• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Drag of a D-shaped bluff body under small amplitude harmonic actuation

    2015-11-21 07:27:31YqingLiHongleiBiNnGo

    Yqing Li,Honglei Bi,Nn Go,?

    aSchool of Aeronautics and Astronautics,Dalian University of Technology,Dalian 116024,China

    bDepartment of Mechanical Engineering,University of Melbourne,Melbourne,Australia

    cState Key Laboratory of Aerodynamics,Mianyang 621000,Sichuan,China

    Drag of a D-shaped bluff body under small amplitude harmonic actuation

    Yaqing Lia,Honglei Baib,c,Nan Gaoa,?

    aSchool of Aeronautics and Astronautics,Dalian University of Technology,Dalian 116024,China

    bDepartment of Mechanical Engineering,University of Melbourne,Melbourne,Australia

    cState Key Laboratory of Aerodynamics,Mianyang 621000,Sichuan,China

    A R T I C L E I N F O

    Article history:

    Received 10 November 2014

    Accepted 29 December 2014

    Available online 16 February 2015

    D-shaped bluff body

    Open-loop flow control method was used to affect the development of a turbulent wake behind a D-shaped bluff body.Loud speakers were embedded inside the bluff body to produce two zero-net-massflux jets through 2 mm-wide span-wise slots located along the upper and lower edges on the rear wall. The drag forces for different actuation amplitudes(Cμ,the ratio between the momentum of the actuating jets and the moment deficit caused by the bluff body)and frequencies(StA)were examined.The effects of the phase difference in the two jets(0 andπ)were also studied.It was found that when Cμwas 0.1%,a drag reduction up to 5%was achieved when the velocities of the two jets varied in phase at a frequency of StA=0.16.When the velocities of the two jets variedπout of phase,significant drag increase was observed.

    ?2015 The Authors.Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

    Flow separation over a bluff body can be found in many applications.Effectively controlling the development of the wake structures can reduce the form drag associated with the flow separations.Zero-net-mass-flux jet(or synthetic jet)actuator was widely used in the active control of separated flows.Compared with the passive control methods such as vortex generators,the active control methods have higher efficiency and better robustness.The periodic perturbations of the flow near the separation region promote the development of the large scale structures and enhance the momentumtransportacross the shearlayer.The pressure on the solid surface,the trajectory of the shear layer and the size of the re-circulation region are thus changed[1-5].Multiple synthetic jet actuators was also used to control the separated flow.Bigger et al.[6]used an array of 6 zero-net-mass-flux jets distributed azimuthally around the edge of a disk to control the wake.They found the size of the separation region could be reduced as much as 10%when the actions of the actuators were in phase and the momentum ratio Cμwas 0.4%.As much as 15%reduction in the separation length was found when the helical actuation was used where the phase difference between the adjacent actuators wasπ/3.Vukasinovic et al.[7]used an array of 11 actuators located azimuthally on a halfcircle around a hemisphere.They found that the separation length was reduced significantly when the actuation frequency was about10 times ofthe naturalshedding frequency(StA=17.4-30.5),and the momentum ratio of the jets was 0.75%-2.3%.Recently,Pastoor et al.[8]used a pair of synthetic jet actuators to force the wake behind a D-shaped body located in the center of a wind tunnel.The actuator issued oscillating jet flow from the upper and the lower edges of the rear surface and the velocity variations ofthe two actuators were in phase.They found the drag was reduced when the actuation frequency was smaller than the natural shedding frequency(0.1<StA<0.2)but increased when the actuation frequency was close to the natural shedding frequency of the turbulent wake(StA=Sto=0.24).When the actuation frequency was StA=0.15 and Cμwas larger than 0.5%,the drag was reduced by approximately 15%for the flow with a Reynolds number of 47000.

    Pastoor et al.[8]did notexamined closely how the drag changed with the actuation frequency and amplitude for smaller actuation amplitudes,particularly for momentum ratio(Cμ)less than 0.2%. The open loop control was conducted in the present investigation using a similar D-shaped body with momentum ratio less than 0.2% where Pastoor et al.[8]only studied a few combinations of actuation amplitude and actuation frequency.Smoke-wire visualization technique was also used to study the effect of actuation on the development of the large scale flow structures.The experimental methodologies will be presented in the next section,followed by the results and the summaries.

    Fig.1.Schematics of the test section in the wind tunnel.

    Fig.2.Schematics of the D-shaped body.

    The D-shaped body was supported by two aluminum square bars located at 123.5 mm downstream of the leading edge(or x=-165 mm)and z=±135 mm.The bars also served as force transducers with strain gauges glued to the center of the bars.The bars were drilled with equally spaced 2.4 mm holes at the locations above and below the strain gauges to minimize the drag caused by the supporting bars.Signals from the strain gauges were amplified using an amplifier with a gain of 100.

    There are two columns(z/H=±0.44)and 4 rows(y/H= ±0.08,±0.24)of 1 mm diameter pressure taps were mounted on the rear wall of the bluff body.Each pressure tap was connected to a CYH-130 pressure transducer using a 0.8 mm inner diameter flexible tubing to measure the mean static pressure on the rear wall.The pressure transducer was calibrated using a YJB-2500 water manometer with a resolution of 0.1 Pa.

    Smoke-wire visualization technique was used to study the evolution of the flow structures.A 304 stainless steel wire with a diameter of 0.1 mm was stretched vertically at 5 mm downstream ofthe rear surface of the bluffbody along in the centralplane ofthe tunnel(x/H=0.08,z=0).The metal wire was connected to two 2200μF capacitors using aluminum electrodes and heavy gauge wires.The capacitors discharged high current electricity through the metal wire and vaporized liquid droplets attached to the wire producing smoke filaments.A short amount of time after the start of discharging,a triggering signal was sent to the camera and the flash to record the streak-lines.The actions were controlled by a timing circuit with an Atmega16 micro-controller.The discharge voltage of the capacitor was set to 75 V(corresponding to a peak current of approximately 10 A)and the time delay between the discharging and the shutter triggering signal was 10 ms.Mixture of paraffin and diesel was applied to the wire using a brush.A Canon 5D Mk-II camera with a Yongnu 560II flash was used to record the image.The flash duration was approximately 0.12 ms,measured using an optical diode.The far side wall of the wind tunnel was painted with candle-soot paint to increase the quality of the pictures.

    Measurements were performed with a free-stream velocity(U∞)of 9.2 m/s,the blockage ratio of the test section was 21%,the incoming velocity was adjusted to U∞,c=11.7 m/s using a method given in Ref.[8].The Reynolds number and the Strouhal number of the actuation frequency are given by ReH=U∞,cH/ν and StA=fAH/U∞,c,respectively.All the measurements and visualizations were performed with Re=47000.Here in this paper,x,y,z are the stream-wise,vertical and span-wise coordinates,respectively.

    Measurements were first performed for the un-actuated baseline case.The boundary layer thickness measured near the rear wall(x/H=0.01,z/H=0)using a single hot-wire probe was 10.8 mm(δ/H=0.171),similar to Ref.[8].The drag coefficient(CD0)was found to be 0.57 and the averaged static wall pressure coefficient(CP0)was-0.51.Measurements of CP0agreed with the measurements in[8-10].Spectral analysis of the force signals indicated that the characteristic frequency of the un-actuated wake(Sto=foH/U∞,c)was approximately 0.24.

    The drag coefficient(CD)and the static pressure coefficients(CP)on the rear wall of the bluff body for non-dimensional actuating frequencies(StA)less than 0.33 and a fixed actuation amplitude(Cμ=0.1%)are shown in Fig.3.The drag and the static pressure coefficients were normalized using the results for the un-actuated case.The static pressure on the rear wall increased and the drag force decreased when StAwas less than 0.22 with the maximum drag reduction of 5%occurred when StAwas approximately 0.16,approximately 2/3 of the natural shedding frequency.The static pressure on the rear wallbecame less than the pressure for the natural flow when StAwas larger than 0.22,while the drag increased at the same time.The largest increase in drag was approximately 18%,occurred when the actuation frequency was close to the natural shedding frequency StA=0.24.

    The drag coefficient and the static pressure coefficients on the rear wall for a fixed actuation frequency StAof 0.16 and differentactuation amplitudes(Cμ)less than 0.2%are shown in Fig.4,the results by Pastoor et al.[8]for a similar flow are also shown for comparisons.Drag was increased when Cμwas less than 0.04%,particularly at Cμ=0.01%where the drag increased for nearly 8%. The mechanism causing the drag to increase at small Cμwas not known and needs further investigations.Drag was reduced when Cμwas more than 0.06%,the drag reduction was more than those found by Pastoor et al.[8].

    When the wake was forced using anti-phase actuation(the velocities of the two actuators varied 180°out of phase,φ=π),the drag force became larger than that for the natural flow for any actuation frequency examined here,as shown in Fig.5.The largest drag increase was approximately 25%,occurred at StA≈0.22,where the static pressure on the rear wall decreased for 30%-40%.

    The visualization of the baseline(the un-actuated)flow and the flow with in-phase actuation(φ=0)at a frequency of StAof 0.16 are shown in Fig.6(a)and 6(b),respectively.There was a separation region emerged downstream of the D-shaped body in the baseline flow.Typical von-Karman vortices with alternating rotating directions formed downstream ofthe bluffbody and grew in size asthey evolved downstream.The in-phase actuation produced a symmetric pair of countering rotating structures downstream of trailing edge of the bluff body.The vortex pair then traveled downstream with a similar velocity.The alternating flow structures found in the natural flow were not visible in the wake under in-phase actuation.The symmetric arrangement of the vortex street suppressed the growth of the vortices.The wake in the flow under in-phase actuation was smaller in the vertical direction than the natural flow and this caused the drag reduction in this flow.When the forcing frequency was larger than 2/3 of the natural shedding frequency,the symmetric arrangement of the vortex street became unstable due to the close distance between neighboring vortices,the wake soon transitioned to the asymmetric von-Karman vortex street.

    The wake behind a D-shaped body with a Reynolds number of 47000 was forced using a pair of zero-net-mass-flux jets directed at a 45°to the free-stream in the upper and lower corners on the trailing surface ofa D-shaped body.Different actuation frequencies(StA=0-0.35)and amplitudes(Cμ=0%-0.2%)were examined. Drag reduction was found when the actions of the actuators were in-phase at a momentum ratio Cμof 0.1%and StAless than 0.22.A maximum 5%drag reduction was found when StAwas 0.16.Smoke wire visualizations revealed that the drag reduction was caused by the suppression of the vortex shedding by the paired counterrotating structures generated by the in-phase actuation.When the actuation frequency was increased to StA=0.22,the drag became more than that of the natural flow.The results also showed that when the actuators were anti-phase,the drag increased for all the actuation frequencies.

    This work was supported by the National Basic Research Program(2014CB744100),State Key Laboratory of Aerodynamics(SKLA20130102),and Dalian University of Technology(DUT14LK07).

    Fig.3.Distributions of the drag coefficient(·)and the pressure coefficient measured at z/H=0.44 and y/H=0.24(?),0.08(□),-0.08(△)and-0.24(▽)for in-phase actuation(φ=0)with Cμ=0.1%and different actuation frequencies(StA).

    Fig.4.Distributions of the drag coefficient(·)and the pressure coefficient measured at z/H=0.44 and y/H=0.24(?),0.08(□),-0.08(△)and-0.24(▽)for in-phase actuation(φ=0)with StA=0.16 and different actuation strength(Cμ).The drag(◆)and the averaged static pressure(◇)on the rear wall by Pastoor et al.[8]were also shown for comparisons.

    Fig.5.Distributions of the drag coefficient(·)and the pressure coefficient measured at z/H=0.44 and y/H=0.24(?),0.08(□),-0.08(△)and-0.24(▽)for anti-phase actuation(φ=π)with Cμ=0.1%and different actuation frequencies(StA).

    Fig.6.Smoke-wire visualizations of(a)the un-actuated flowand(b)the flowunder actuation of Cμ=0.1%,StA=0.16 andφ=0 behind a D-shaped bluff body for a Reynolds number of 47000.

    [1]H.Choi,W.P.Jeon,J.Kim,Control of flow over a bluff body,Annu.Rev.Fluid Mech.40(2008)113-139.

    [2]L.N.Cattafesta,M.Sheplak,Actuators for active flow control,Annu.Rev.Fluid Mech.43(2011)247-272.

    [3]M.Amitay,A.Glezer,Aerodynamic flow control using synthetic jet actuators,in:P.Koumoutsakos,I.Mezic(Eds.),Control of Fluid Flow,Springer,Berlin,2006,pp.45-73.

    [4]L.H.Feng,J.J.Wang,Circular cylinder vortex-synchronization control with a synthetic jet positioned at the rear stagnation point,J.Fluid Mech.662(2010)232-259.

    [5]P.F.Zhang,J.J.Wang,L.H.Feng,Review of zero-net-mass-flux jet and its application in separation flow control,Sci.China Ser.E 51(2008)1315-1344.

    [6]R.P.Bigger,H.Higuchi,J.W.Hall,Open-loop control of disk wakes,AIAA J.47(2009)1186-1194.

    [7]B.Vukasinovic,D.Brzozowski,A.Glezer,F(xiàn)luidic control of separation over a hemispherical turret,AIAA J.47(2009)2212-2222.

    [8]M.Pastoor,L.Henning,B.R.Noack,K.Rudibert,T.Gilead,F(xiàn)eedback shear layer control for bluff body drag reduction,J.Fluid Mech.608(2008)161-196.

    [9]P.W.Bearman,Investigation ofthe flowbehind a two-dimensionalmodelwith a blunt trailing edge and fitted with splitter plates,J.Fluid Mech.21(1965)241-256.

    [10]H.Park,D.Lee,W.Jeon,S.Hahn,J.Kim,J.Kim,J.Choi,Drag reduction in flow over a two-dimensional bluff body with a blunt trailing edge using a new passive device,J.Fluid Mech.563(2006)389-414.

    ?Corresponding author.

    E-mail address:gaonan@dlut.edu.cn(N.Gao).

    Open-loop flow control

    Synthetic jet

    *This article belongs to the Fluid Mechanics

    婷婷色麻豆天堂久久| 国产大屁股一区二区在线视频| 欧美老熟妇乱子伦牲交| 国产精品国产三级专区第一集| 久久久国产一区二区| 欧美日韩国产mv在线观看视频 | 99热国产这里只有精品6| 中国国产av一级| 最近2019中文字幕mv第一页| 80岁老熟妇乱子伦牲交| 亚洲精品乱码久久久久久按摩| 我的女老师完整版在线观看| 美女cb高潮喷水在线观看| 久久久久久人妻| 亚洲欧美日韩东京热| 在线观看免费日韩欧美大片 | 亚洲精品乱久久久久久| 99久国产av精品国产电影| 亚洲精品一区蜜桃| 制服丝袜香蕉在线| 一级毛片电影观看| 韩国高清视频一区二区三区| 99国产精品免费福利视频| 免费高清在线观看视频在线观看| 我要看日韩黄色一级片| 欧美3d第一页| 三级经典国产精品| 亚洲一级一片aⅴ在线观看| 能在线免费看毛片的网站| 久久精品国产a三级三级三级| 国产成人精品福利久久| www.色视频.com| 亚洲高清免费不卡视频| 亚洲成人免费av在线播放| 色网站视频免费| 日本vs欧美在线观看视频| 丝袜美足系列| 亚洲第一av免费看| 中国美女看黄片| 多毛熟女@视频| 午夜福利视频精品| 久久久国产一区二区| 亚洲国产日韩一区二区| 女性生殖器流出的白浆| 美女脱内裤让男人舔精品视频| 精品福利永久在线观看| 久久天躁狠狠躁夜夜2o2o | 高清欧美精品videossex| 手机成人av网站| 亚洲欧美精品综合一区二区三区| 少妇粗大呻吟视频| 日韩 欧美 亚洲 中文字幕| 亚洲男人天堂网一区| 大陆偷拍与自拍| 亚洲国产欧美一区二区综合| av福利片在线| 男女边吃奶边做爰视频| 9色porny在线观看| 日韩免费高清中文字幕av| 亚洲专区国产一区二区| h视频一区二区三区| 99国产精品一区二区蜜桃av | 啦啦啦中文免费视频观看日本| 无限看片的www在线观看| 国产野战对白在线观看| 欧美精品一区二区大全| 男女边吃奶边做爰视频| 国产成人欧美| 国产高清不卡午夜福利| 一级片'在线观看视频| 女性被躁到高潮视频| 成年动漫av网址| 久久久久久久久久久久大奶| 久久人人爽av亚洲精品天堂| 天天躁夜夜躁狠狠躁躁| 人体艺术视频欧美日本| 高清av免费在线| 亚洲精品一卡2卡三卡4卡5卡 | 一二三四社区在线视频社区8| 麻豆国产av国片精品| xxxhd国产人妻xxx| 国产爽快片一区二区三区| 捣出白浆h1v1| av片东京热男人的天堂| 日本午夜av视频| 多毛熟女@视频| 一边摸一边做爽爽视频免费| 午夜影院在线不卡| 视频区欧美日本亚洲| 欧美精品一区二区免费开放| 国产男女内射视频| 亚洲熟女毛片儿| 一二三四社区在线视频社区8| av福利片在线| 一本久久精品| 国产精品久久久人人做人人爽| 久久精品国产亚洲av高清一级| 最黄视频免费看| 国产av精品麻豆| 亚洲成人免费av在线播放| 欧美av亚洲av综合av国产av| 亚洲第一av免费看| 亚洲第一青青草原| 国产欧美日韩精品亚洲av| 捣出白浆h1v1| 亚洲欧美精品自产自拍| 男女下面插进去视频免费观看| 日韩人妻精品一区2区三区| 亚洲国产av新网站| svipshipincom国产片| 在线观看免费高清a一片| 久热爱精品视频在线9| 午夜福利视频在线观看免费| 亚洲av美国av| 一级毛片黄色毛片免费观看视频| 人人妻人人澡人人爽人人夜夜| 一级毛片黄色毛片免费观看视频| 最新的欧美精品一区二区| 欧美日韩一级在线毛片| 一级毛片电影观看| 精品少妇内射三级| 国产精品久久久久久精品电影小说| 国产一级毛片在线| 在线观看一区二区三区激情| 国产精品二区激情视频| av网站免费在线观看视频| 日韩制服骚丝袜av| 一区在线观看完整版| 一区在线观看完整版| 久久久久久亚洲精品国产蜜桃av| 午夜久久久在线观看| 搡老乐熟女国产| 在现免费观看毛片| 亚洲精品国产av蜜桃| 亚洲视频免费观看视频| 黄频高清免费视频| 日本一区二区免费在线视频| 亚洲精品久久午夜乱码| 亚洲专区国产一区二区| 日本欧美视频一区| 大香蕉久久网| 18在线观看网站| 亚洲综合色网址| 国产免费视频播放在线视频| 久久久精品区二区三区| 国产精品久久久人人做人人爽| 亚洲一码二码三码区别大吗| 99精品久久久久人妻精品| 亚洲精品国产色婷婷电影| 国产精品熟女久久久久浪| 日韩中文字幕欧美一区二区 | 亚洲精品久久久久久婷婷小说| 午夜激情久久久久久久| 啦啦啦在线免费观看视频4| 一边摸一边抽搐一进一出视频| 男人添女人高潮全过程视频| 51午夜福利影视在线观看| 国产成人免费观看mmmm| 久久99热这里只频精品6学生| 九色亚洲精品在线播放| 天天躁夜夜躁狠狠躁躁| 国产在视频线精品| www.熟女人妻精品国产| 另类精品久久| 考比视频在线观看| 只有这里有精品99| 久久99热这里只频精品6学生| 亚洲欧美激情在线| 精品人妻1区二区| 最近手机中文字幕大全| 999精品在线视频| 久久久久久人人人人人| 日韩电影二区| 精品人妻熟女毛片av久久网站| 亚洲七黄色美女视频| 久久这里只有精品19| 久久ye,这里只有精品| 欧美日韩av久久| 一区福利在线观看| 欧美人与善性xxx| 大话2 男鬼变身卡| 一本色道久久久久久精品综合| 男男h啪啪无遮挡| 侵犯人妻中文字幕一二三四区| av线在线观看网站| 亚洲精品美女久久av网站| 免费高清在线观看视频在线观看| 又粗又硬又长又爽又黄的视频| 亚洲精品国产色婷婷电影| 咕卡用的链子| 手机成人av网站| 丝袜喷水一区| 大香蕉久久网| 香蕉国产在线看| 丰满迷人的少妇在线观看| 热re99久久国产66热| 亚洲欧美精品综合一区二区三区| av在线app专区| 亚洲,欧美精品.| 大香蕉久久网| 精品人妻一区二区三区麻豆| 精品亚洲成a人片在线观看| 欧美人与善性xxx| 十八禁人妻一区二区| 免费av中文字幕在线| 欧美性长视频在线观看| 日本五十路高清| 久久精品国产亚洲av涩爱| 久久99精品国语久久久| 2018国产大陆天天弄谢| 精品久久久精品久久久| 伊人久久大香线蕉亚洲五| 91精品三级在线观看| 亚洲精品日韩在线中文字幕| 91麻豆av在线| 99久久综合免费| av线在线观看网站| 欧美日本中文国产一区发布| 只有这里有精品99| 人人妻人人添人人爽欧美一区卜| 亚洲专区国产一区二区| 日本91视频免费播放| 90打野战视频偷拍视频| 两性夫妻黄色片| 美女扒开内裤让男人捅视频| 中文字幕精品免费在线观看视频| 亚洲中文字幕日韩| 国产av一区二区精品久久| 人妻一区二区av| 亚洲五月婷婷丁香| 青春草亚洲视频在线观看| 老司机在亚洲福利影院| 国产真人三级小视频在线观看| 亚洲七黄色美女视频| 日本猛色少妇xxxxx猛交久久| 中文字幕高清在线视频| 美女视频免费永久观看网站| 一区福利在线观看| 国产熟女欧美一区二区| 国产成人欧美在线观看 | 日本av免费视频播放| av一本久久久久| 日本欧美国产在线视频| 在线观看一区二区三区激情| 黑丝袜美女国产一区| 99热网站在线观看| 最近手机中文字幕大全| videos熟女内射| 国产精品九九99| 亚洲人成电影观看| 久久久久国产一级毛片高清牌| 亚洲国产精品一区三区| 国产成人免费无遮挡视频| 又紧又爽又黄一区二区| 午夜免费男女啪啪视频观看| cao死你这个sao货| 免费久久久久久久精品成人欧美视频| 老司机亚洲免费影院| 欧美精品高潮呻吟av久久| 久久精品国产亚洲av高清一级| 中文精品一卡2卡3卡4更新| 国产精品免费视频内射| 精品人妻熟女毛片av久久网站| 免费看十八禁软件| 免费女性裸体啪啪无遮挡网站| 成人三级做爰电影| 欧美日韩国产mv在线观看视频| 波多野结衣av一区二区av| 亚洲av国产av综合av卡| 黄色怎么调成土黄色| 国产爽快片一区二区三区| 欧美激情高清一区二区三区| 99精品久久久久人妻精品| 永久免费av网站大全| 午夜老司机福利片| 高潮久久久久久久久久久不卡| 亚洲精品国产区一区二| 人人妻人人爽人人添夜夜欢视频| 亚洲国产精品一区二区三区在线| 国产精品人妻久久久影院| 校园人妻丝袜中文字幕| 亚洲精品中文字幕在线视频| 精品少妇黑人巨大在线播放| 亚洲熟女精品中文字幕| 91精品伊人久久大香线蕉| 人人妻,人人澡人人爽秒播 | 国产熟女欧美一区二区| 91国产中文字幕| 脱女人内裤的视频| 手机成人av网站| 国产真人三级小视频在线观看| 久久久亚洲精品成人影院| 欧美中文综合在线视频| 97人妻天天添夜夜摸| 美女午夜性视频免费| 国产福利在线免费观看视频| 日韩av免费高清视频| 国产片特级美女逼逼视频| 久久久欧美国产精品| 亚洲精品日韩在线中文字幕| 亚洲精品国产一区二区精华液| 色婷婷久久久亚洲欧美| 国产又色又爽无遮挡免| 国产国语露脸激情在线看| 午夜日韩欧美国产| 欧美在线黄色| 后天国语完整版免费观看| 99久久综合免费| av在线老鸭窝| 日韩av不卡免费在线播放| 国产日韩一区二区三区精品不卡| 亚洲专区中文字幕在线| 成人免费观看视频高清| 欧美日韩成人在线一区二区| 50天的宝宝边吃奶边哭怎么回事| 成年av动漫网址| 五月开心婷婷网| 在线观看免费午夜福利视频| netflix在线观看网站| 一个人免费看片子| 日本a在线网址| 一边亲一边摸免费视频| 超碰97精品在线观看| 日韩av在线免费看完整版不卡| 中文字幕精品免费在线观看视频| 亚洲欧美中文字幕日韩二区| 精品福利永久在线观看| 九色亚洲精品在线播放| 1024视频免费在线观看| 女性被躁到高潮视频| 久久精品国产亚洲av涩爱| 国产97色在线日韩免费| 欧美精品亚洲一区二区| 亚洲av成人不卡在线观看播放网 | 涩涩av久久男人的天堂| 国产女主播在线喷水免费视频网站| 熟女少妇亚洲综合色aaa.| 又紧又爽又黄一区二区| 亚洲av美国av| 午夜老司机福利片| 在现免费观看毛片| www.999成人在线观看| 久久久久国产一级毛片高清牌| 精品国产超薄肉色丝袜足j| 大陆偷拍与自拍| 国产精品一区二区免费欧美 | 日韩 欧美 亚洲 中文字幕| cao死你这个sao货| 美女扒开内裤让男人捅视频| 日韩 亚洲 欧美在线| 亚洲男人天堂网一区| 免费人妻精品一区二区三区视频| 亚洲欧洲精品一区二区精品久久久| 免费在线观看影片大全网站 | 成人国语在线视频| 亚洲熟女毛片儿| 女性生殖器流出的白浆| 女人精品久久久久毛片| 97精品久久久久久久久久精品| 你懂的网址亚洲精品在线观看| 天堂8中文在线网| 丝瓜视频免费看黄片| 久久免费观看电影| 精品国产国语对白av| 蜜桃在线观看..| 免费观看a级毛片全部| 精品福利观看| 久久国产精品大桥未久av| 国产视频首页在线观看| 亚洲国产毛片av蜜桃av| 最黄视频免费看| 狂野欧美激情性bbbbbb| 国产伦人伦偷精品视频| 日日爽夜夜爽网站| 亚洲第一青青草原| 免费久久久久久久精品成人欧美视频| 丁香六月天网| 男人操女人黄网站| 一级a爱视频在线免费观看| 色94色欧美一区二区| 制服人妻中文乱码| 黑人巨大精品欧美一区二区蜜桃| 久久天躁狠狠躁夜夜2o2o | 免费在线观看完整版高清| 国产成人欧美在线观看 | 亚洲国产精品999| e午夜精品久久久久久久| 老司机在亚洲福利影院| 在线天堂中文资源库| 日本猛色少妇xxxxx猛交久久| 嫩草影视91久久| 老鸭窝网址在线观看| 高潮久久久久久久久久久不卡| 午夜福利乱码中文字幕| bbb黄色大片| 热99国产精品久久久久久7| 熟女av电影| 男女边吃奶边做爰视频| 国产又爽黄色视频| 一区在线观看完整版| 五月天丁香电影| 1024香蕉在线观看| 波多野结衣一区麻豆| 丝袜美足系列| 国产在线观看jvid| 日韩av在线免费看完整版不卡| 亚洲av电影在线观看一区二区三区| 婷婷色av中文字幕| 色94色欧美一区二区| 一本色道久久久久久精品综合| 9热在线视频观看99| 国产伦理片在线播放av一区| 日本色播在线视频| 亚洲国产欧美网| 国产不卡av网站在线观看| 婷婷色综合大香蕉| netflix在线观看网站| 国产xxxxx性猛交| 18在线观看网站| 国产99久久九九免费精品| 精品人妻一区二区三区麻豆| 国产成人精品久久二区二区91| 男女高潮啪啪啪动态图| 美女视频免费永久观看网站| 夫妻性生交免费视频一级片| 婷婷丁香在线五月| 精品少妇一区二区三区视频日本电影| 在线精品无人区一区二区三| 最黄视频免费看| 激情视频va一区二区三区| 美女大奶头黄色视频| 咕卡用的链子| 性高湖久久久久久久久免费观看| 黄片播放在线免费| 午夜免费男女啪啪视频观看| 成人国产av品久久久| 美女高潮到喷水免费观看| 国产高清国产精品国产三级| av线在线观看网站| 欧美日韩视频精品一区| 侵犯人妻中文字幕一二三四区| 国产成人精品久久久久久| 国产成人a∨麻豆精品| 亚洲精品一二三| 午夜久久久在线观看| 免费黄频网站在线观看国产| 国产成人av教育| 婷婷成人精品国产| cao死你这个sao货| 日日夜夜操网爽| 久久av网站| 丰满人妻熟妇乱又伦精品不卡| 丝袜在线中文字幕| 男的添女的下面高潮视频| 99久久综合免费| 一本久久精品| 亚洲欧美中文字幕日韩二区| 亚洲中文av在线| 黑人欧美特级aaaaaa片| 久久毛片免费看一区二区三区| 熟女少妇亚洲综合色aaa.| 新久久久久国产一级毛片| 国产成人一区二区三区免费视频网站 | xxx大片免费视频| 考比视频在线观看| 啦啦啦在线免费观看视频4| 亚洲九九香蕉| 亚洲精品成人av观看孕妇| 亚洲一卡2卡3卡4卡5卡精品中文| 精品人妻1区二区| 国产精品免费大片| 久久久久精品人妻al黑| 中文字幕精品免费在线观看视频| 最新的欧美精品一区二区| 纯流量卡能插随身wifi吗| 狂野欧美激情性xxxx| 80岁老熟妇乱子伦牲交| 丁香六月欧美| 免费观看av网站的网址| 日韩中文字幕欧美一区二区 | 美女中出高潮动态图| 国产一区二区 视频在线| 亚洲成色77777| 手机成人av网站| 亚洲熟女精品中文字幕| 少妇精品久久久久久久| 精品第一国产精品| 波野结衣二区三区在线| 手机成人av网站| 亚洲熟女精品中文字幕| 欧美精品高潮呻吟av久久| 久久午夜综合久久蜜桃| 亚洲人成77777在线视频| 丁香六月欧美| 欧美精品一区二区大全| 欧美日韩亚洲高清精品| 亚洲综合色网址| 中文字幕人妻丝袜一区二区| 亚洲,一卡二卡三卡| 亚洲欧美一区二区三区黑人| 亚洲av综合色区一区| 十分钟在线观看高清视频www| 国产又色又爽无遮挡免| 好男人视频免费观看在线| 男的添女的下面高潮视频| 免费在线观看影片大全网站 | 日韩制服丝袜自拍偷拍| √禁漫天堂资源中文www| 黄色视频不卡| 亚洲欧美中文字幕日韩二区| 精品国产乱码久久久久久小说| 欧美在线黄色| 日日夜夜操网爽| 国产成人精品久久二区二区91| 婷婷成人精品国产| 婷婷丁香在线五月| 看免费成人av毛片| 亚洲欧美中文字幕日韩二区| 国产极品粉嫩免费观看在线| 欧美黑人精品巨大| 中文字幕高清在线视频| 亚洲激情五月婷婷啪啪| 国产爽快片一区二区三区| 国产激情久久老熟女| 中文字幕人妻丝袜一区二区| 在现免费观看毛片| 99香蕉大伊视频| 男女无遮挡免费网站观看| 一区二区三区四区激情视频| 交换朋友夫妻互换小说| 亚洲国产成人一精品久久久| www.精华液| 亚洲av日韩精品久久久久久密 | 免费女性裸体啪啪无遮挡网站| 丰满饥渴人妻一区二区三| 亚洲伊人久久精品综合| 熟女av电影| 亚洲精品国产av成人精品| 大香蕉久久成人网| 亚洲国产精品国产精品| 亚洲国产精品一区三区| 久久人妻熟女aⅴ| 欧美亚洲日本最大视频资源| 大片电影免费在线观看免费| av有码第一页| 亚洲欧美日韩另类电影网站| 成人黄色视频免费在线看| 精品国产一区二区三区四区第35| 高清不卡的av网站| 日韩av不卡免费在线播放| 国产深夜福利视频在线观看| av天堂久久9| 久久人妻福利社区极品人妻图片 | 十分钟在线观看高清视频www| 欧美激情 高清一区二区三区| 夜夜骑夜夜射夜夜干| 一区二区三区精品91| 国产成人系列免费观看| 亚洲,一卡二卡三卡| 亚洲国产欧美一区二区综合| av天堂在线播放| 欧美久久黑人一区二区| 男女免费视频国产| 亚洲专区中文字幕在线| 国产人伦9x9x在线观看| 国产亚洲精品久久久久5区| 国产成人欧美| 在线av久久热| 在线天堂中文资源库| 国产精品一区二区精品视频观看| 老司机午夜十八禁免费视频| 亚洲男人天堂网一区| www日本在线高清视频| 久久精品久久久久久噜噜老黄| 国产精品久久久人人做人人爽| 91九色精品人成在线观看| 国产色视频综合| 亚洲国产看品久久| 99国产精品99久久久久| 久久99精品国语久久久| 国产真人三级小视频在线观看| 真人做人爱边吃奶动态| 国产精品国产三级专区第一集| 少妇精品久久久久久久| 日日摸夜夜添夜夜爱| 婷婷色麻豆天堂久久| 在线观看人妻少妇| 国产av国产精品国产| 中国美女看黄片| 国产欧美日韩综合在线一区二区| 亚洲国产看品久久| 亚洲国产欧美网| 久久九九热精品免费| avwww免费| 亚洲国产最新在线播放| 亚洲天堂av无毛| 国产精品香港三级国产av潘金莲 | 男女边摸边吃奶| 成人国产一区最新在线观看 | 国产精品一区二区在线观看99| 久久久久国产精品人妻一区二区| 99精品久久久久人妻精品| av在线老鸭窝| 50天的宝宝边吃奶边哭怎么回事| 久久久久久久久久久久大奶| 国产深夜福利视频在线观看| 2018国产大陆天天弄谢| 亚洲久久久国产精品| 老司机深夜福利视频在线观看 | 色播在线永久视频| 人成视频在线观看免费观看| 亚洲 国产 在线| 人人澡人人妻人| 亚洲av欧美aⅴ国产| 精品亚洲成国产av|