不卡免费在线播放| 岛国在线免费视频观看| 久久久精品大字幕| 深夜a级毛片| 午夜免费激情av| 亚洲av中文字字幕乱码综合| 少妇丰满av| 亚洲av免费高清在线观看| kizo精华| 26uuu在线亚洲综合色| 国产亚洲精品久久久com| 日韩成人伦理影院| 久久婷婷人人爽人人干人人爱| 亚洲欧美日韩高清专用| 亚洲在久久综合| 日日撸夜夜添| 少妇熟女欧美另类| 亚洲成色77777| 国产精品日韩av在线免费观看| 国产单亲对白刺激| 国产午夜福利久久久久久| 久久久精品欧美日韩精品| 精品久久久久久成人av| 边亲边吃奶的免费视频| 人妻少妇偷人精品九色| 国产精品乱码一区二三区的特点| 在线免费观看的www视频| a级毛色黄片| 欧美日韩综合久久久久久| 久久精品综合一区二区三区| 久久久久久久国产电影| 欧美一区二区精品小视频在线| av视频在线观看入口| 成人综合一区亚洲| 久久国产乱子免费精品| 国产淫片久久久久久久久| 国产成人freesex在线| 国产精品国产三级国产av玫瑰| 建设人人有责人人尽责人人享有的 | 亚洲国产精品sss在线观看| 日本一二三区视频观看| 日韩国内少妇激情av| 亚洲国产欧洲综合997久久,| 久热久热在线精品观看| 永久免费av网站大全| 嫩草影院新地址| 亚洲av成人精品一区久久| 少妇人妻一区二区三区视频| 国产精华一区二区三区| 亚洲最大成人中文| 一边亲一边摸免费视频| 色尼玛亚洲综合影院| 国内少妇人妻偷人精品xxx网站| 亚洲aⅴ乱码一区二区在线播放| 国产精品电影一区二区三区| 日韩制服骚丝袜av| 午夜爱爱视频在线播放| 国产高清不卡午夜福利| 听说在线观看完整版免费高清| 丝袜喷水一区| 亚洲国产精品sss在线观看| 精品一区二区三区视频在线| 黄色日韩在线| 欧美一区二区亚洲| 啦啦啦观看免费观看视频高清| 看非洲黑人一级黄片| 人妻少妇偷人精品九色| 欧美日韩综合久久久久久| 超碰av人人做人人爽久久| 天堂网av新在线| 婷婷色综合大香蕉| 国产黄色视频一区二区在线观看 | 国产精品美女特级片免费视频播放器| 成人亚洲欧美一区二区av| 99九九线精品视频在线观看视频| 欧美97在线视频| 久久精品夜夜夜夜夜久久蜜豆| 最近的中文字幕免费完整| 人人妻人人澡人人爽人人夜夜 | videossex国产| 亚洲欧美成人精品一区二区| 日韩三级伦理在线观看| 亚洲人成网站在线播| 欧美又色又爽又黄视频| 国产精品熟女久久久久浪| 伦理电影大哥的女人| 国产精品一区二区三区四区久久| 99久久人妻综合| 神马国产精品三级电影在线观看| 免费观看的影片在线观看| 久久精品国产亚洲av涩爱| 天堂√8在线中文| 精品久久久久久成人av| 中文欧美无线码| 麻豆成人午夜福利视频| 精品国产露脸久久av麻豆 | 久久久色成人| 国产精品一区二区在线观看99 | 亚洲av熟女| 国产伦精品一区二区三区四那| 日韩制服骚丝袜av| 女的被弄到高潮叫床怎么办| 欧美又色又爽又黄视频| 简卡轻食公司| 国产高清不卡午夜福利| 岛国在线免费视频观看| 尾随美女入室| 亚洲一区高清亚洲精品| 熟女电影av网| 亚洲精品影视一区二区三区av| 国产伦一二天堂av在线观看| 97在线视频观看| 老师上课跳d突然被开到最大视频| 深夜a级毛片| 少妇人妻精品综合一区二区| 两个人的视频大全免费| 97热精品久久久久久| 免费看光身美女| 舔av片在线| 精品久久久噜噜| 亚洲成人中文字幕在线播放| 人妻系列 视频| 中文天堂在线官网| 2021少妇久久久久久久久久久| 欧美不卡视频在线免费观看| 青青草视频在线视频观看| 久久这里有精品视频免费| 免费av毛片视频| 国产精品久久久久久久久免| 亚洲精品日韩在线中文字幕| 国产老妇伦熟女老妇高清| 一级黄色大片毛片| 天天躁日日操中文字幕| 国产精品一区二区三区四区免费观看| 国产黄色小视频在线观看| 赤兔流量卡办理| 美女国产视频在线观看| 亚洲国产成人一精品久久久| 日本与韩国留学比较| 国产人妻一区二区三区在| 精品国产露脸久久av麻豆 | 男人和女人高潮做爰伦理| 夫妻性生交免费视频一级片| 99国产精品一区二区蜜桃av| 午夜福利在线观看吧| 成人高潮视频无遮挡免费网站| 久久精品综合一区二区三区| 日韩一区二区视频免费看| 国产一区亚洲一区在线观看| 国产大屁股一区二区在线视频| 久久精品夜夜夜夜夜久久蜜豆| 蜜桃亚洲精品一区二区三区| 深夜a级毛片| 青春草国产在线视频| 又粗又爽又猛毛片免费看| 老司机影院成人| 欧美三级亚洲精品| 18禁在线无遮挡免费观看视频| 久久鲁丝午夜福利片| 一级二级三级毛片免费看| 国产精品电影一区二区三区| 天堂√8在线中文| 亚洲在线自拍视频| 免费不卡的大黄色大毛片视频在线观看 | 久久久a久久爽久久v久久| 久久久成人免费电影| 中文字幕免费在线视频6| 日本色播在线视频| 成人二区视频| 少妇人妻一区二区三区视频| 久久草成人影院| 日本与韩国留学比较| 国产精品国产三级国产专区5o | 亚洲不卡免费看| 少妇丰满av| 亚洲av电影不卡..在线观看| 国内揄拍国产精品人妻在线| 亚洲国产精品久久男人天堂| 精品久久久久久电影网 | 亚洲熟妇中文字幕五十中出| 一级爰片在线观看| 国产一区亚洲一区在线观看| 欧美一级a爱片免费观看看| 爱豆传媒免费全集在线观看| 久久人妻av系列| 国产成人91sexporn| 在线播放国产精品三级| 免费av毛片视频| 精品久久久久久久久久久久久| 菩萨蛮人人尽说江南好唐韦庄 | 日本色播在线视频| 老司机福利观看| 国产一区二区在线观看日韩| 亚洲av不卡在线观看| 2021天堂中文幕一二区在线观| 少妇人妻精品综合一区二区| 亚洲真实伦在线观看| 少妇熟女欧美另类| 国产午夜精品久久久久久一区二区三区| 久久99热6这里只有精品| 日本五十路高清| 人妻系列 视频| 蜜臀久久99精品久久宅男| 秋霞在线观看毛片| 日本五十路高清| 国产亚洲一区二区精品| 91av网一区二区| 91精品国产九色| 日本午夜av视频| 中文字幕免费在线视频6| 日韩精品有码人妻一区| 级片在线观看| 国产欧美另类精品又又久久亚洲欧美| 精品国内亚洲2022精品成人| 精品久久国产蜜桃| 亚洲人成网站在线观看播放| 美女xxoo啪啪120秒动态图| 91狼人影院| 视频中文字幕在线观看| 少妇高潮的动态图| 亚洲精品影视一区二区三区av| av天堂中文字幕网| 99久国产av精品国产电影| 欧美日韩一区二区视频在线观看视频在线 | 日韩人妻高清精品专区| 在线免费观看不下载黄p国产| 午夜日本视频在线| 国产单亲对白刺激| 精品国产三级普通话版| 亚洲天堂国产精品一区在线| 又粗又硬又长又爽又黄的视频| 可以在线观看毛片的网站| 欧美性猛交黑人性爽| 亚洲国产日韩欧美精品在线观看| 免费观看人在逋| 少妇熟女aⅴ在线视频| 91精品伊人久久大香线蕉| 国产黄片美女视频| 美女cb高潮喷水在线观看| 人妻夜夜爽99麻豆av| 亚洲人与动物交配视频| 日韩欧美精品v在线| 免费看日本二区| 免费播放大片免费观看视频在线观看 | 伦理电影大哥的女人| 久久午夜福利片| 全区人妻精品视频| 久99久视频精品免费| 亚洲av中文av极速乱| 久久精品久久久久久久性| 久久国产乱子免费精品| 在线播放国产精品三级| 高清av免费在线| 久久久欧美国产精品| 亚洲av一区综合| 白带黄色成豆腐渣| 国内精品宾馆在线| 日韩av不卡免费在线播放| 美女高潮的动态| 在线观看一区二区三区| 国产高清三级在线| 九九热线精品视视频播放| 91狼人影院| 99国产精品一区二区蜜桃av| 精品国产一区二区三区久久久樱花 | 老女人水多毛片| 欧美精品国产亚洲| 国产午夜精品一二区理论片| 日本av手机在线免费观看| 成人高潮视频无遮挡免费网站| 一区二区三区免费毛片| 成人毛片a级毛片在线播放| 久久99热这里只频精品6学生 | 乱人视频在线观看| 国产毛片a区久久久久| 能在线免费看毛片的网站| 欧美三级亚洲精品| 99热全是精品| 亚洲av成人精品一二三区| 日韩欧美国产在线观看| 国产一区二区在线av高清观看| 91精品一卡2卡3卡4卡| 国产黄色小视频在线观看| 免费av不卡在线播放| 国内精品宾馆在线| 久久99精品国语久久久| 国产精品久久电影中文字幕| 久久人人爽人人爽人人片va| 亚洲,欧美,日韩| 嫩草影院入口| 人妻夜夜爽99麻豆av| 三级国产精品片| 黄片wwwwww| 级片在线观看| 男女国产视频网站| 国产白丝娇喘喷水9色精品| 2021少妇久久久久久久久久久| 日韩av在线免费看完整版不卡| 久热久热在线精品观看| 爱豆传媒免费全集在线观看| 中文资源天堂在线| 97热精品久久久久久| 欧美一区二区精品小视频在线| 干丝袜人妻中文字幕| 热99在线观看视频| 午夜精品一区二区三区免费看| 亚洲精品国产成人久久av| 岛国毛片在线播放| 国产老妇伦熟女老妇高清| 欧美日本亚洲视频在线播放| 精品久久久久久久久久久久久| 国产一区二区在线av高清观看| 欧美激情国产日韩精品一区| 最近手机中文字幕大全| 国产av在哪里看| 蜜桃久久精品国产亚洲av| 国产一区亚洲一区在线观看| 国产成人一区二区在线| 日韩高清综合在线| 亚洲精品久久久久久婷婷小说 | 国产三级在线视频| 级片在线观看| 激情 狠狠 欧美| 色综合色国产| 中文乱码字字幕精品一区二区三区 | 男人舔女人下体高潮全视频| 黄色欧美视频在线观看| 天美传媒精品一区二区| 永久网站在线| 国产69精品久久久久777片| 婷婷六月久久综合丁香| 日韩一区二区视频免费看| 狠狠狠狠99中文字幕| 国产免费福利视频在线观看| 亚洲国产精品成人久久小说| 3wmmmm亚洲av在线观看| 啦啦啦观看免费观看视频高清| 亚洲av一区综合| 国产精品久久久久久久电影| 色视频www国产| 国产精品一及| 中国美白少妇内射xxxbb| 毛片一级片免费看久久久久| 成人毛片a级毛片在线播放| 国产精品蜜桃在线观看| 一边亲一边摸免费视频| 少妇高潮的动态图| 国产精品一区www在线观看| eeuss影院久久| 联通29元200g的流量卡| 日日干狠狠操夜夜爽| 国产精品一区二区性色av| 久久精品国产99精品国产亚洲性色| 国产精品国产三级国产av玫瑰| 尾随美女入室| av国产久精品久网站免费入址| 日本免费一区二区三区高清不卡| 蜜桃久久精品国产亚洲av| 精品久久国产蜜桃| 一个人看的www免费观看视频| 午夜爱爱视频在线播放| 亚洲欧洲国产日韩| 成人午夜精彩视频在线观看| 一个人观看的视频www高清免费观看| 亚洲av日韩在线播放| 晚上一个人看的免费电影| 天堂√8在线中文| 国内精品一区二区在线观看| 久久久国产成人免费| 26uuu在线亚洲综合色| 秋霞伦理黄片| 91久久精品国产一区二区成人| 亚洲精品aⅴ在线观看| 久久久久久久国产电影| 久久久久久久午夜电影| 国产高清不卡午夜福利| 韩国高清视频一区二区三区| 亚洲自偷自拍三级| 成人高潮视频无遮挡免费网站| 亚洲国产精品成人久久小说| 亚洲欧美成人综合另类久久久 | 少妇猛男粗大的猛烈进出视频 | 美女内射精品一级片tv| 久久精品人妻少妇| 国产精品永久免费网站| 听说在线观看完整版免费高清| 欧美日韩一区二区视频在线观看视频在线 | 亚洲欧洲国产日韩| 久久久久久久久中文| videossex国产| 日本与韩国留学比较| 99热这里只有是精品50| av视频在线观看入口| 日韩人妻高清精品专区| 级片在线观看| 观看美女的网站| 边亲边吃奶的免费视频| 99久久人妻综合| 欧美性猛交╳xxx乱大交人| 永久网站在线| 精品99又大又爽又粗少妇毛片| 国国产精品蜜臀av免费| 国产老妇女一区| 桃色一区二区三区在线观看| 国产一区亚洲一区在线观看| 国产精品一区二区三区四区免费观看| 久久精品夜色国产| 亚洲一级一片aⅴ在线观看| 日本熟妇午夜| 日韩 亚洲 欧美在线| 亚洲av.av天堂| 两性午夜刺激爽爽歪歪视频在线观看| 精品一区二区三区视频在线| 搡女人真爽免费视频火全软件| 国产午夜精品一二区理论片| 男插女下体视频免费在线播放| 亚洲精品日韩av片在线观看| 久久精品熟女亚洲av麻豆精品 | 51国产日韩欧美| 色吧在线观看| 岛国毛片在线播放| 99热全是精品| 欧美精品国产亚洲| 欧美最新免费一区二区三区| 干丝袜人妻中文字幕| 国产成人福利小说| 欧美最新免费一区二区三区| 女人被狂操c到高潮| 色哟哟·www| 成人亚洲欧美一区二区av| 免费看日本二区| 一级毛片电影观看 | 国产精品久久久久久av不卡| 2021天堂中文幕一二区在线观| 联通29元200g的流量卡| av国产久精品久网站免费入址| 成人三级黄色视频| 国产激情偷乱视频一区二区| 嫩草影院新地址| 久久热精品热| 十八禁国产超污无遮挡网站|