• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experimental study on vortex induced vibration(VIV)of a wide-D-section cylinder in a cross flow

    2015-11-21 07:27:32QingyangWangMogengLiShengjinXu

    Qingyang Wang,Mogeng Li,Shengjin Xu

    School of Aerospace Engineering,Tsinghua University,Beijing,China

    Experimental study on vortex induced vibration(VIV)of a wide-D-section cylinder in a cross flow

    Qingyang Wang,Mogeng Li,Shengjin Xu?

    School of Aerospace Engineering,Tsinghua University,Beijing,China

    A R T I C L E I N F O

    Article history:

    Received 30 September 2014

    Accepted 17 December 2014

    Available online 14 February 2015

    Wide D-section cylinder

    Hot wire

    Phase-locked PIV

    Vortex induced vibration

    Lock-on

    Wake structures and vortex induced vibration(VIV)of a spring-supported wide-D-section cylinder were experimentally investigated using an X-wire,a novel phase-locked particle image velocimetry(PIV),and an acceleration sensor at a low speed wind tunnel.Compared with the fixed case,the 2P(two pair)vortex mode as defined by Govardhan and Williamson(2000)rather than S(single vortex)mode exists in the wake.The velocity deficit behind the cylinder is much larger than that of fixed case.The mean drag coefficient increases from 1.42 for the fixed case to 1.64 for the vibrating case.The Reynolds stress presents even distribution and small with increased distance of X/D=-2 to X/D=-10.The power spectra density based on accelerator and hot wire data presents a highlight identical.It shows that after a strong interaction the cylinder vibration and the vortex shedding come to a stable state.The vortex shedding is totally locked on and controlled by the cylinder vibration.

    ?2015 The Authors.Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

    Flow induced vibration(FIV)of structures is frequently seen in industrial manufactures,such as in mechanical engineering,civil engineering,chemical engineering,marine engineering,aerospace engineering,thermal power engineering,and so on.The structures employed in those fields are initially designed to bear loadings,contain flow or provide heat transfer surface without considering fluid dynamical optimization[1].The structures immersed in a fluid flow could be easily subject to fluid forces.Especially,fluid force fluctuation may result in vortex induced vibration(VIV)[2],even galloping or flutter unless the structural collapses occur.The VIV easily occurs or not often depends on the shapes of structures,Reynolds number,scenario offacing flow,etc.Whetherto suppress orto utilize the VIV,orto guarantee the structuressafe,orto realize flow control,it is both essential and crucial to investigate details on the interaction between the VIV structure and the fluid flow.It motivates the present study.

    There are innumerable experimental and theoretical studies on VIV of structures with simple cross section shapes.The circular cylinder is the simplest geometry and most commonly used in the industry[3].Numerous experimental studies show that vortex shedding behind the circular cylinder causes fluctuation lift resulting in a periodical vibration,which is so-called VIV.So far,the VIV of other bluff bodies has also attracted people's interest[4,5].The key of VIV problem exists in a strong interaction between the cylinder motion and vortex shedding[6,7].The VIV of a cylinder is often subject to the effects of cross section shape of the cylinder,Reynolds number,Strouhal number,added mass effect,structural stiffness of the cylinder,and damping ratio[8,9].Many semi-empirical models have been built to predict the dynamics of the VIV cylinder.Meanwhile,the two most popular models are the harmonic model and the wake oscillator model,respectively[1,10,11].With the two models one may give a simple prediction to the VIV of a cylinder in the cross flow.

    In this paper,we aim to study the flow structure and oscillation of a wide-D-section cylinder since the study is significant to engineering applications but being less concerned[12].The flow structures around the cylinder are studied using a novel phaselocked particle image velocimetry(PIV).The vibration of cylinder is monitored by an acceleration sensor.The velocity profiles and Reynolds stress behind the cylinder are measured by an X-wire.

    The experimentwas carriedoutata low speed wind tunnelwith a square test section(0.5 m×0.5 m)of 2 m long.The wind speed can be adjusted from 0 m/s to 40 m/s.Turbulence intensity was less than 0.5%in the free stream in this experiment.A wide-D-section cylinder was horizontally supported by two springs at each end of the cylinder.The cylinder was mounted in the middle of the working section.The flat surface of the cylinder is faced to the free flow and the x-y coordinate is shown in Fig.1.The cross section of the cylinder is shown in Fig.1(b).The blockage was about 5.5%. The mass ratio m?was approximately 962,the structural damping ratioζwas estimated to be 0.0007 and the natural frequency fnof the spring-cylinder was 6.866 Hz.Both the natural frequency and the damping ratio were measured in the still air.The free stream velocity U0in this experiment was fixed at 4.0 m/s.The corresponding Reynolds number defined by the speed of free flow and the height of the cylinder was about 8000.

    The flow structures behind the wide-D-section cylinder were captured by a standard LaVision PIV system.The smoke particle(around 2μm in diameter)generated by paraffin oil was used as trace particle.The double pulsed YAG Laser sources of a wavelength of 532 nm served as flow illumination devices in the test zone.The maximum energy outputofthe laser is about 120 mJ.The thickness of the laser sheet was about 1 mm.A single CCD camera with a resolution of 2048 pixels×2048 pixels for each image was used to capture the flow structure.The cylinder surface and the wind tunnel wall illuminated by the laser sheet were painted black to minimize the light reflection noise.The green light generated by the laser source is allowed to pass through and goes inside CCD camera by an optical filter,of which the passing wavelength is 532 nm.Velocity vector fields were calculated from the raw images by a cross-correlation algorithmbuilt in the Davis software ofthe LaV-ision system.The interrogation area was 32 pixels×32 pixels and the overlap was 50%.The weak correlation vectors were automatically removed in the post-processing.To measure the flow structures at the designated vibration phase of the spring-supported cylinder,the PIV was triggered by a dSPACE real-time control desk combined with the MATLAB/Simulink platform.Thus,a series of flow structure according with the designated vibration phase could be measured by this modified PIV technique.After phase-average calculation,a smooth and averaged flow velocity field can be obtained for arbitrary vibration phase of the cylinder.

    The vibration ofthe wide-D-section cylinder was measured by a miniature B&K acceleration sensor(Delta 4516)fixed at one end of the cylinder.The signal after amplifier was collected by a NI 6521 acquisition system at a sampling frequency fsample=5 kHz,and the sampling time was about 30 s.

    The velocity profile behind the wide-D-section cylinder was measured by an IFA 300 constant temperature hotwire anemometer with an X-arrangement hot film sensor Model 1246-20W(50.8μm of diameter)at X/D=-2,X/D=-5,and X/D=-10,respectively.Sixty-one points were measured along y direction at the range of Y/D=-3 to 3.Signals was offset,amplified,digitized using an 8 channel A/D board and then recorded by a computer at a sampling frequency fsample=5 kHz.The sampling time was about 26 s.The vortex shedding frequencies of the cylinder were calculated based on the power spectral density of hot wire measurements.

    Instantaneous vorticity field of the fixed wide-D-section cylinder is shown in Fig.2.Vortices alternatively shed from the leading corner of the cylinder.It distinguishes from that of fixed circular cylinder[13]and square cylinder[14].The vortices stretch muchlonger in the wake of the D-section cylinder than that of the circular or square cylinder.The vorticity is not available below the cylinder where the flow is in the shadow.

    Fig.1.Experimental setup and dimensions of the wide-D section cylinder.

    Fig.2.Normalized vorticity contours(ω?=ωzD/U0)for the fixed wide-D cylinder,Re=8000.

    Figure 3 shows the phase average results for normalized vorticity contours at designated vibration phase for the vibrating case. Each picture is the average of 300 pairs of vorticity contour which obtained using phase-locked PIV at a designated vibration phase. Figure 3(a)shows the details in vibration phases(45°of phase interval)in accordance with the vorticity contours in Fig.3(b).Unlike the fixed case of the wide-D cylinder,the vortices form two pair vortex structure in the wake which was so-called 2P mode according to Govardhan and Williamson[20].Figure 3(b)I-IVshow that the cylinder is moving down to the outmostposition and coming back to the balance point(Fig.3(b)IV).Figure 3(b)IV-VI showvorticity change atthe range ofanother180°phase angle.Avortexpair including two vortices with opposite sign vorticity presents at each side of the cylinder.One of vortex in the pair forms from the natural shedding at the corner of the cylinder,another is from the induced flow because of the cylinder motion.Two vortex-pairs alternatively occur at each side of the cylinder.

    Fig.3.The normalized vorticityω?=ωzD/U0for Re=8000.

    Fig.4.The mean velocity deficit at X/D=-2,X/D=-5,and X/D=-10.

    The mean velocity deficit at X/D=-2,X/D=-5,and X/D=-10 obtained by an X-arrangementhotfilmisillustrated in Fig.4.The area of the deficit becomes larger as X/D increased since the wake is still developing in this range of X/D.The deficit area of vibrating case is larger than that of the fixed case.The vibrating cylinder broadened the velocity deficit in transverse direction,compared to the fixed cylinder case.

    To estimate the mean drag,the algorithm[15-17]taking the Reynolds normal stress into account is adopted as Eq.(2.1)

    Fig.5.profile along y direction at X/D=-2,X/D=-5,and X/D=-10.

    Fig.6.profile along y direction at X/D=-2,X/D=-5,and X/D=-10.

    Fig.7.profile along y direction at X/D=-2,X/D=-5,and X/D=-10.

    whereρis the density of the fluid,U0is the free stream velocity,and FDis the drag force.

    Equation(2.1)includes two components,namely the momentum integral I1and I2,with contribution from mean velocity and Reynolds normal stress,respectively.

    To measure the structural frequency of the spring-supported wide-D cylinder,acceleration of the cylinder is obtained when it is in a damped free vibration.The vibration is approximately linear. According to the measurement as shown in Fig.8,the structural damping ratioζis estimated to be 0.0007 and the structural naturalfrequency fnis 6.866 Hz,or 0.0515 normalized by D and free streamvelocity U0.As the steady VIVofthe wide-Dcylinder occurs,the acceleration becomes apparently to be periodical.The vibration frequency is identical to the natural frequency all the time.Even if the flutter occurs,the vibration amplitude increases rapidly to a new value but the vibration frequency still remains identical to the natural frequency.That is because the vortex shedding frequency is locked on the cylinder vibration.At the beginning of the cylinder vibration,the cylinder is forced to vibrate by the periodical force caused by vortex shedding(see Fig.9).Hence,the vibration frequency is slightly higher than that of structural natural frequency of the cylinder,say 0.0878-0.0956 normalized frequency as shown as the hot wire measurement in Fig.10(notshown in acceleration data).Power spectra density functions for different X/D fromhot wire measurement are presented in Figs.10 and 11.The fixed case is in Fig.10 and the vibrating case is in Fig.11.For the fixed case,the vortex shedding frequency(0.0956)at X/D=-2 is slightly higher than those(0.0878 and 0.0876)at X/D=-5 and-10(0.0876).It shows that the convective velocity of the vortex is a little bit rapid that is probably caused by blockage effect near the cylinder.The convective velocity keeps nearly constant speed downstream.For the vibrating case,the vortex shedding is locked on the natural frequency of the cylinder. The dominant peak of the normalized frequency occurs at 0.0515. Meanwhile,double and triple frequencies of the value of 0.0515 also can be found in the power spectra density function.Those peaks indicate that the vortex is breaking into many small vortices downstream.

    Table 1Cdof the wide-D-section cylinder.

    Table 2Cdfor different cylinders.

    Fig.8.Acceleration and its power spectra density function for damped free vibration of the cylinder.

    Fig.9.Acceleration and its power spectra density function for steady VIV of the cylinder.

    Fig.10.Power spectra density from hot wire signal for the fixed case.(a)X/D= -2;(b)X/D=-5;(c)X/D=-10.

    The near wakes of a spring supported wide D-section cylinder both for fixed and vibrating cases have been studied using PIV,X-wire and an acceleration sensor.The following conclusions can be drawn.

    The flow structure is influenced by the vibration of the cylinder. The wake of the vibrating cylinder presents two pair vortex structure(2P),which is different from 2S mode contained in the fixed case.The cylinder vibration results in a larger drag than that of the fixed case.In the steady VIV,the vibration frequency is identical to the structural natural frequency even if the flutter occurs.

    Fig.11.Power spectra density from hot wire signal for the vibrating case.(a)X/D=-2;(b)X/D=-5;(c)X/D=-10.

    This work was supported by the National Natural Science Foundation of China(11472158).

    [1]R.D.Blevins,F(xiàn)low-Induced Vibration,Van Nostrand Reinhold Co.,New York,1990.

    [2]C.H.K.Williamson,R.Govardhan,Vortex-induced vibrations,Annu.Rev.Fluid Mech.36(2004)413-455. http://dx.doi.org/10.1146/annurev.fluid.36.050802.122128.

    [3]R.D.Gabbai,H.Benaroya,An overviewofmodeling and experiments ofvortexinduced vibration of circular cylinders,J.Sound Vib.282(2005)575-616,http://dx.doi.org/10.1016/j.jsv.2004.04.017. http://www.sciencedirect.com/science/article/pii/S0022460X04004845.

    [4]M.P.Pa?doussis,S.J.Price,E.de Langre,F(xiàn)luid-Structure Interactions:Crossflow-induced Instabilities,Cambridge University Press,Cambridge,2011,http://www.cambridge.org/us/academic/subjects/engineering/thermalfluids-engineering/fluid-structure-interactions-cross-flow-inducedinstabilities.

    [5]R.M.Corless,G.V.Parkinson,A model of the combined effects of vortexinduced oscillation and galloping,J.Fluids Struct.2(1988)203-220,http://dx.doi.org/10.1016/S0889-9746(88)80008-2. http://www.sciencedirect.com/science/article/pii/S0889974688800082.

    [6]P.W.Bearman,Vortex shedding from oscillating bluff bodies,Annu.Rev. Fluid Mech.16(1984)195-222.http://dx.doi.org/10.1146/annurev.fl.16. 010184.001211.http://www.annualreviews.org/doi/abs/10.1146/annurev.fl. 16.010184.001211?journalCode=fluid.

    [7]R.D.Blevins,C.S.Coughran,Experimental investigation of vortex-induced vibration in one and two dimensions with variable mass,damping,and Reynolds number,J.Fluids Eng.131(2009)101-202,http://dx.doi.org/ 10.1115/1.3222904.http://fluidsengineering.asmedigitalcollection.asme.org/ article.aspx?articleid=1478300.

    [8]T.Sarpkaya,A critical review of the intrinsic nature of vortex-induced vibrations,J.Fluids Struct.19(2004)389-447,http://dx.doi.org/10.1016/j.jfluidstructs.2004.02.005. http://www.sciencedirect.com/science/article/pii/S0889974604000350.

    [9]M.L.Facchinetti,E.de Langre,F(xiàn).Biolley,Coupling of structure and wake oscillators in vortex-induced vibrations,J.Fluids struct.19(2004)123-140,http://dx.doi.org/10.1016/j.jfluidstructs.2003.12.004. http://www.sciencedirect.com/science/article/pii/S0889974603001853.

    [10]A.Farshidianfar,H.Zanganeh,A modified wake oscillator model for vortexinduced vibration ofcircular cylinders fora wide range ofmass-damping ratio,J.Fluids Struct.26(2010)430-441,http://dx.doi.org/10.1016/j.jfluidstructs.2009.11.005. http://www.sciencedirect.com/science/article/pii/S0889974610000149.

    [11]N.Cagney,S.Balabani,Wake modes of a cylinder undergoing free streamwise vortex-induced vibrations,J.Fluids Struct.38(2013)127-145,http://dx.doi.org/10.1016/j.jfluidstructs.2012.12.004. http://www.sciencedirect.com/science/article/pii/S0889974612002277.

    [12]P.Van Dyke,A.Laneville,Galloping of a single conductor covered with a D-section on a high-voltage overhead test line,J.Wind Eng.Ind.Aerodyn.96(2008)1141-1151,http://dx.doi.org/10.1016/j.jweia.2007.06.036. http://www.sciencedirect.com/science/article/pii/S0167610507001614.

    [13]H.M.Blackburn,R.D.Henderson,A study of two-dimensional flow past an oscillating cylinder,J.Fluid Mech.385(1999)255-286,http://dx.doi.org/10.1017/S0022112099004309. http://journals.cambridge.org/action/displayAbstract?fromPage=online& aid=15051&fileId=S0022112099004309.

    [14]B.W.Van Oudheusden,F(xiàn).Scarano,N.P.Van Hinsberg,et al.,Phase-resolved characterization of vortex shedding in the near wake of a square-section cylinder at incidence,Exp.Fluids 39(2005)86-98,http://dx.doi.org/10.1007/s00348-005-0985-5. http://link.springer.com/article/10.1007%2Fs00348-005-0985-5.

    [15]R.A.Antonia,S.Rajagopalan,Determination of drag of a circular cylinder,AIAA J.28(1990)1833-1834,http://dx.doi.org/10.2514/3.10485. http://arc.aiaa.org/doi/abs/10.2514/3.10485?journalCode=aiaaj.

    [16]L.H.Feng,J.J.Wang,Synthetic jet control of separation in the flow over a circular cylinder,Exp.Fluids 53(2012)467-480,http://dx.doi.org/10.1007/s00348-012-1302-8. http://link.springer.com/article/10.1007/s00348-012-1302-8.

    [17]G.S.He,N.Li,J.J.Wang,Drag reduction of square cylinders with cut-corners at the front edges,Exp.Fluids 55(2014)1-11,http://dx.doi.org/10.1007/s00348-014-1745-1. http://link.springer.com/article/10.1007%2Fs00348-014-1745-1.

    [18]C.Tropea,A.L.Yarin,J.F.Foss,et al.,Springer Handbook of Experimental Fluid Mechanics,Springer-Verlag,Berlin Heidelberg,2007,pp.1125-1145,http://dx.doi.org/10.1007/978-3-540-30299-5. http://link.springer.com/referencework/10.1007%2F978-3-540-30299-5.

    [19]F.M.White,F(xiàn)luid Mechanics,4th edn.,McGraw-Hill,New York,2001.

    [20]R.Govardhan,C.H.K.Williamson,Modes of vortex formation and frequency response of a freely vibrating cylinder,J.Fluid Mech.420(2000)85-130,http://dx.doi.org/10.1017/S0022112000001233. http://journals.cambridge.org/action/displayAbstract?fromPage=online& aid=56925&fileId=S0022112000001233.

    ?Corresponding author.

    E-mail address:xu_shengjin@tsinghua.edu.cn(S.Xu).

    *This article belongs to the Fluid Mechanics

    99热网站在线观看| 777米奇影视久久| 丝袜美腿诱惑在线| 一区在线观看完整版| 日韩欧美一区视频在线观看| 丝袜美足系列| 国产99久久九九免费精品| 国产有黄有色有爽视频| 高清视频免费观看一区二区| 人人妻人人添人人爽欧美一区卜| 色网站视频免费| 叶爱在线成人免费视频播放| 极品人妻少妇av视频| 欧美精品av麻豆av| svipshipincom国产片| 19禁男女啪啪无遮挡网站| 成人午夜精彩视频在线观看| 狂野欧美激情性bbbbbb| av天堂久久9| www.熟女人妻精品国产| 在线 av 中文字幕| 午夜福利一区二区在线看| 国产精品国产三级国产专区5o| 久久人人爽av亚洲精品天堂| 精品一区二区三区四区五区乱码 | 亚洲av成人精品一二三区| 视频区图区小说| 久久综合国产亚洲精品| 女性被躁到高潮视频| 亚洲国产精品成人久久小说| 亚洲伊人久久精品综合| 最新的欧美精品一区二区| 国产精品av久久久久免费| 久久久久久久国产电影| 一本一本久久a久久精品综合妖精| 男女边吃奶边做爰视频| 亚洲综合色网址| 国产精品国产三级专区第一集| 高清视频免费观看一区二区| 热99久久久久精品小说推荐| av视频免费观看在线观看| 蜜桃在线观看..| av视频免费观看在线观看| 激情视频va一区二区三区| 综合色丁香网| 多毛熟女@视频| 国产97色在线日韩免费| 看非洲黑人一级黄片| 亚洲激情五月婷婷啪啪| 日本黄色日本黄色录像| 天天影视国产精品| 建设人人有责人人尽责人人享有的| 亚洲自偷自拍图片 自拍| 国产精品欧美亚洲77777| 操出白浆在线播放| 69精品国产乱码久久久| 可以免费在线观看a视频的电影网站 | 婷婷色av中文字幕| 国产免费一区二区三区四区乱码| 久久久久视频综合| 日韩一卡2卡3卡4卡2021年| 亚洲精品久久久久久婷婷小说| 十八禁人妻一区二区| 色精品久久人妻99蜜桃| 19禁男女啪啪无遮挡网站| 国产午夜精品一二区理论片| 欧美黄色片欧美黄色片| 肉色欧美久久久久久久蜜桃| 一级毛片 在线播放| 9色porny在线观看| xxxhd国产人妻xxx| 日本猛色少妇xxxxx猛交久久| 各种免费的搞黄视频| 大码成人一级视频| 久久综合国产亚洲精品| 王馨瑶露胸无遮挡在线观看| 五月天丁香电影| 久久影院123| www.精华液| 午夜久久久在线观看| 一边亲一边摸免费视频| 欧美精品av麻豆av| 中文精品一卡2卡3卡4更新| 国产97色在线日韩免费| 中文欧美无线码| 欧美日韩一区二区视频在线观看视频在线| 在线看a的网站| 黄色一级大片看看| 国产男女超爽视频在线观看| 少妇被粗大的猛进出69影院| 国产深夜福利视频在线观看| 国产日韩欧美在线精品| 少妇被粗大的猛进出69影院| 哪个播放器可以免费观看大片| 黄片播放在线免费| 国产精品熟女久久久久浪| 国产精品久久久久久精品电影小说| 国精品久久久久久国模美| 黄色怎么调成土黄色| 黑人猛操日本美女一级片| 在线观看三级黄色| 精品一区在线观看国产| 国产一区二区 视频在线| 啦啦啦在线免费观看视频4| 国产精品 欧美亚洲| 亚洲欧洲国产日韩| 大话2 男鬼变身卡| 在线看a的网站| 人成视频在线观看免费观看| 国产精品一国产av| 免费观看a级毛片全部| 在线观看免费午夜福利视频| 1024视频免费在线观看| 电影成人av| a级毛片在线看网站| 成人黄色视频免费在线看| 久久99精品国语久久久| 久久久亚洲精品成人影院| 国产一区二区三区综合在线观看| 老司机影院毛片| 久久免费观看电影| 七月丁香在线播放| 男女国产视频网站| 亚洲国产av影院在线观看| 最黄视频免费看| 观看av在线不卡| 久久天躁狠狠躁夜夜2o2o | 欧美日韩综合久久久久久| 亚洲成色77777| 国产伦理片在线播放av一区| av线在线观看网站| 韩国精品一区二区三区| 宅男免费午夜| 亚洲欧美精品自产自拍| 18禁裸乳无遮挡动漫免费视频| 中文字幕最新亚洲高清| 伦理电影免费视频| 亚洲成国产人片在线观看| 久久久精品国产亚洲av高清涩受| 国产精品无大码| 日韩大码丰满熟妇| 亚洲一级一片aⅴ在线观看| 天天躁日日躁夜夜躁夜夜| 国产xxxxx性猛交| 国产男女超爽视频在线观看| 亚洲欧美一区二区三区黑人| 这个男人来自地球电影免费观看 | 卡戴珊不雅视频在线播放| 久久精品久久精品一区二区三区| 亚洲 欧美一区二区三区| 婷婷色综合www| 晚上一个人看的免费电影| 亚洲成色77777| 国产黄频视频在线观看| 久久这里只有精品19| 国产成人免费观看mmmm| 国产亚洲欧美精品永久| 黄色怎么调成土黄色| 国产成人免费无遮挡视频| 毛片一级片免费看久久久久| 超碰成人久久| 久久精品熟女亚洲av麻豆精品| 精品福利永久在线观看| 亚洲免费av在线视频| 欧美精品av麻豆av| 欧美少妇被猛烈插入视频| 制服人妻中文乱码| 日日摸夜夜添夜夜爱| 亚洲综合精品二区| 99久国产av精品国产电影| 老汉色∧v一级毛片| 亚洲,欧美精品.| 日韩精品有码人妻一区| 一本—道久久a久久精品蜜桃钙片| svipshipincom国产片| 大片电影免费在线观看免费| 欧美久久黑人一区二区| 亚洲成人手机| 五月天丁香电影| 免费黄色在线免费观看| 久久久久久人人人人人| 精品人妻熟女毛片av久久网站| 观看av在线不卡| 欧美少妇被猛烈插入视频| 99久久99久久久精品蜜桃| 亚洲成人手机| 最近的中文字幕免费完整| 自线自在国产av| 亚洲精品一二三| 一级爰片在线观看| 亚洲国产日韩一区二区| 久久免费观看电影| 咕卡用的链子| tube8黄色片| 国产有黄有色有爽视频| 国产黄色免费在线视频| 国产极品粉嫩免费观看在线| 一级毛片 在线播放| 久久久久人妻精品一区果冻| 国产精品久久久久久精品电影小说| 日韩电影二区| 亚洲国产av影院在线观看| 亚洲国产精品成人久久小说| 欧美97在线视频| 你懂的网址亚洲精品在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 成人国产麻豆网| 久久久精品94久久精品| 中文乱码字字幕精品一区二区三区| 国产黄色视频一区二区在线观看| 美女视频免费永久观看网站| 国产又色又爽无遮挡免| 亚洲av电影在线进入| 国产国语露脸激情在线看| 中文字幕高清在线视频| 丝瓜视频免费看黄片| 久久精品人人爽人人爽视色| 精品国产一区二区久久| 男女国产视频网站| 亚洲欧美一区二区三区国产| 精品一区二区三卡| 免费观看人在逋| 国产激情久久老熟女| 日韩中文字幕欧美一区二区 | 国产成人一区二区在线| 国产精品久久久久久人妻精品电影 | 免费人妻精品一区二区三区视频| 青春草亚洲视频在线观看| a 毛片基地| 美女中出高潮动态图| 欧美黄色片欧美黄色片| 午夜福利在线免费观看网站| 国产精品久久久久久人妻精品电影 | 97在线人人人人妻| 大香蕉久久网| 操美女的视频在线观看| 久久精品久久久久久久性| 伦理电影免费视频| 最近手机中文字幕大全| 亚洲国产精品国产精品| 在线观看人妻少妇| 岛国毛片在线播放| 久久天躁狠狠躁夜夜2o2o | 精品一区二区三区四区五区乱码 | 欧美乱码精品一区二区三区| 伊人久久大香线蕉亚洲五| 精品一区二区三卡| 啦啦啦 在线观看视频| 交换朋友夫妻互换小说| 日韩一卡2卡3卡4卡2021年| av在线播放精品| 啦啦啦啦在线视频资源| 精品一品国产午夜福利视频| 久久婷婷青草| 国产成人精品福利久久| 最新的欧美精品一区二区| 精品一区在线观看国产| 日韩一区二区三区影片| 人妻一区二区av| 亚洲欧洲国产日韩| 青青草视频在线视频观看| 丝袜脚勾引网站| 伊人久久大香线蕉亚洲五| 天天躁狠狠躁夜夜躁狠狠躁| 免费在线观看完整版高清| 色精品久久人妻99蜜桃| 久久久久国产一级毛片高清牌| 99久久99久久久精品蜜桃| 青春草视频在线免费观看| 视频区图区小说| 天堂俺去俺来也www色官网| 色94色欧美一区二区| 国产熟女午夜一区二区三区| 亚洲精品久久午夜乱码| 亚洲欧美中文字幕日韩二区| 欧美精品高潮呻吟av久久| 亚洲七黄色美女视频| 日本猛色少妇xxxxx猛交久久| 国产在视频线精品| 女人高潮潮喷娇喘18禁视频| 成年美女黄网站色视频大全免费| 久久久国产一区二区| 亚洲伊人色综图| 国产一区二区三区av在线| 欧美国产精品va在线观看不卡| 久久狼人影院| 精品国产乱码久久久久久男人| 日韩精品有码人妻一区| 黑人猛操日本美女一级片| 9热在线视频观看99| 欧美av亚洲av综合av国产av | 亚洲成国产人片在线观看| 一级毛片我不卡| 日韩一区二区视频免费看| 伊人亚洲综合成人网| 青春草亚洲视频在线观看| 美女视频免费永久观看网站| 18禁国产床啪视频网站| 日韩av不卡免费在线播放| 午夜久久久在线观看| 最近的中文字幕免费完整| 赤兔流量卡办理| 免费人妻精品一区二区三区视频| 日本猛色少妇xxxxx猛交久久| 美女国产高潮福利片在线看| 丝袜在线中文字幕| 九草在线视频观看| 亚洲天堂av无毛| 亚洲婷婷狠狠爱综合网| 无遮挡黄片免费观看| 久久久亚洲精品成人影院| 搡老乐熟女国产| 婷婷色av中文字幕| 亚洲国产精品999| 1024视频免费在线观看| www.熟女人妻精品国产| 欧美 亚洲 国产 日韩一| 日韩中文字幕欧美一区二区 | 美女国产高潮福利片在线看| 国产色婷婷99| 亚洲一码二码三码区别大吗| 国产成人欧美在线观看 | 午夜福利免费观看在线| 又大又黄又爽视频免费| 精品少妇内射三级| 丰满饥渴人妻一区二区三| 久久av网站| 亚洲色图 男人天堂 中文字幕| 咕卡用的链子| 秋霞伦理黄片| 欧美精品一区二区免费开放| 午夜福利视频精品| 九九爱精品视频在线观看| 久久久国产精品麻豆| 日韩一卡2卡3卡4卡2021年| 女人爽到高潮嗷嗷叫在线视频| 一个人免费看片子| 午夜福利网站1000一区二区三区| 大片电影免费在线观看免费| 少妇人妻精品综合一区二区| 欧美日韩综合久久久久久| 欧美日韩视频高清一区二区三区二| 精品亚洲成国产av| 亚洲av日韩在线播放| 成人漫画全彩无遮挡| 精品少妇一区二区三区视频日本电影 | 亚洲五月色婷婷综合| 国产日韩欧美在线精品| 欧美日韩综合久久久久久| 2018国产大陆天天弄谢| 国产无遮挡羞羞视频在线观看| 久久久亚洲精品成人影院| 老司机在亚洲福利影院| 久久免费观看电影| 美女国产高潮福利片在线看| 在线精品无人区一区二区三| 日韩大片免费观看网站| 国产精品国产三级国产专区5o| 亚洲成av片中文字幕在线观看| 久久久久精品久久久久真实原创| av国产久精品久网站免费入址| 丰满迷人的少妇在线观看| 久久人人97超碰香蕉20202| 亚洲国产精品一区二区三区在线| 中文字幕最新亚洲高清| 亚洲av在线观看美女高潮| 免费观看av网站的网址| 欧美久久黑人一区二区| 免费黄网站久久成人精品| 在线看a的网站| 欧美日韩亚洲国产一区二区在线观看 | 大片免费播放器 马上看| 午夜福利一区二区在线看| 精品一区二区三区四区五区乱码 | 两个人看的免费小视频| 国产精品久久久久久久久免| 国产精品一区二区在线观看99| 国产成人91sexporn| 亚洲自偷自拍图片 自拍| 欧美变态另类bdsm刘玥| 两性夫妻黄色片| 一本久久精品| 亚洲视频免费观看视频| 欧美人与性动交α欧美精品济南到| 久久精品久久精品一区二区三区| 久久人人97超碰香蕉20202| 伦理电影大哥的女人| 男女高潮啪啪啪动态图| 男人舔女人的私密视频| 男女之事视频高清在线观看 | 欧美激情极品国产一区二区三区| 免费在线观看黄色视频的| 国语对白做爰xxxⅹ性视频网站| 精品一区二区三卡| 午夜av观看不卡| 国产精品久久久久久精品古装| 哪个播放器可以免费观看大片| 晚上一个人看的免费电影| 亚洲色图 男人天堂 中文字幕| 老司机深夜福利视频在线观看 | 免费不卡黄色视频| 老司机影院成人| 1024香蕉在线观看| 又大又黄又爽视频免费| 国产精品免费视频内射| 久久久国产精品麻豆| av一本久久久久| 亚洲欧美色中文字幕在线| 最黄视频免费看| 精品少妇内射三级| 在线观看人妻少妇| 永久免费av网站大全| 青青草视频在线视频观看| 国产乱人偷精品视频| 日韩av不卡免费在线播放| 好男人视频免费观看在线| 精品视频人人做人人爽| 看非洲黑人一级黄片| 亚洲五月色婷婷综合| 久久人妻熟女aⅴ| 日本爱情动作片www.在线观看| 国产乱人偷精品视频| 国产成人精品无人区| 亚洲精品av麻豆狂野| 免费黄频网站在线观看国产| 天天躁夜夜躁狠狠久久av| 大片免费播放器 马上看| 宅男免费午夜| av福利片在线| 欧美 亚洲 国产 日韩一| 国产成人午夜福利电影在线观看| 亚洲欧美成人综合另类久久久| 悠悠久久av| 久久久久精品久久久久真实原创| 国产亚洲精品第一综合不卡| 狂野欧美激情性xxxx| 一级爰片在线观看| 国产精品秋霞免费鲁丝片| 日韩 亚洲 欧美在线| 国产精品二区激情视频| 亚洲综合色网址| 女的被弄到高潮叫床怎么办| 国产福利在线免费观看视频| 日本av手机在线免费观看| av片东京热男人的天堂| 女人精品久久久久毛片| 三上悠亚av全集在线观看| 国产精品国产三级专区第一集| 男人爽女人下面视频在线观看| 免费高清在线观看日韩| 成人影院久久| 91成人精品电影| 日本午夜av视频| 老司机影院成人| 国产有黄有色有爽视频| 久久韩国三级中文字幕| 国产在线视频一区二区| 久久ye,这里只有精品| av视频免费观看在线观看| 亚洲精品国产一区二区精华液| 久久国产精品男人的天堂亚洲| 日韩制服骚丝袜av| 最近的中文字幕免费完整| 人体艺术视频欧美日本| 亚洲欧洲日产国产| 伊人久久大香线蕉亚洲五| 日韩人妻精品一区2区三区| 精品国产国语对白av| 中文字幕人妻丝袜一区二区 | 丰满饥渴人妻一区二区三| 国产黄频视频在线观看| 久久人人爽人人片av| 亚洲精品视频女| 欧美日韩av久久| 欧美精品一区二区大全| 热99国产精品久久久久久7| 永久免费av网站大全| 久久精品久久久久久久性| 久久久精品国产亚洲av高清涩受| 国产精品香港三级国产av潘金莲 | 黄色 视频免费看| 日日撸夜夜添| 1024香蕉在线观看| 午夜日韩欧美国产| a级毛片在线看网站| 女人被躁到高潮嗷嗷叫费观| 成人国语在线视频| 1024香蕉在线观看| 91老司机精品| 日韩,欧美,国产一区二区三区| 久久99热这里只频精品6学生| 亚洲成av片中文字幕在线观看| 国产日韩一区二区三区精品不卡| 国产精品久久久人人做人人爽| 欧美少妇被猛烈插入视频| 亚洲视频免费观看视频| 丰满乱子伦码专区| 日韩欧美一区视频在线观看| 亚洲欧洲日产国产| 久久毛片免费看一区二区三区| 多毛熟女@视频| 国产精品麻豆人妻色哟哟久久| 一级毛片电影观看| 人成视频在线观看免费观看| 水蜜桃什么品种好| 日韩精品有码人妻一区| 一区福利在线观看| 久久97久久精品| 亚洲国产精品一区二区三区在线| 亚洲精品国产区一区二| 亚洲一级一片aⅴ在线观看| 精品人妻在线不人妻| 啦啦啦视频在线资源免费观看| 亚洲七黄色美女视频| 久久久久久免费高清国产稀缺| 一级毛片 在线播放| 亚洲精华国产精华液的使用体验| 99久久99久久久精品蜜桃| 久久久亚洲精品成人影院| 999久久久国产精品视频| 2018国产大陆天天弄谢| 岛国毛片在线播放| 下体分泌物呈黄色| 少妇被粗大猛烈的视频| 日韩精品免费视频一区二区三区| 国产99久久九九免费精品| 男女免费视频国产| 女人被躁到高潮嗷嗷叫费观| 欧美日韩亚洲国产一区二区在线观看 | 午夜影院在线不卡| 校园人妻丝袜中文字幕| 满18在线观看网站| 中文字幕亚洲精品专区| 最新在线观看一区二区三区 | 色网站视频免费| 国产亚洲av高清不卡| 精品一区二区免费观看| 久久毛片免费看一区二区三区| 午夜日韩欧美国产| 汤姆久久久久久久影院中文字幕| 国产野战对白在线观看| 久久热在线av| 免费女性裸体啪啪无遮挡网站| 国产无遮挡羞羞视频在线观看| 各种免费的搞黄视频| 91精品三级在线观看| 老司机亚洲免费影院| 美女主播在线视频| 美女中出高潮动态图| 亚洲精品av麻豆狂野| 老鸭窝网址在线观看| 男人舔女人的私密视频| 男女高潮啪啪啪动态图| 最近中文字幕2019免费版| 黄网站色视频无遮挡免费观看| 成人国语在线视频| 亚洲精品美女久久久久99蜜臀 | 久久精品aⅴ一区二区三区四区| 一二三四中文在线观看免费高清| 色精品久久人妻99蜜桃| 日日啪夜夜爽| 精品一区二区三区av网在线观看 | 国产成人免费无遮挡视频| 国产精品 国内视频| 日韩制服丝袜自拍偷拍| 国产精品一区二区在线不卡| 你懂的网址亚洲精品在线观看| 国产精品久久久久久精品古装| 色综合欧美亚洲国产小说| av有码第一页| 亚洲自偷自拍图片 自拍| 久久天躁狠狠躁夜夜2o2o | 天天躁狠狠躁夜夜躁狠狠躁| 欧美国产精品一级二级三级| 久久精品国产亚洲av涩爱| 精品卡一卡二卡四卡免费| 成年美女黄网站色视频大全免费| 最近的中文字幕免费完整| 国产成人免费观看mmmm| 欧美黑人欧美精品刺激| 中文乱码字字幕精品一区二区三区| bbb黄色大片| 亚洲欧美成人精品一区二区| 欧美 亚洲 国产 日韩一| 99香蕉大伊视频| 赤兔流量卡办理| 亚洲精品国产av成人精品| 69精品国产乱码久久久| av视频免费观看在线观看| 午夜福利影视在线免费观看| 一区在线观看完整版| 国产av一区二区精品久久| 日韩免费高清中文字幕av| 一区在线观看完整版| 精品人妻在线不人妻| 天天躁日日躁夜夜躁夜夜| 国产 一区精品| 日韩精品免费视频一区二区三区| 精品国产国语对白av| 制服诱惑二区| 80岁老熟妇乱子伦牲交| 国语对白做爰xxxⅹ性视频网站| av免费观看日本| 午夜福利一区二区在线看| 无限看片的www在线观看| 婷婷色综合大香蕉| 国产又色又爽无遮挡免| 久久精品亚洲熟妇少妇任你| 日韩不卡一区二区三区视频在线| 亚洲,欧美精品.| 国产精品久久久久久精品电影小说| 国产成人91sexporn| 捣出白浆h1v1| 一二三四在线观看免费中文在| 一本色道久久久久久精品综合|