• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Thrust producing mechanisms in ray-inspired underwater vehicle propulsion

    2015-11-21 07:27:35GengLiuYanRenJianzhongZhuHilaryBartSmithHaiboDong

    Geng Liu,Yan Ren,Jianzhong Zhu,Hilary Bart-Smith,Haibo Dong

    Department of Mechanical and Aerospace Engineering,University of Virginia,Charlottesville,VA 22904,USA

    Thrust producing mechanisms in ray-inspired underwater vehicle propulsion

    Geng Liu,Yan Ren,Jianzhong Zhu,Hilary Bart-Smith,Haibo Dong?

    Department of Mechanical and Aerospace Engineering,University of Virginia,Charlottesville,VA 22904,USA

    A R T I C L E I N F O

    Article history:

    Received 24 November 2014

    Accepted 26 November 2014

    Available online 6 January 2015

    Hydrodynamics

    Bio-inspired autonomous underwater vehicle

    Computational fluid dynamics

    Vortex dynamics

    This paper describes a computational study of the hydrodynamics of a ray-inspired underwater vehicle conducted concurrently with experimental measurements.High-resolution stereo-videos of the vehicle's fin motions during steady swimming are obtained and used as a foundation for developing a high fidelity geometrical model of the oscillatory fin.A Cartesian grid based immersed boundary solver is used to examine the flow fields produced due to these complex artificial pectoral fin kinematics.Simulations are carried out at a smaller Reynolds number in order to examine the hydrodynamic performance and understand the resultant wake topology.Results show that the vehicle's fins experience large spanwise inflexion of the distal part as well as moderate chordwise pitching during the oscillatory motion.Most thrustforce is generated by the distalpartofthe fin,and it is highly correlated with the spanwise inflexion. Two sets ofinter-connected vortex rings are observed in the wake rightbehind each fin.Those vortex rings induce strong backward flow jets which are mainly responsible for the fin thrust generation.

    ?2015 The Authors.Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

    A bio-inspired autonomous underwater vehicle(AUV)has been designed as a scientific platform to understand the superior swimming characteristics of batoid fish.Batoid fish such as manta rays(Manta birostris)and cownose rays(Rhinoptera bonasus)are notable for their fast,efficient swimming and high maneuverability.These swimming capabilities arise from flapping of the dorsally flattened pectoral fins,which are also used as control surfaces for depth control and maneuvering.Recent observations in animal propulsion suggest that high efficiency in animal locomotion can be attributed to the stiffness characteristics at the fin tip[1].In rays'swimming,the large bending of the distal part of the pectoral fin can allow them to actively resist hydrodynamic bending forces while producing propulsion forces.To assess this contribution,the current effort is specifically focused on understanding the hydrodynamics of a ray-inspired underwater vehicle -the MantaBot-where biology is the basis for the design.

    The MantaBot consists of two parts:a rigid body rendered from a computer tomography scanning image of a cownose ray and a pair of soft fins driven by tensegrity-based actuators[2](Fig.1(a)). The soft fins of this vehicle are highly flexible,have complex planforms,and undergo an oscillatory motion.Specific to this vehicle's body length(L~43 cm)and free-swimming velocity(0.35 m·s-1),the Reynolds number(Re=UL/ν)is approximately 1.5×105. At this Reynolds number,the attached flow over the body is most likely laminar but transition to turbulence is expected to occur rapidly in the downstream of MantaBot fins.The flow over the fins can be characterized in terms of a Stokes frequency parameter(S=ωAc/ν)whereω,A and c are the fin angular frequency,amplitude and length of the mid-chord,respectively.Typical fin beat frequency of about 2 Hz and fin amplitude and size of about 5 cm and 6 cm,respectively,give S≈3.5×104,which is again in the range where transition from laminar attached flow to turbulence will occur quickly.

    Figure 1(a)shows the MantaBot body with kinematic markers(red dots)drawn on its fins,which are used for tracking and performing 3D surface reconstruction later in the process and a schematic of the experimental setup.To measure the fin kinematics of MantaBot in steady swimming,the vehicle is placed in a 5 m long,1.5 m wide,and 0.6 m deep water tank.Its locomotion is restricted to one degree of freedom(forward translation)using a steel bar,which is connected to a low-friction ball bearing slider on a linear rail.

    The MantaBot swimming motion is then recorded by three well calibrated and synchronized video cameras(rear,side,and top)that are operated at 60 Hz with 512×512 pixel resolutions.These cameras are aligned orthogonalto each other and positioned about 0.75 maway from the Mantabot,giving a depth offield of3-4 body lengths in all directions.The cameras are triggered by a flashing lightsystemto minimize the recording delay ofeach camera.When the MantaBotis in the optimumrange,this camera systemisable to collect data that is consistently in focus.Usable segments of videos from all sides are identified for kinematics reconstruction based on the quality of images.Among all three cameras,the camera set at the rear is for recording the fin flapping motion and spanwise bending.The videos from this camera are used to measure both the flapping angles and inflexion angles shown in Fig.1(c).The side camera,along with the top camera,is used to track the motions of all kinematic markers in Fig.1(a).They are used to accurately measure the chordwise flexibility including the mid-chord pitching angles in Fig.1(c).

    Once these videos are identified,a marker-based 3D surface reconstruction method[3]will then be used to obtain the instantaneous control surfaces of the flapping MantaBot during the steady swimming.These reconstructed 3D surfaces will be meshed using triangular grids and used as inputs for later computationalfluid dynamics(CFD)simulations.Details about this method can be found in Ref.[3].

    A number of combinations of driving frequency and amplitude of the MantaBot were tested,and the case that achieved the maximum speed was selected for this study.Key quantities of the body shape and locomotion are summarized in Table 1,where L is the body length,l is the fin span length,U is the swimming speed,A is the flapping amplitude of the fin mid-chord,f is the flapping frequency,St is the Strouhal number defined as St=fA/U,and Re is the Reynolds number.

    The reconstruction model is shown in Fig.1(b).Upper two plots are the side view of the original MantaBot and the meshed model in 3D reconstruction at the beginning of downstroke and upstroke,respectively.The lower plot is the front view of the model showing the maximum fin bending.The most apparent feature from the fin kinematic reconstruction is the spanwise flapping with large bending at distal part.As shown in Fig.1(c),the flapping angleφ is the angle between the base-to-tip line and the horizontal plane,where the fin base is 0.33l away from middle section of the body. The spanwise bending can be quantified by inflexion angle(β)[1]. The maximum bending happens mostly at 0.67l from the fin base. This location is defined as the inflexion pointshown in Fig.1(c).βis the angle between the lines ofbase-to-inflexionpoint and inflexion point-to-tip.The pitching angleαin Fig.1(c)is defined as the angle between the chord at inflexion point and the horizontal plane.

    Figure 1(d)shows the time course ofφ,β,andα,which are averaged over four consecutive flapping strokes from meshed fin models.The time variation ofφindicates that the basic fin flapping motion is not symmetric.The downward excursion is more than twice the upward excursion.Spanwise bending is prominent because the inflexion angleβhas larger peak-to-peak amplitude values among all three angles.The maximum amplitude ofβis about 45°,which is slightly larger than the average inflexion angle observed in most swimming and flying animals[1].This indicates that the MantaBot fins can achieve large amplitude of bending of the distal parts.The chordwise pitching is observed varying in between±16°during this steady swimming motion.It is worth noting that the tensegrity actuation structures in the MantaBot cannot generate chordwise pitching directly.The fin pitching is passively generated by the interaction between the surrounding flows and the soft fins.It is also found that this pitching motion can only be clearly observed in the distal part of the fin.

    Fig.1.(a)MantaBot with tensegrity actuator and kinematic markers and experimental measurement setup.(b)Side views of original MantaBot(upper left)and meshed model(upper right)and a front view of the MantaBot model(lower)at t/T=0 and t/T=0.5.(c)Definition for flapping,inflexion and pitching angles(φ,βandα,respectively).(d)The time course of the measured kinematics in one typical flapping cycle.

    Table 1Key quantities of the body shape and swimming motion.

    The hydrodynamic mechanism of the ray-inspired underwater vehicle propulsion is then explored using an immersed boundary method[4]based high fidelity CFD simulation.In particular,the solver is time-accurate and non-dissipative,and allows body motion.The details of the solver can be found elsewhere[5-7].To study the long-term hydrodynamic performance of the flapping fins in steady swimming,a uniform flow of speed U passing the MantaBot modelis utilized to save on computation cost.The goalof current simulations is to capture the key features ofthe wake structures for addressing the fundamental hydrodynamic mechanisms ofthe flapping swimming.To this end,the actual Reynolds number is reduced to 1200 for meeting the requirement ofthe mesh resolution and computation costby directnumericalsimulation ofswimming objects[8-12].This is equivalentto either a smaller size bodyperforming a similar motion or using the same body performing a slower motion[12].The nominal grid size employed in the simulations is 264×178×264,which gives approximately 12.4 million grid points in total.Comprehensive studies have been carried out to assess the effectofgrid resolution and domain size on the salient features of the flow,and to demonstrate the accuracy of nominal grid size.According to the stability requirements of the flow solver,time step is chosen to be T/480,where T is the period ofthe flapping motion.For a completed simulation of the MantaBot flow reaching to the steady state using a 10-6convergence criteria for velocity,92 CPU hours on a single Intel(R)Core(TM)i7-3770 CPU @3.4 GHz computer node are generally needed.Results presented here have been obtained by simulating the flow over six fin strokes. The hydrodynamic forces producedby the fin during the stroke will be discussed first,followed by a description of the instantaneous vortex structures formed during the fin strokes in order to elucidate the flow mechanisms responsible for force production.

    First,it is noted that both downstroke and upstroke produces peaks in thrust force.The peak in the upstroke is about 0.84,which is 1.75 times the peak in the downstroke.This matches with the findings in real ray swimming by Heine[14]that upstrokes should play a more important role in thrust producing than that in downstrokes.This may be attributed to both geometric and kinematic asymmetry between the dorsal and the ventral side of the fin.

    Second,the thrust is highly correlated with the inflexion by comparing Fig.1(d)with Fig.2(a).The peaks in CTappear at the same moments asβandαexhibit peak/trough values.Moreover,a negative CTwhich means pressure drag always located at/near the time of zeroβandα.Noting that pitching motion is purely passive and is dependent on the inflexion angle in this case,the thrust production is mainly correlated with the inflexion angle.

    The cycle-averaged value of CTis 0.15,which is slightly higher than the absolute value of cycle-averaged CD(0.11).This is reasonable even though the MantaBot was observed performing steady swimming.The MantaBot only has one degree of freedom while the other five degrees are restrained by the rail(shown in Fig.1(a)).Therefore,the MantaBot has to generate extra thrust to overcome the friction force between the slider and the rail.

    Fig.2.Simulation results ofthe modeled MantaBotatReynolds number1200.(a)The time history ofthrustand drag coefficients atthe fifth flapping cycle.(b)Distribution of cycle-averaged thrust coefficients on the body surface.(c),(d)Side views of the iso-surface contours of the wake topology at t/T=0.19(c)and t/T=0.63(d)(performance peaks in(a)).The vortex structure is identified by Q-criterion at Q=1.0,and colored by the distance from the mid-plane of the body,where yellow represents near the body and red represents away from the body.(e),(f)Contours of the instantaneous spanwise vorticityωzon the sectional slices at 0.30l(e)and 0.95l(f)from the fin root when t/T=0.63.(For interpretation of the references to color in this figure legend,the reader is referred to the web version of this article.)

    Table 2Mean values and root-mean-square deviations of thrust and drag coefficients.

    To further understand the thrust producing mechanism of the MantaBot fins,wake topology and vortex dynamics are investigated.Figures 2(c)and 2(d)highlight two snapshots of the 3D flow fields when fins reach to peak thrust in the downstroke and the upstroke respectively.The isosurfaces of Q-criteria are used to identify the wake topologies.During each downstroke or upstroke,there is a vortex ring shed from the trailing edge of the fin.These vortex rings are labeled from V1 to V11 following the shedding order.For instance,V1 is the earliest shed vortex ring in the plots while V11 is the latest.In addition,some smaller vortex structures(in red),which are further away from the bodythan those labeled vortex rings,can also be observed.In the sixth flapping cycle,the downstream wake mainly consists of two sets ofcomplex shaped vortex rings,which convect at oblique angles to the wake centerline.Those vortex rings are inclined with respectto the free stream.It is also noted that there are a number of vortex contrails that extend towards the two adjacent counter-rotating rings.As the vortices convect downstream,these contrails become weaker and ultimately disappear(as for vortex ring V1),leaving only fairly well-defined vortex rings.The overall characteristics of the wake structure are similar to that of a pitching-plunging plate[15].

    The time instance shown in Fig.2(d)is half a cycle later than that shown in Fig.2(c).It is worth noting that the shapes of vortex rings far away from the body(V1-V6)do not change much during the half cycle,while the shapes of vortex rings near the body(V9 and V10)change significantly.For instance,V9 has a groove on the surface in Fig.2(c).After half a cycle,the groove stretches and separates away from V9,further forming a hairpin-like vortex structure with the two legs still connecting with V9(see Fig.2(d)). This hairpin-like vortex structure will be totally detached from V9 and forms a new vortex ring as the one near V7 shown in Fig.2(d).

    To better understand the flow induced by the 3D vortex structures,two vertical slices are used to show the contour of spanwise vorticityωzat the basal part and distal part of the fin,respectively.Avon Kármán vortex street,which is a drag producing vortex structure,is found on the slice at the basal part(0.3l away from the fin base,see Fig.2(e)).However,due to the large flapping amplitude in the distal parts,effective Strouhal number is increased to 1.1 based on Atip.This is about four times of the mid-chord Strouhal number,which is measured 0.27 based on the flapping amplitude of the fin mid-chord,A.Thus,at 0.95l(Fig.2(f)),there are two sets of vortex pairs aligned at oblique angles to the wake centerline.This is the same as the wake topology of vortex rings shown in Fig.2(c).Each vortex pair will induce a strong local jet.The orientation of the jets induced by some of the vortex pairs is identified by arrows in Fig.2(f).These jets are mainly responsible for the thrust producing of the fins.It should be noted that the upper set of vortex pairs are much stronger than corresponding lower vortex pairs.This explains why the thrust generated during upstroke is larger than that generated during downstroke.

    In summary,the double vortex ring loops shed from the distal part of the MantaBot fins are responsible for thrust production of the propulsors.The large inflexion angle of the oscillatory fin not only helps the fin distal parts to achieve a higher effective Strouhal number for thrust production but also allows the fin basal parts to maintain minimum flapping amplitude,which results in a small amount of drag during the MantaBot's steady swimming.

    Acknowledgment

    This work was supported by the Office of Naval Research(ONR)(N00014-14-1-0533 and N00014-08-1-0642).H.Bart-Smith would like to acknowledge The David and Lucille Packard Foundation.

    [1]K.N.Lucas,N.Johnson,W.T.Beaulieu,E.Cathcart,G.Tirrell,S.P.Colin,B.J. Gemmell,J.O.Dabiri,J.H.Costello,Bending rules for animal propulsion,Nature Commun.5(2014)3293.

    [2]K.Moored,T.Kemp,N.Houle,H.Bart-Smith,Analytical predictions,optimization,and design of a tensegrity-based artificial pectoral fin,Int.J. Solids Struct.48(2011)3142-3159.

    [3]C.Koehler,Z.Liang,Z.Gaston,H.Wan,H.Dong,3D reconstruction and analysis of wing deformation in free-flying dragonflies,J.Exp.Biol.215(2012)3018-3027.

    [4]M.Bozkurttas,R.Mittal,H.Dong,G.Lauder,P.Madden,Low-dimensional models and performance scaling of a highly deformable fish pectoral fin,J.Fluid Mech.631(2009)311-342.

    [5]H.Dong,M.Bozkurttas,R.Mittal,P.Madden,G.Lauder,Computational modelling and analysis of the hydrodynamics of a highly deformable fish pectoral fin,J.Fluid Mech.645(2010)345-373.

    [6]H.Dong,C.Koehler,Z.Liang,H.Wan,Z.Gaston,An integrated analysis of a dragonfly in free flight,in:40th AIAA Fluid Dynamics Conference and Exhibit,AIAA,Chicago,Illinois,2010,pp.2010-4390.

    [7]Z.Liang,H.Dong,M.Wei,Computational analysis of hovering hummingbird flight,in:48th AIAA Aerospace Sciences Meeting Including the New Horizons Forumand Aerospace Exposition,AIAA,Orlando,F(xiàn)lorida,2010,pp.2010-2555.

    [8]J.Carling,T.Williams,G.Bowtell,Self-propelled anguilliform swimming: simultaneous solution of the two-dimensional Navier-Stokes equations and Newton's laws of motion,J.Exp.Biol.201(1998)3143-3166.

    [9]S.Kern,P.Koumoutsakos,Simulations of optimized anguilliform swimming,J.Exp.Biol.209(2006)4841-4857.

    [10]G.J.Dong,X.Y.Lu,Characteristics of flow over traveling wavy foils in a side-byside arrangement,Phys.Fluids 19(2007)057107.1994-present.

    [11]S.Wang,X.Zhang,G.He,Numerical simulation of a three-dimensional fishlike body swimming with finlets,Commun.Comput.Phys.11(4)(2012)1323-1333.

    [12]I.Borazjani,F(xiàn).Sotiropoulos,E.D.Tytell,G.V.Lauder,Hydrodynamics of the bluegill sunfish C-start escape response:three-dimensional simulations and comparison with experimental data,J.Exp.Biol.215(2012)671-684.

    [13]R.Ghias,R.Mittal,H.Dong,A sharp interface immersed boundary method for compressible viscous flows,J.Comput.Phys.225(2007)528-553.

    [14]C.Heine,Mechanics of flapping fin locomotion in the cownose ray(Ph.D. dissertation),Duke University,Durham,1992.

    [15]H.Dong,R.Mittal,F(xiàn).Najjar,Wake topology and hydrodynamic performance of low-aspect-ratio flapping foils,J.Fluid Mech.566(2006)309-344.

    ?Corresponding author.

    E-mail address:haibo.dong@virginia.edu(H.Dong).

    *This article belongs to the Fluid Mechanics

    成人三级做爰电影| 久久亚洲精品不卡| 国产在视频线精品| 欧美国产精品一级二级三级| 日韩有码中文字幕| 久久久久国内视频| 久久天躁狠狠躁夜夜2o2o| 女性生殖器流出的白浆| 午夜福利,免费看| 午夜免费观看性视频| 国产亚洲精品第一综合不卡| 每晚都被弄得嗷嗷叫到高潮| 丰满饥渴人妻一区二区三| 亚洲欧美精品综合一区二区三区| 国产一区二区 视频在线| 美女扒开内裤让男人捅视频| 欧美激情极品国产一区二区三区| 久热这里只有精品99| 欧美av亚洲av综合av国产av| 亚洲伊人色综图| 啦啦啦啦在线视频资源| 国产精品一区二区精品视频观看| 久久久久网色| 欧美日韩av久久| 不卡av一区二区三区| 丝袜脚勾引网站| 国产免费一区二区三区四区乱码| 两个人看的免费小视频| 色综合欧美亚洲国产小说| 最黄视频免费看| 18在线观看网站| 欧美xxⅹ黑人| 国产有黄有色有爽视频| 高清视频免费观看一区二区| 日韩视频在线欧美| 99国产极品粉嫩在线观看| 午夜视频精品福利| 国产精品一二三区在线看| 国产视频一区二区在线看| 午夜91福利影院| 久久午夜综合久久蜜桃| 青青草视频在线视频观看| 啦啦啦在线免费观看视频4| 亚洲精品国产色婷婷电影| 日本猛色少妇xxxxx猛交久久| 精品欧美一区二区三区在线| 三级毛片av免费| 久久精品亚洲av国产电影网| 欧美亚洲 丝袜 人妻 在线| 麻豆国产av国片精品| 国产黄频视频在线观看| 亚洲av日韩在线播放| 肉色欧美久久久久久久蜜桃| 天堂中文最新版在线下载| 五月开心婷婷网| 女人久久www免费人成看片| 成人免费观看视频高清| 一个人免费在线观看的高清视频 | 考比视频在线观看| 人人妻,人人澡人人爽秒播| videos熟女内射| 每晚都被弄得嗷嗷叫到高潮| 九色亚洲精品在线播放| 一区二区三区乱码不卡18| 亚洲av成人一区二区三| 国产免费一区二区三区四区乱码| 久久国产亚洲av麻豆专区| 国产成人欧美| 亚洲国产欧美日韩在线播放| 久久久久久人人人人人| 精品一区二区三卡| 精品人妻熟女毛片av久久网站| 国产伦理片在线播放av一区| 久热这里只有精品99| 国产又爽黄色视频| 亚洲成人免费av在线播放| 国产亚洲精品第一综合不卡| 乱人伦中国视频| 国产精品影院久久| 亚洲欧美色中文字幕在线| 亚洲成人免费av在线播放| 少妇精品久久久久久久| 久久久久久久国产电影| 99久久人妻综合| 亚洲精品一区蜜桃| 黑人巨大精品欧美一区二区蜜桃| videos熟女内射| 男女无遮挡免费网站观看| 99精品欧美一区二区三区四区| 十八禁网站网址无遮挡| videosex国产| 成人免费观看视频高清| 免费观看av网站的网址| 少妇裸体淫交视频免费看高清 | 咕卡用的链子| 超碰成人久久| 老司机深夜福利视频在线观看 | 黄频高清免费视频| 欧美在线一区亚洲| 亚洲精华国产精华精| 久久天躁狠狠躁夜夜2o2o| 久久久久国内视频| 欧美日韩视频精品一区| 免费观看a级毛片全部| 欧美精品一区二区免费开放| 国产黄频视频在线观看| 成人手机av| 热99re8久久精品国产| 人妻久久中文字幕网| bbb黄色大片| 亚洲国产欧美在线一区| 国产片内射在线| 人人妻人人添人人爽欧美一区卜| 啦啦啦在线免费观看视频4| 色播在线永久视频| 高清欧美精品videossex| 日韩有码中文字幕| 精品国产乱码久久久久久男人| 一区福利在线观看| 亚洲国产毛片av蜜桃av| 久久综合国产亚洲精品| 成年女人毛片免费观看观看9 | 亚洲一区中文字幕在线| 欧美日韩精品网址| 亚洲欧美精品综合一区二区三区| 又紧又爽又黄一区二区| 老熟妇仑乱视频hdxx| 亚洲 国产 在线| 嫩草影视91久久| 黑人巨大精品欧美一区二区mp4| 91精品伊人久久大香线蕉| 自拍欧美九色日韩亚洲蝌蚪91| 丰满人妻熟妇乱又伦精品不卡| 淫妇啪啪啪对白视频 | 免费在线观看影片大全网站| 亚洲国产欧美日韩在线播放| 飞空精品影院首页| 日韩电影二区| 人人妻人人爽人人添夜夜欢视频| 国产一区二区三区综合在线观看| 一个人免费在线观看的高清视频 | 首页视频小说图片口味搜索| 亚洲综合色网址| 亚洲精品国产一区二区精华液| 免费av中文字幕在线| 久久综合国产亚洲精品| 久久青草综合色| 我要看黄色一级片免费的| 国产精品99久久99久久久不卡| 国产亚洲一区二区精品| 丝瓜视频免费看黄片| 在线观看免费视频网站a站| 国产欧美日韩精品亚洲av| 中文字幕另类日韩欧美亚洲嫩草| 欧美精品人与动牲交sv欧美| 免费人妻精品一区二区三区视频| 色婷婷av一区二区三区视频| 日韩制服骚丝袜av| 亚洲欧美激情在线| 一本大道久久a久久精品| 成人av一区二区三区在线看 | 欧美精品一区二区免费开放| 亚洲成国产人片在线观看| 国产精品一区二区免费欧美 | 黄色视频不卡| 国内毛片毛片毛片毛片毛片| 黄片大片在线免费观看| 精品久久久久久电影网| 法律面前人人平等表现在哪些方面 | 18禁裸乳无遮挡动漫免费视频| 91老司机精品| 老司机亚洲免费影院| 热re99久久精品国产66热6| 91字幕亚洲| 欧美变态另类bdsm刘玥| 丝袜美腿诱惑在线| 青草久久国产| 一本—道久久a久久精品蜜桃钙片| www.熟女人妻精品国产| 久久精品国产综合久久久| 日韩 亚洲 欧美在线| 999久久久国产精品视频| 精品人妻在线不人妻| 国产av精品麻豆| 久久九九热精品免费| 亚洲成国产人片在线观看| 青青草视频在线视频观看| 精品国产国语对白av| 黑人巨大精品欧美一区二区mp4| 国产深夜福利视频在线观看| 中文字幕人妻丝袜一区二区| 永久免费av网站大全| 麻豆国产av国片精品| svipshipincom国产片| 亚洲欧美清纯卡通| 亚洲精品成人av观看孕妇| 国产一区有黄有色的免费视频| 中文字幕人妻丝袜一区二区| 亚洲人成电影观看| 日本一区二区免费在线视频| xxxhd国产人妻xxx| 国产精品一区二区精品视频观看| 搡老岳熟女国产| 欧美激情高清一区二区三区| 99香蕉大伊视频| 国产精品一区二区在线不卡| 曰老女人黄片| 韩国精品一区二区三区| 日本欧美视频一区| 国产一区二区三区综合在线观看| 欧美精品人与动牲交sv欧美| 国产区一区二久久| 亚洲精品久久午夜乱码| 秋霞在线观看毛片| 亚洲国产毛片av蜜桃av| 成人亚洲精品一区在线观看| 在线看a的网站| 亚洲人成电影免费在线| 精品一区在线观看国产| 不卡av一区二区三区| 精品人妻一区二区三区麻豆| 黄色视频不卡| 香蕉国产在线看| 伦理电影免费视频| 国产精品一区二区精品视频观看| 国产在线观看jvid| 亚洲人成77777在线视频| 免费观看a级毛片全部| 中国国产av一级| 9热在线视频观看99| 午夜影院在线不卡| 日韩视频一区二区在线观看| 在线av久久热| 国产精品久久久久成人av| 一区福利在线观看| 亚洲七黄色美女视频| 久久这里只有精品19| 精品国产乱子伦一区二区三区 | 国产有黄有色有爽视频| 成人手机av| 亚洲情色 制服丝袜| av免费在线观看网站| 免费黄频网站在线观看国产| 午夜福利免费观看在线| 亚洲人成电影免费在线| 一区二区三区四区激情视频| 久久久久久免费高清国产稀缺| 日韩欧美一区视频在线观看| 男女免费视频国产| 777米奇影视久久| 精品高清国产在线一区| 精品国产超薄肉色丝袜足j| av视频免费观看在线观看| 欧美激情高清一区二区三区| 性少妇av在线| 久久精品国产综合久久久| av天堂在线播放| 日韩视频一区二区在线观看| 国产成人免费观看mmmm| 国产在视频线精品| 涩涩av久久男人的天堂| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲黑人精品在线| 欧美一级毛片孕妇| 欧美精品啪啪一区二区三区 | 少妇裸体淫交视频免费看高清 | 国产xxxxx性猛交| 色综合欧美亚洲国产小说| 国产成人a∨麻豆精品| 老汉色∧v一级毛片| 99精品欧美一区二区三区四区| 亚洲av欧美aⅴ国产| 日本vs欧美在线观看视频| 精品国内亚洲2022精品成人 | 午夜免费观看性视频| 满18在线观看网站| 欧美一级毛片孕妇| 人妻人人澡人人爽人人| 久久人人97超碰香蕉20202| 久久久水蜜桃国产精品网| 亚洲av国产av综合av卡| 午夜成年电影在线免费观看| 欧美人与性动交α欧美软件| 午夜免费成人在线视频| 久久久水蜜桃国产精品网| 制服诱惑二区| 国产高清国产精品国产三级| 久热爱精品视频在线9| av视频免费观看在线观看| 色精品久久人妻99蜜桃| 免费av中文字幕在线| 九色亚洲精品在线播放| 亚洲国产毛片av蜜桃av| 国内毛片毛片毛片毛片毛片| e午夜精品久久久久久久| 男男h啪啪无遮挡| 午夜视频精品福利| 精品人妻熟女毛片av久久网站| 亚洲激情五月婷婷啪啪| 午夜成年电影在线免费观看| 亚洲精品一卡2卡三卡4卡5卡 | 在线看a的网站| 日韩中文字幕视频在线看片| 岛国在线观看网站| 美女中出高潮动态图| 国产伦人伦偷精品视频| 极品人妻少妇av视频| 国产成人精品久久二区二区免费| 男人舔女人的私密视频| 亚洲人成77777在线视频| 夜夜夜夜夜久久久久| 男人爽女人下面视频在线观看| 国产淫语在线视频| 久久久久国内视频| 欧美久久黑人一区二区| 不卡一级毛片| 日本黄色日本黄色录像| 国产欧美日韩综合在线一区二区| 中文字幕av电影在线播放| 亚洲专区中文字幕在线| 久久久久精品人妻al黑| 久久久精品国产亚洲av高清涩受| 日本av手机在线免费观看| 手机成人av网站| 精品一品国产午夜福利视频| 母亲3免费完整高清在线观看| 精品欧美一区二区三区在线| 夜夜骑夜夜射夜夜干| 啦啦啦免费观看视频1| 69av精品久久久久久 | 夜夜夜夜夜久久久久| 天天躁日日躁夜夜躁夜夜| 自线自在国产av| 男女之事视频高清在线观看| 亚洲欧洲日产国产| 韩国高清视频一区二区三区| 美女高潮到喷水免费观看| 国产精品秋霞免费鲁丝片| 美女福利国产在线| 国产在线观看jvid| 亚洲av国产av综合av卡| 久久国产精品人妻蜜桃| 欧美亚洲日本最大视频资源| www.av在线官网国产| 久久久久视频综合| 亚洲精品一卡2卡三卡4卡5卡 | 欧美精品一区二区大全| 男女高潮啪啪啪动态图| 亚洲中文字幕日韩| 国产一区二区激情短视频 | 亚洲少妇的诱惑av| 大型av网站在线播放| 国产精品免费大片| 亚洲精品成人av观看孕妇| 亚洲成av片中文字幕在线观看| 欧美人与性动交α欧美精品济南到| 欧美乱码精品一区二区三区| 日韩电影二区| 69精品国产乱码久久久| 99九九在线精品视频| 国产不卡av网站在线观看| 美女主播在线视频| 国产精品久久久久成人av| 国产精品国产av在线观看| 如日韩欧美国产精品一区二区三区| 国产成人免费无遮挡视频| 91字幕亚洲| 51午夜福利影视在线观看| 欧美少妇被猛烈插入视频| 老熟女久久久| 男女边摸边吃奶| 99久久综合免费| 国产精品香港三级国产av潘金莲| 国产成人影院久久av| 看免费av毛片| 亚洲精品久久成人aⅴ小说| 国产精品成人在线| 美国免费a级毛片| 一区二区日韩欧美中文字幕| 日本av免费视频播放| 国产精品久久久久成人av| 亚洲男人天堂网一区| 日本vs欧美在线观看视频| 又紧又爽又黄一区二区| 国产精品一区二区在线观看99| 两人在一起打扑克的视频| 九色亚洲精品在线播放| 美女高潮喷水抽搐中文字幕| 久9热在线精品视频| av不卡在线播放| 男女床上黄色一级片免费看| 99热网站在线观看| 一边摸一边做爽爽视频免费| 免费高清在线观看日韩| 国产人伦9x9x在线观看| 亚洲 国产 在线| 国产亚洲精品久久久久5区| 中文字幕最新亚洲高清| 18禁观看日本| 亚洲精品自拍成人| 精品福利永久在线观看| 国产精品 欧美亚洲| 每晚都被弄得嗷嗷叫到高潮| 国产一区二区三区在线臀色熟女 | 成人国语在线视频| 黑人巨大精品欧美一区二区mp4| 美女高潮到喷水免费观看| 亚洲成国产人片在线观看| 久久久精品区二区三区| 中文字幕人妻丝袜制服| 高潮久久久久久久久久久不卡| 十八禁高潮呻吟视频| cao死你这个sao货| 黄色毛片三级朝国网站| 国产精品香港三级国产av潘金莲| 亚洲人成电影观看| 亚洲欧美清纯卡通| 亚洲男人天堂网一区| e午夜精品久久久久久久| 精品少妇一区二区三区视频日本电影| 亚洲中文av在线| 亚洲avbb在线观看| 亚洲精品中文字幕在线视频| 国产伦理片在线播放av一区| 极品人妻少妇av视频| 亚洲欧美精品综合一区二区三区| 亚洲中文av在线| 男女高潮啪啪啪动态图| 午夜免费成人在线视频| 这个男人来自地球电影免费观看| 日本av手机在线免费观看| 另类亚洲欧美激情| 日韩制服骚丝袜av| 亚洲欧美激情在线| 精品久久久久久久毛片微露脸 | 一边摸一边做爽爽视频免费| 丝袜美腿诱惑在线| 两个人看的免费小视频| 午夜福利乱码中文字幕| 国产一区二区三区av在线| 岛国在线观看网站| 亚洲精品粉嫩美女一区| 正在播放国产对白刺激| 97在线人人人人妻| 久久天躁狠狠躁夜夜2o2o| 精品国产国语对白av| 成年美女黄网站色视频大全免费| 婷婷丁香在线五月| 99国产极品粉嫩在线观看| 日本av免费视频播放| 久久人人爽人人片av| 亚洲黑人精品在线| 中文字幕精品免费在线观看视频| 国产91精品成人一区二区三区 | 成人国产av品久久久| 老司机深夜福利视频在线观看 | 9热在线视频观看99| 欧美成人午夜精品| 99国产精品99久久久久| 精品少妇内射三级| 午夜免费观看性视频| 最新的欧美精品一区二区| 9191精品国产免费久久| 男女无遮挡免费网站观看| 99久久国产精品久久久| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲精华国产精华精| 亚洲精品国产色婷婷电影| 亚洲欧美日韩另类电影网站| 久久天堂一区二区三区四区| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲精品av麻豆狂野| 新久久久久国产一级毛片| 又大又爽又粗| 黑人操中国人逼视频| 国产亚洲av片在线观看秒播厂| 青草久久国产| 人妻人人澡人人爽人人| 国产精品九九99| 熟女少妇亚洲综合色aaa.| 婷婷色av中文字幕| 欧美性长视频在线观看| 久久免费观看电影| 国产精品久久久久久精品古装| 99久久国产精品久久久| 久久狼人影院| 自拍欧美九色日韩亚洲蝌蚪91| av视频免费观看在线观看| 国产成人av激情在线播放| 亚洲av日韩精品久久久久久密| 国产精品一区二区免费欧美 | 91九色精品人成在线观看| 亚洲av日韩在线播放| 国产精品一区二区精品视频观看| a级毛片在线看网站| 高清欧美精品videossex| 国产欧美日韩精品亚洲av| 国产精品欧美亚洲77777| 99国产精品一区二区三区| 不卡av一区二区三区| 国产av一区二区精品久久| 免费不卡黄色视频| 久久久久网色| 最近中文字幕2019免费版| 亚洲国产欧美在线一区| 精品亚洲乱码少妇综合久久| 国产一区二区三区av在线| 又黄又粗又硬又大视频| 十八禁高潮呻吟视频| 男女免费视频国产| 日本av手机在线免费观看| 欧美97在线视频| 十分钟在线观看高清视频www| 一边摸一边抽搐一进一出视频| 国产精品久久久久久精品古装| 亚洲精品中文字幕一二三四区 | 中文字幕另类日韩欧美亚洲嫩草| √禁漫天堂资源中文www| 在线十欧美十亚洲十日本专区| 亚洲国产日韩一区二区| 免费av中文字幕在线| 国产xxxxx性猛交| 国产成人一区二区三区免费视频网站| 久热爱精品视频在线9| 欧美xxⅹ黑人| 一区二区三区四区激情视频| 黄色视频不卡| 不卡av一区二区三区| 日本av免费视频播放| 精品人妻一区二区三区麻豆| 高清在线国产一区| videosex国产| 欧美精品亚洲一区二区| 最黄视频免费看| 久久狼人影院| 免费一级毛片在线播放高清视频 | 人人妻人人澡人人看| 精品一区二区三卡| 亚洲欧美日韩高清在线视频 | 大码成人一级视频| 欧美黑人欧美精品刺激| 亚洲精品国产av成人精品| 18在线观看网站| www.自偷自拍.com| √禁漫天堂资源中文www| 视频区欧美日本亚洲| 老熟妇乱子伦视频在线观看 | 麻豆乱淫一区二区| 日韩一卡2卡3卡4卡2021年| 精品人妻在线不人妻| 啦啦啦在线免费观看视频4| 亚洲av日韩在线播放| 久久久久久人人人人人| 国产亚洲欧美精品永久| 久久久水蜜桃国产精品网| 欧美性长视频在线观看| 午夜精品久久久久久毛片777| 国产日韩欧美在线精品| 黄色怎么调成土黄色| 久久人妻熟女aⅴ| 国产成人欧美| 午夜激情久久久久久久| 成年人免费黄色播放视频| 老司机亚洲免费影院| 亚洲熟女精品中文字幕| 国产又爽黄色视频| 啦啦啦中文免费视频观看日本| 久久精品国产亚洲av高清一级| 另类精品久久| 91麻豆av在线| 日韩三级视频一区二区三区| 久久久久网色| 国产精品秋霞免费鲁丝片| av视频免费观看在线观看| 丰满少妇做爰视频| 一区二区三区精品91| 国产亚洲av片在线观看秒播厂| 人人妻人人添人人爽欧美一区卜| 亚洲欧美精品自产自拍| 999精品在线视频| 亚洲精品国产一区二区精华液| 国产一区二区激情短视频 | 欧美日韩一级在线毛片| 精品一品国产午夜福利视频| 男男h啪啪无遮挡| 亚洲一区二区三区欧美精品| 新久久久久国产一级毛片| 黄色怎么调成土黄色| 久久久久久久久久久久大奶| 狂野欧美激情性bbbbbb| 最黄视频免费看| 国产欧美日韩一区二区三 | 国产精品九九99| 国产亚洲av高清不卡| 成人国语在线视频| 岛国毛片在线播放| 一二三四在线观看免费中文在| 极品人妻少妇av视频| 在线永久观看黄色视频| 一区二区三区乱码不卡18| 中文欧美无线码| 巨乳人妻的诱惑在线观看| 精品高清国产在线一区| 亚洲精品日韩在线中文字幕| www.自偷自拍.com| 青青草视频在线视频观看| 免费观看av网站的网址| 12—13女人毛片做爰片一| √禁漫天堂资源中文www| 日韩欧美免费精品| 欧美 日韩 精品 国产| √禁漫天堂资源中文www| 91av网站免费观看| 欧美 日韩 精品 国产| 国产高清国产精品国产三级|