• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experimental investigation on drag reduction in turbulent boundary layer over superhydrophobic surface by TRPIV

    2015-11-21 07:27:33HipingTinJingxinZhngErdnWngZhohuiYoNnJing

    Hiping Tin,Jingxin Zhng,Erdn Wng,Zhohui Yo,Nn Jing,c,?

    aDepartment of Mechanics,Tianjin University,Tianjin,30072,China

    bDepartment of Engineering Mechanics,School of Aerospace,Tsinghua University,Beijing 100190,China

    cTianjin Key Laboratory of Modern Engineering Mechanics,Tianjin 30072,China

    Experimental investigation on drag reduction in turbulent boundary layer over superhydrophobic surface by TRPIV

    Haiping Tiana,Jingxian Zhangb,Erdan Wanga,Zhaohui Yaob,Nan Jianga,c,?

    aDepartment of Mechanics,Tianjin University,Tianjin,30072,China

    bDepartment of Engineering Mechanics,School of Aerospace,Tsinghua University,Beijing 100190,China

    cTianjin Key Laboratory of Modern Engineering Mechanics,Tianjin 30072,China

    A R T I C L E I N F O

    Article history:

    Received 30 September 2014

    Received in revised form

    12 November 2014

    Accepted 23 December 2014

    Available online 17 February 2015

    Superhydrophobic surface

    Drag reduction

    TBL

    TRPIV

    Spatial topology

    This study aims at the mechanism of drag reduction in turbulent boundary layer(TBL)with superhydrophobic surface.Comparing the time-resolved particle image velocimetry(TRPIV)measurementresults with thatofhydrophilic surface,the drag reduction rate overa superhydrophobic surface isapproximately 10%.To investigate the characteristics of coherent structure in a drag-reduced TBL with superhydrophobic surface,a modified multi-scale spatial locally-averaged structure function is proposed for detecting coherent structure.The conditional sampling and spatial phase-lock average methods are employed to obtain the topology of physical quantities like the velocity fluctuation,spanwise vorticity,and Reynolds stress during eject and sweep process.The results indicate that the suppression of coherent structure burst in the near-wall region is the key mechanism in reducing the skin friction drag for TBL over superhydrophobic surface.

    ?2015 The Authors.Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY license(http://creativecommons.org/ licenses/by/4.0/).

    The superhydrophobic surface generally refers to special surfaces with hydrophobic chemicals and micro/nanoscale surface roughness,on which the static contact angle of a droplet is usually above 150°and the contact angle hysteresis is less than 10°[1]. Excellent water repellence property and wizardly self-cleaning ability are its main features.Thanks to the rapid development of material science and micro-nano technology,the artificially fabricated superhydrophobic surface has been widely applied to engineering practice.For example,it is used in solar panel surface as antifouling,it is applied to reduce skin friction for saving pumping powerin pipeline,itcan also be applied in underwatervehicle such as torpedoes for speeding up.

    The hydrophobic material prevents the water from stepping into the region between the peaks of the roughness,resulting in a shear-free air-water interface.The surprising performance of the superhydrophobic surface has attracted much attention ofscholars and various drag reduction researches were conducted.In laminar flow,most studies were in microtube or micro-channel.Watanabe and Akino[2]got a drag reduction of 14%by measuring the pressure drop.Gruncelletal.[3]performed directnumericalsimulation(DNS)and found that the special surfaces could cause the delay of boundary transition and thus getting a drag reduction efficiency of 50%.Although the results in laminar flows are pretty consistent,there exists discrepancy in turbulent flow.Some studies exhibited drag reduction in TBL,but some indicated no such effect.Min and Kim[4]analyzed several wall boundary conditions by DNS and found the effectofsuperhydrophobic surfaces for turbulentboundary layer(TBL)was actually a combination of two anisotropic mutual influences by the geometry of the surface roughness,that the streamwise slip is conducive to drag reduction but the spanwise slip could cause the anti-drag reduction.

    The mechanism of drag reduction in turbulent flow over superhydrophobic surfaces still remains an open problem with its great potentialapplications.At present,few experimentalresearch in centimetre-scale were reported.In this paper,a time-resolved particle image velocimetry(TRPIV)system was employed to investigate the mechanism and the influence caused by a large-scale superhydrophobic test surfaces.The emphases are focused on the changed characteristic of coherent structure in drag-reduced TBL by the presence of superhydrophobic surface.

    Experimental setup and apparatus The contrast experiments between hydrophilic plate and superhydrophobic plate have been conducted in an open circulating water channel in Tianjin University,while the two replaceable plates are equal in size of 200 mm ×200 mm×15 mm.The testsection ofchannelis 5.4 mlong,0.3 m high,and 0.25 m wide.The flat plate with superhydrophobic surface,which has micro-nano dual-scale structures[5],was fabricated by Tsinghua University.Based on the result of contact angle measuring device(JC2000CD1),static contact angle was 161°and contact angle hysteresis was 0.9°.

    Figure 1 shows the schematic of experimental setup.The TBL was generated by a trip wire which was attached to the leadingedge of the plate.The free-coming stream velocity was 0.17 m/s.A CMOS camera(1280 pixels×1024 pixels)recorded 6001 images for hydrophilic plate and another 6001 images for superhydrophobic plate with the sampling frequency was 500 Hz.The size of flow image is 56.6 mm×45.1 mm(streamwise length×normalheight). The interrogate window for correlation is 32 pixels×32 pixels,and the overlap rate is 75%.157×125 velocity vectors with the spacing of 0.3585 mm are reconstructed for each image.Although the velocity information ofnear wallpoints has a kind ofinaccuracy for wall surface effect by the PIV technique.After subtracting wallnormal distance of wall position,the closest point is obtained,which is 0.3181 mm above the wall and corresponds to y+≈3.

    Fig.1.The schematic of experimental setup.

    Table 1Flow parameters of the TBL over superhydrophobic and hydrophilic surfaces.

    The flow image processing method The idea of multi-scales and local averaged velocity structure function proposed by Liu and Jiang[6]was gradually adopted for detecting coherent structure in TBL.Tian et al.[7]extended this concept into the research of spatial topological mode of coherent structure with three velocity component.Based on the spatial local-averaged velocity structure function,a new detection criterion was introduced to educe the spatial topological mode of coherent structures in TBL.The spatial local-averaged structure function for streamwise velocity component in streamwise direction is defined as

    Fig.2.Mean velocity profile in TBL over superhydrophobic and hydrophilic surfaces.

    δux(x0,l)is the local-averaged streamwise velocity of an eddy in scale 2l with center located at x0in streamwise direction.Thus the local-averaged streamwise velocity strain reveals the tensile and compressive deformation of eddy structure located at x0within scale 2l.Aconditionaleduction and segmentation algorithm was developed.The conditional sampling criterion based on thestreamwise-streamwise spatial local-averaged velocity structure function can be defined as

    Fig.3.Contours offluctuating velocity during ejection.(a)Streamwise for hydrophilic surface.(b)Streamwise for superhydrophobic surface.(c)Normal-wallfor hydrophilic surface.(d)Normal-wall for superhydrophobic surface.(For interpretation of the references to colour in this figure legend,the reader is referred to the web version of this article.)

    where D(b,l)is the detection function with l the spatial scale in streamwise direction and b is the spatial location in streamwise direction.

    It detectsδux(x0,l)along streamwise direction at each wallnormal layer for which satisfies the detection condition.Then a square area with 32×32(x×y)grid sizes,which corresponding to 11.5 mm×11.5 mm≈108 WU(wall units)×108 WU in two cases,centered at the detected point with a physical quantity was cut out from the instantaneous flow field.

    Spatial topology modes of physical quantities of coherent structure,such as fluctuating velocity,velocity gradient,velocity strain rate and vorticity,are obtained by 2D spatial phase-locked average method across these sampled squares.

    〈〉represents the samples ensemble average,and f(x,l)is the wondering physical quantities which respectively stands for fluctuating velocity,velocity strain rate or fluctuating vorticity.N is the number of ejection events and M is the number of sweep events.

    Results and discussion

    The statistic parameters of the TBL over superhydrophobic and hydrophilic surface plates are listed in Table 1.It should be noted that the running status of water channel in the experiment was stable.Through the comparison,the free-stream velocity Ueover superhydrophobic surface is a little higher than that of thehydrophilic one for the same power.This shows that the existence of superhydrophobic surface reduces the skin friction drag in turbulent boundary layer flow and increases mainstream velocity. τwstands for wall shear stress and cfis the skin friction coefficient. Finally,the drag reduction rateηis approximately 10.1%.

    The local averaged velocity structure function was employed to decompose the velocity vector into multi-scales.After conditional sampling detection by Eq.(2)and spatial phase-lock averaging by Eq.(3),the spatial topological coherent structure of physicalquantities including the fluctuation velocity,vorticity,and Reynolds shear stress during the ejection and sweep process are obtained with the spatial scale corresponds to 5.74 mm in streamwise and normal-wall direction.Contours of streamwise fluctuating velocity,normal-wall fluctuating velocity,spanwise vorticity,and Reynolds shear stress during eject events in both cases are shown in Figs.3-5,respectively.

    Fig.4.Contours of spanwise vorticity during ejection.(a)Hydrophilic surface.(b)Superhydrophobic surface.

    Fig.5.Contours of Reynolds shear stress during ejection.(a)Hydrophilic surface.(b)Superhydrophobic surface.

    Compared with the blue regions for the low-speed fluids of both cases in Fig.3,the superhydrophobic surface reduces the magnitude of the streamwise fluctuation velocity u′<0 and the normal-wall fluctuation velocity v′>0 during the low-speed fluids eject.The angle of fluctuating velocity vectors down from the x axis over hydrophilic surface is larger than the situation of superhydrophobic surface.It indicates that the superhydrophobic surface weakened the strength of eject events.In Fig.4,the strength of spanwise vorticityω3is also decreased by the superhydrophobic surface.Moreover,the contour map of Reynolds shear stress,which is thought to be a vital source of the turbulence production,was also shown in Fig.5.Apparently,the strength of Reynolds shear stress over superhydrophobic surface is about one order smaller than that of the hydrophilic case.These results indicate that the existence of superhydrophobic surface greatly depresses the burst events of coherent structures.

    In summary,current research implies that the superhydrophobic surface can achieve drag reduction for macroscopic-scale TBL. Despite the process ofgetting the streamwise velocity profiles normalized by the wall friction velocity has the applicability of uncertainty in superhydrophobic case,the superhydrophobic surface produces a result that the log-law layer is lifted up and buffer layer is thicken which was accompanied by a little increase of mainstream velocity.The most important features of turbulent coherent structure associated with the burst events were well captured by conditional sampling and spatial phase-lock average methods. The conditionally averaged fluctuating velocity,spanwise vorticity,and Reynolds shear stress for coherent structure burst are decreased by the superhydrophobic surface,indicating that the suppression of coherent structure burst in the near-wall region is the key mechanism in reducing the skin friction drag for TBL over superhydrophobic surface.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China(11272233,11272176,11411130150, and 11332006(key project)),National Basic Research Program(973Program)(2012CB720101 and 2012CB720103).

    [1]B.Bhushan,Y.C.Jung,Wetting,adhesion and friction of superhydrophobic and hydrophilic leaves and fabricated micro/nanopatterned surfaces,J. Phys.Condens.Matter 20(2008)225010,http://dx.doi.org/10.1088/0953-8984/20/22/225010.

    [2]K.Watanabe,T.Akino,Drag reduction in laminar flow between two vertical coaxial cylinders,J.Fluids Eng.121(1999)541-547.http://dx.doi.org/10.1115/ 1.2823502.

    [3]R.K.Gruncell,D.Sandham,G.Mchale,Simulation of laminar flow past a superhydrophobic sphere with drag reduction and separation delay,Phys. Fluids 25(2013)043601,http://dx.doi.org/10.1063/1.4801450.

    [4]T.Min,J.Kim,Effects of hydrophobic surface on skin-friction drag,Phys.Fluids 16(2004)55-58,http://dx.doi.org/10.1063/1.1755723.

    [5]S.Lu,Z.H.Yao,P.F.Hao,C.S.Fu,Drag reduction in turbulent flows over superhydrophobic surfaces with micro-nano textures,Mech.Eng.35(2013)20-24,http://dx.doi.org/10.6052/1000-0879-13-098.(in Chinese).

    [6]W.Liu,N.Jiang,There kinds of velocity structure function in turbulent flows,Chin.Phys.Lett.21(2004)1989-1992,http://iopscience.iop.org/0256-307X/21/10/035.(in Chinese).

    [7]H.P.Tian,S.Q.Yang,L.Cheng,Y.Wang,N.Jiang,Antisymmetric quadrupole mode of coherent structures in wall-bounded turbulence,Theoret.Appl.Mech. Lett.3(2013)052002,http://dx.doi.org/10.1063/2.1305202.

    [8]X.Fan,N.Jiang,Skin friction measurement in turbulent boundary layer by mean velocity profile method,Mech.Eng.27(2005)28-30,http://dx.doi.org/10.6052/1000-0992-2004-213.(in Chinese).

    [9]K.Fukagate,N.Kasagi,A theoretical prediction of friction drag reduction in turbulent flow by superhydrophobic surfaces,Phys.Fluids 18(2006)051703,http://dx.doi.org/10.1063/1.2205307.

    ?Corresponding author at:Department of Mechanics,Tianjin University,Tianjin 30072,China.

    E-mail address:nanj@tju.edu.cn(N.Jiang).

    *This article belongs to the Fluid Mechanics

    国产亚洲精品第一综合不卡 | av有码第一页| 亚洲国产欧美在线一区| 九九爱精品视频在线观看| 日韩一本色道免费dvd| 18禁在线无遮挡免费观看视频| 又粗又硬又长又爽又黄的视频| 大香蕉久久成人网| 国产成人一区二区在线| 曰老女人黄片| 亚洲国产欧美在线一区| 高清黄色对白视频在线免费看| 夜夜骑夜夜射夜夜干| 国产精品一区二区在线观看99| 人人妻人人添人人爽欧美一区卜| 久久久久久久亚洲中文字幕| 一区二区av电影网| 18禁动态无遮挡网站| 国产精品成人在线| 亚洲欧美日韩另类电影网站| 精品熟女少妇av免费看| 99久久精品国产国产毛片| 久久久久久久久久人人人人人人| 高清不卡的av网站| 欧美激情国产日韩精品一区| 国产视频首页在线观看| 久久婷婷青草| 久久人人爽人人爽人人片va| 乱人伦中国视频| 色5月婷婷丁香| 制服诱惑二区| 亚洲精品456在线播放app| 免费人妻精品一区二区三区视频| 狂野欧美激情性bbbbbb| 久久99蜜桃精品久久| 蜜桃国产av成人99| 男女啪啪激烈高潮av片| 国产精品一区www在线观看| 在线看a的网站| 热99国产精品久久久久久7| 国产有黄有色有爽视频| 日韩欧美精品免费久久| 亚洲精品国产av成人精品| 夫妻午夜视频| 少妇被粗大的猛进出69影院 | 久久精品久久久久久噜噜老黄| 妹子高潮喷水视频| 香蕉国产在线看| 亚洲av综合色区一区| 亚洲美女黄色视频免费看| 天堂俺去俺来也www色官网| 久久99精品国语久久久| 欧美3d第一页| 一区在线观看完整版| 亚洲精品456在线播放app| 一区在线观看完整版| 亚洲国产成人一精品久久久| 日韩精品有码人妻一区| 日韩制服丝袜自拍偷拍| 亚洲国产av影院在线观看| 国产在线一区二区三区精| 亚洲国产精品专区欧美| 极品少妇高潮喷水抽搐| 国产精品国产三级国产av玫瑰| 欧美精品高潮呻吟av久久| xxx大片免费视频| 日韩精品免费视频一区二区三区 | 黑人猛操日本美女一级片| 午夜免费观看性视频| www.色视频.com| 下体分泌物呈黄色| 久久鲁丝午夜福利片| 大片免费播放器 马上看| 久久久久久久久久人人人人人人| 婷婷色综合www| 美女大奶头黄色视频| 丝袜脚勾引网站| 视频在线观看一区二区三区| 建设人人有责人人尽责人人享有的| 91aial.com中文字幕在线观看| 亚洲精品456在线播放app| 日本vs欧美在线观看视频| 日本91视频免费播放| 2018国产大陆天天弄谢| kizo精华| 三级国产精品片| 中文字幕精品免费在线观看视频 | 成年动漫av网址| 两个人看的免费小视频| 久久久国产精品麻豆| 久久久久网色| 免费观看a级毛片全部| 妹子高潮喷水视频| 亚洲av男天堂| 国产又色又爽无遮挡免| 免费女性裸体啪啪无遮挡网站| 王馨瑶露胸无遮挡在线观看| 青春草亚洲视频在线观看| 国产亚洲最大av| 少妇人妻久久综合中文| 一级片免费观看大全| 久久久久国产网址| 高清在线视频一区二区三区| 国产 精品1| 久久精品久久久久久噜噜老黄| 欧美精品高潮呻吟av久久| 校园人妻丝袜中文字幕| 老司机影院毛片| 免费黄色在线免费观看| 草草在线视频免费看| 日韩欧美一区视频在线观看| 亚洲欧洲精品一区二区精品久久久 | 日本-黄色视频高清免费观看| 久久精品夜色国产| 国产麻豆69| 考比视频在线观看| 亚洲,一卡二卡三卡| 国产免费一级a男人的天堂| 美女视频免费永久观看网站| 大码成人一级视频| 亚洲在久久综合| www日本在线高清视频| 国产精品成人在线| 国产乱人偷精品视频| 狂野欧美激情性xxxx在线观看| 夫妻性生交免费视频一级片| 国产黄色视频一区二区在线观看| 亚洲欧美成人综合另类久久久| 午夜福利乱码中文字幕| 黑人欧美特级aaaaaa片| 免费观看在线日韩| 欧美 日韩 精品 国产| 亚洲内射少妇av| 90打野战视频偷拍视频| 亚洲精品第二区| 日韩大片免费观看网站| 亚洲久久久国产精品| 亚洲av免费高清在线观看| 国产 一区精品| 国产xxxxx性猛交| 国产成人a∨麻豆精品| 汤姆久久久久久久影院中文字幕| 亚洲精品456在线播放app| 亚洲国产欧美在线一区| 性高湖久久久久久久久免费观看| 久久精品夜色国产| 黑人高潮一二区| 亚洲精品美女久久久久99蜜臀 | 18+在线观看网站| 亚洲综合精品二区| 久久精品国产自在天天线| 国产xxxxx性猛交| 国产精品欧美亚洲77777| 在线天堂最新版资源| 十八禁网站网址无遮挡| www日本在线高清视频| 天堂中文最新版在线下载| 纯流量卡能插随身wifi吗| 精品国产一区二区久久| av视频免费观看在线观看| 精品少妇内射三级| 欧美精品一区二区免费开放| 国产xxxxx性猛交| 少妇猛男粗大的猛烈进出视频| 中文字幕另类日韩欧美亚洲嫩草| 国产精品99久久99久久久不卡 | 国产精品偷伦视频观看了| 精品亚洲乱码少妇综合久久| 人人妻人人添人人爽欧美一区卜| 纵有疾风起免费观看全集完整版| 精品99又大又爽又粗少妇毛片| 97在线视频观看| 免费高清在线观看日韩| 亚洲精品中文字幕在线视频| 国产国拍精品亚洲av在线观看| videosex国产| 国产免费一级a男人的天堂| 欧美xxⅹ黑人| 久久国产精品大桥未久av| 亚洲久久久国产精品| 久久久精品免费免费高清| 午夜视频国产福利| 亚洲欧美中文字幕日韩二区| 五月玫瑰六月丁香| 日本-黄色视频高清免费观看| 久久久国产欧美日韩av| 18禁在线无遮挡免费观看视频| 欧美日韩精品成人综合77777| 国产不卡av网站在线观看| a级毛片黄视频| 国产精品免费大片| 亚洲一码二码三码区别大吗| 高清黄色对白视频在线免费看| 免费播放大片免费观看视频在线观看| 欧美日韩视频精品一区| 国产成人精品久久久久久| 亚洲av电影在线进入| 大香蕉久久网| 久久久久久久久久成人| 蜜桃国产av成人99| 一区二区三区四区激情视频| 男人操女人黄网站| 国产在线视频一区二区| 天堂俺去俺来也www色官网| 国产日韩一区二区三区精品不卡| 伊人亚洲综合成人网| 黑人巨大精品欧美一区二区蜜桃 | 国产亚洲一区二区精品| 狂野欧美激情性xxxx在线观看| 日韩一本色道免费dvd| 精品人妻在线不人妻| 国产片特级美女逼逼视频| 日韩中字成人| 免费黄频网站在线观看国产| 七月丁香在线播放| 99精国产麻豆久久婷婷| 精品人妻在线不人妻| 欧美成人精品欧美一级黄| 性色avwww在线观看| 国产视频首页在线观看| 又大又黄又爽视频免费| 午夜福利网站1000一区二区三区| 国产色爽女视频免费观看| 一本久久精品| 亚洲成国产人片在线观看| 天堂中文最新版在线下载| 丝袜喷水一区| 在线 av 中文字幕| 亚洲国产av影院在线观看| 尾随美女入室| 久久99热6这里只有精品| 久久人人爽av亚洲精品天堂| 中文欧美无线码| 不卡视频在线观看欧美| 黄色 视频免费看| 中文字幕av电影在线播放| 又大又黄又爽视频免费| 色网站视频免费| 一个人免费看片子| 亚洲精品国产av成人精品| 亚洲成国产人片在线观看| 交换朋友夫妻互换小说| 久久99精品国语久久久| 精品久久蜜臀av无| 欧美日韩国产mv在线观看视频| 精品亚洲成国产av| 亚洲av免费高清在线观看| 亚洲欧洲日产国产| av在线观看视频网站免费| 成年人免费黄色播放视频| 午夜精品国产一区二区电影| av国产久精品久网站免费入址| 中国三级夫妇交换| 香蕉丝袜av| 国产色婷婷99| 国产精品一区www在线观看| 久久久精品94久久精品| 亚洲色图 男人天堂 中文字幕 | 精品视频人人做人人爽| 亚洲欧美日韩另类电影网站| 观看美女的网站| 日本vs欧美在线观看视频| 国产免费福利视频在线观看| 成人午夜精彩视频在线观看| 精品卡一卡二卡四卡免费| 亚洲综合色网址| 国产黄色免费在线视频| 尾随美女入室| 秋霞在线观看毛片| 国产av国产精品国产| 色吧在线观看| 亚洲一区二区三区欧美精品| 亚洲精品美女久久av网站| 精品亚洲成a人片在线观看| 少妇人妻精品综合一区二区| 美女xxoo啪啪120秒动态图| 亚洲一级一片aⅴ在线观看| 婷婷色综合大香蕉| 亚洲精品视频女| 国产免费一级a男人的天堂| 亚洲人成77777在线视频| 精品少妇黑人巨大在线播放| 另类亚洲欧美激情| 国产淫语在线视频| 精品亚洲成a人片在线观看| 国产欧美日韩一区二区三区在线| 国产精品国产三级国产专区5o| 男人爽女人下面视频在线观看| 久久精品国产综合久久久 | 丁香六月天网| 免费黄网站久久成人精品| 国产av一区二区精品久久| 91国产中文字幕| 少妇的逼好多水| 久久精品国产综合久久久 | 22中文网久久字幕| 草草在线视频免费看| 欧美日韩视频高清一区二区三区二| 成人漫画全彩无遮挡| 国产亚洲最大av| 欧美精品av麻豆av| 国产高清国产精品国产三级| av一本久久久久| 精品一区在线观看国产| 丰满乱子伦码专区| 国产亚洲午夜精品一区二区久久| 国产成人精品婷婷| 亚洲av福利一区| 国产国拍精品亚洲av在线观看| xxx大片免费视频| 在线观看三级黄色| 国产 精品1| 国产在线视频一区二区| 汤姆久久久久久久影院中文字幕| 大码成人一级视频| 精品卡一卡二卡四卡免费| 免费看av在线观看网站| 午夜视频国产福利| 午夜福利在线观看免费完整高清在| 成人国语在线视频| 久久久国产一区二区| 丰满乱子伦码专区| 9色porny在线观看| 青青草视频在线视频观看| 人人妻人人添人人爽欧美一区卜| 日本av手机在线免费观看| 亚洲欧美日韩卡通动漫| 在线观看免费高清a一片| 国产1区2区3区精品| 男男h啪啪无遮挡| 国精品久久久久久国模美| 国产免费视频播放在线视频| 大片免费播放器 马上看| 99九九在线精品视频| 咕卡用的链子| 大香蕉97超碰在线| a 毛片基地| a级毛色黄片| 亚洲精品456在线播放app| 三上悠亚av全集在线观看| 日本-黄色视频高清免费观看| 看十八女毛片水多多多| 黑丝袜美女国产一区| 国产免费又黄又爽又色| 国产69精品久久久久777片| 超碰97精品在线观看| 国产欧美日韩一区二区三区在线| 国产深夜福利视频在线观看| 乱码一卡2卡4卡精品| 男女无遮挡免费网站观看| 久久毛片免费看一区二区三区| 国产成人一区二区在线| 国产一区二区激情短视频 | 亚洲天堂av无毛| 视频区图区小说| 成人国产av品久久久| 国产精品麻豆人妻色哟哟久久| 巨乳人妻的诱惑在线观看| 亚洲人成网站在线观看播放| 深夜精品福利| 久久久久久久久久人人人人人人| 国产成人精品久久久久久| 亚洲精品乱码久久久久久按摩| 街头女战士在线观看网站| 亚洲美女视频黄频| 久久人人爽人人爽人人片va| av一本久久久久| 久久99热这里只频精品6学生| 久久午夜福利片| 五月天丁香电影| 在线观看www视频免费| 国产爽快片一区二区三区| 伊人久久国产一区二区| 秋霞伦理黄片| 久久精品国产亚洲av涩爱| 岛国毛片在线播放| 你懂的网址亚洲精品在线观看| 久久人妻熟女aⅴ| 国产精品偷伦视频观看了| 亚洲国产av影院在线观看| 一边摸一边做爽爽视频免费| 熟女电影av网| 国产高清国产精品国产三级| 亚洲美女搞黄在线观看| 成年动漫av网址| 欧美激情极品国产一区二区三区 | 丰满迷人的少妇在线观看| 久久精品国产综合久久久 | 一级片'在线观看视频| 18禁观看日本| 高清视频免费观看一区二区| 黑丝袜美女国产一区| 亚洲av中文av极速乱| 少妇人妻 视频| 色哟哟·www| 亚洲高清免费不卡视频| 最近2019中文字幕mv第一页| 中文字幕制服av| 激情视频va一区二区三区| 亚洲国产欧美日韩在线播放| 国产成人aa在线观看| 国产成人欧美| 亚洲三级黄色毛片| 九草在线视频观看| 永久免费av网站大全| 日韩伦理黄色片| 多毛熟女@视频| videossex国产| 一级黄片播放器| 丝袜喷水一区| 免费看光身美女| 一级片免费观看大全| 亚洲国产av影院在线观看| 狂野欧美激情性xxxx在线观看| 日韩欧美精品免费久久| 国产69精品久久久久777片| 在线观看一区二区三区激情| 亚洲在久久综合| 母亲3免费完整高清在线观看 | 午夜影院在线不卡| 久久久久国产网址| 视频在线观看一区二区三区| 中国三级夫妇交换| 免费观看无遮挡的男女| 久久人人爽人人片av| 天天影视国产精品| 国产免费现黄频在线看| 超色免费av| 又粗又硬又长又爽又黄的视频| av卡一久久| 如何舔出高潮| 免费看不卡的av| 亚洲第一区二区三区不卡| 欧美另类一区| 久久久久久久亚洲中文字幕| 蜜臀久久99精品久久宅男| 免费观看无遮挡的男女| 丝袜喷水一区| 日韩av在线免费看完整版不卡| 在线观看美女被高潮喷水网站| 久久精品国产a三级三级三级| 天天躁夜夜躁狠狠久久av| 中文精品一卡2卡3卡4更新| 久久青草综合色| 国产黄色视频一区二区在线观看| 一级爰片在线观看| 插逼视频在线观看| 亚洲国产av影院在线观看| 国产av国产精品国产| 成人二区视频| 国产伦理片在线播放av一区| 日韩一本色道免费dvd| 国产亚洲欧美精品永久| 国产在视频线精品| 国产乱人偷精品视频| 久久久久久久久久久免费av| 欧美日韩精品成人综合77777| 亚洲情色 制服丝袜| 97精品久久久久久久久久精品| 精品一区二区免费观看| 亚洲情色 制服丝袜| 日韩一区二区三区影片| 久久久精品免费免费高清| 国产女主播在线喷水免费视频网站| 一本色道久久久久久精品综合| 王馨瑶露胸无遮挡在线观看| 日韩制服丝袜自拍偷拍| 久久久久久久久久久免费av| 精品国产乱码久久久久久小说| 国产成人av激情在线播放| 韩国高清视频一区二区三区| 熟女av电影| 国产黄频视频在线观看| 久久ye,这里只有精品| 99热全是精品| 免费看不卡的av| 亚洲精品,欧美精品| 9色porny在线观看| 热re99久久精品国产66热6| 久久av网站| 男人操女人黄网站| 亚洲 欧美一区二区三区| 亚洲国产成人一精品久久久| 少妇高潮的动态图| 一区二区av电影网| 午夜老司机福利剧场| 一个人免费看片子| 日本黄大片高清| 亚洲综合色网址| 日韩 亚洲 欧美在线| 国产不卡av网站在线观看| 在线观看免费日韩欧美大片| 9色porny在线观看| 晚上一个人看的免费电影| 岛国毛片在线播放| 美女国产视频在线观看| 99久久精品国产国产毛片| 日本欧美视频一区| 久久久亚洲精品成人影院| 欧美精品av麻豆av| 亚洲精品456在线播放app| 成人免费观看视频高清| av片东京热男人的天堂| 高清欧美精品videossex| 成年女人在线观看亚洲视频| 这个男人来自地球电影免费观看 | 成人二区视频| 久久久国产精品麻豆| 一本色道久久久久久精品综合| a级毛片黄视频| 18禁国产床啪视频网站| 观看av在线不卡| 精品卡一卡二卡四卡免费| 国产成人精品一,二区| 日韩一本色道免费dvd| 天堂8中文在线网| 久久精品国产亚洲av天美| 美女脱内裤让男人舔精品视频| 在线观看三级黄色| 麻豆乱淫一区二区| 国产一区二区三区综合在线观看 | 亚洲精品成人av观看孕妇| 久久久久精品人妻al黑| 亚洲av男天堂| 久久久久国产精品人妻一区二区| 久久久久久久久久成人| 精品国产一区二区久久| 五月天丁香电影| 欧美人与善性xxx| 久久久久久伊人网av| 午夜激情av网站| 在线天堂中文资源库| 亚洲成国产人片在线观看| 亚洲五月色婷婷综合| 国产在线免费精品| 在线观看三级黄色| 国产无遮挡羞羞视频在线观看| 久久女婷五月综合色啪小说| 久久人人爽人人爽人人片va| 热re99久久精品国产66热6| 亚洲成人av在线免费| 男女国产视频网站| 三上悠亚av全集在线观看| 高清黄色对白视频在线免费看| 免费大片18禁| 国产精品麻豆人妻色哟哟久久| 汤姆久久久久久久影院中文字幕| 国产1区2区3区精品| 日韩精品免费视频一区二区三区 | 国产一区亚洲一区在线观看| 99热这里只有是精品在线观看| 国产男女超爽视频在线观看| 多毛熟女@视频| 高清毛片免费看| 日韩av在线免费看完整版不卡| 男男h啪啪无遮挡| 赤兔流量卡办理| 亚洲伊人久久精品综合| 一级黄片播放器| 熟女电影av网| 色视频在线一区二区三区| 日韩制服丝袜自拍偷拍| 亚洲av国产av综合av卡| 欧美日韩国产mv在线观看视频| 18+在线观看网站| 成人国产av品久久久| 最近最新中文字幕免费大全7| 少妇熟女欧美另类| 狠狠婷婷综合久久久久久88av| 国产精品女同一区二区软件| 国产精品久久久av美女十八| 黄片无遮挡物在线观看| 丰满少妇做爰视频| 亚洲国产精品999| 亚洲综合色网址| 黑人巨大精品欧美一区二区蜜桃 | videossex国产| 高清视频免费观看一区二区| 午夜激情久久久久久久| 九九爱精品视频在线观看| 2022亚洲国产成人精品| 久久国内精品自在自线图片| 在线天堂中文资源库| 精品一区在线观看国产| 一级爰片在线观看| 免费播放大片免费观看视频在线观看| 在线免费观看不下载黄p国产| 你懂的网址亚洲精品在线观看| 欧美日韩视频高清一区二区三区二| 青春草视频在线免费观看| 国产精品秋霞免费鲁丝片| 欧美3d第一页| 男女边摸边吃奶| 日本欧美国产在线视频| 90打野战视频偷拍视频| 天美传媒精品一区二区| 国产午夜精品一二区理论片| 日韩中文字幕视频在线看片| 成年av动漫网址| 亚洲天堂av无毛| 丰满饥渴人妻一区二区三| 欧美精品人与动牲交sv欧美| 又黄又粗又硬又大视频| 国产精品一区二区在线观看99| 黄片播放在线免费| 成人午夜精彩视频在线观看| 亚洲av福利一区| 国产淫语在线视频| 国产日韩一区二区三区精品不卡| 人人妻人人爽人人添夜夜欢视频| 午夜免费鲁丝| 女人久久www免费人成看片| 国产精品久久久久久av不卡| 国产av精品麻豆| 2021少妇久久久久久久久久久|