• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Thrust producing mechanisms in ray-inspired underwater vehicle propulsion

    2015-11-21 07:27:35GengLiuYanRenJianzhongZhuHilaryBartSmithHaiboDong

    Geng Liu,Yan Ren,Jianzhong Zhu,Hilary Bart-Smith,Haibo Dong

    Department of Mechanical and Aerospace Engineering,University of Virginia,Charlottesville,VA 22904,USA

    Thrust producing mechanisms in ray-inspired underwater vehicle propulsion

    Geng Liu,Yan Ren,Jianzhong Zhu,Hilary Bart-Smith,Haibo Dong?

    Department of Mechanical and Aerospace Engineering,University of Virginia,Charlottesville,VA 22904,USA

    A R T I C L E I N F O

    Article history:

    Received 24 November 2014

    Accepted 26 November 2014

    Available online 6 January 2015

    Hydrodynamics

    Bio-inspired autonomous underwater vehicle

    Computational fluid dynamics

    Vortex dynamics

    This paper describes a computational study of the hydrodynamics of a ray-inspired underwater vehicle conducted concurrently with experimental measurements.High-resolution stereo-videos of the vehicle's fin motions during steady swimming are obtained and used as a foundation for developing a high fidelity geometrical model of the oscillatory fin.A Cartesian grid based immersed boundary solver is used to examine the flow fields produced due to these complex artificial pectoral fin kinematics.Simulations are carried out at a smaller Reynolds number in order to examine the hydrodynamic performance and understand the resultant wake topology.Results show that the vehicle's fins experience large spanwise inflexion of the distal part as well as moderate chordwise pitching during the oscillatory motion.Most thrustforce is generated by the distalpartofthe fin,and it is highly correlated with the spanwise inflexion. Two sets ofinter-connected vortex rings are observed in the wake rightbehind each fin.Those vortex rings induce strong backward flow jets which are mainly responsible for the fin thrust generation.

    ?2015 The Authors.Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

    A bio-inspired autonomous underwater vehicle(AUV)has been designed as a scientific platform to understand the superior swimming characteristics of batoid fish.Batoid fish such as manta rays(Manta birostris)and cownose rays(Rhinoptera bonasus)are notable for their fast,efficient swimming and high maneuverability.These swimming capabilities arise from flapping of the dorsally flattened pectoral fins,which are also used as control surfaces for depth control and maneuvering.Recent observations in animal propulsion suggest that high efficiency in animal locomotion can be attributed to the stiffness characteristics at the fin tip[1].In rays'swimming,the large bending of the distal part of the pectoral fin can allow them to actively resist hydrodynamic bending forces while producing propulsion forces.To assess this contribution,the current effort is specifically focused on understanding the hydrodynamics of a ray-inspired underwater vehicle -the MantaBot-where biology is the basis for the design.

    The MantaBot consists of two parts:a rigid body rendered from a computer tomography scanning image of a cownose ray and a pair of soft fins driven by tensegrity-based actuators[2](Fig.1(a)). The soft fins of this vehicle are highly flexible,have complex planforms,and undergo an oscillatory motion.Specific to this vehicle's body length(L~43 cm)and free-swimming velocity(0.35 m·s-1),the Reynolds number(Re=UL/ν)is approximately 1.5×105. At this Reynolds number,the attached flow over the body is most likely laminar but transition to turbulence is expected to occur rapidly in the downstream of MantaBot fins.The flow over the fins can be characterized in terms of a Stokes frequency parameter(S=ωAc/ν)whereω,A and c are the fin angular frequency,amplitude and length of the mid-chord,respectively.Typical fin beat frequency of about 2 Hz and fin amplitude and size of about 5 cm and 6 cm,respectively,give S≈3.5×104,which is again in the range where transition from laminar attached flow to turbulence will occur quickly.

    Figure 1(a)shows the MantaBot body with kinematic markers(red dots)drawn on its fins,which are used for tracking and performing 3D surface reconstruction later in the process and a schematic of the experimental setup.To measure the fin kinematics of MantaBot in steady swimming,the vehicle is placed in a 5 m long,1.5 m wide,and 0.6 m deep water tank.Its locomotion is restricted to one degree of freedom(forward translation)using a steel bar,which is connected to a low-friction ball bearing slider on a linear rail.

    The MantaBot swimming motion is then recorded by three well calibrated and synchronized video cameras(rear,side,and top)that are operated at 60 Hz with 512×512 pixel resolutions.These cameras are aligned orthogonalto each other and positioned about 0.75 maway from the Mantabot,giving a depth offield of3-4 body lengths in all directions.The cameras are triggered by a flashing lightsystemto minimize the recording delay ofeach camera.When the MantaBotis in the optimumrange,this camera systemisable to collect data that is consistently in focus.Usable segments of videos from all sides are identified for kinematics reconstruction based on the quality of images.Among all three cameras,the camera set at the rear is for recording the fin flapping motion and spanwise bending.The videos from this camera are used to measure both the flapping angles and inflexion angles shown in Fig.1(c).The side camera,along with the top camera,is used to track the motions of all kinematic markers in Fig.1(a).They are used to accurately measure the chordwise flexibility including the mid-chord pitching angles in Fig.1(c).

    Once these videos are identified,a marker-based 3D surface reconstruction method[3]will then be used to obtain the instantaneous control surfaces of the flapping MantaBot during the steady swimming.These reconstructed 3D surfaces will be meshed using triangular grids and used as inputs for later computationalfluid dynamics(CFD)simulations.Details about this method can be found in Ref.[3].

    A number of combinations of driving frequency and amplitude of the MantaBot were tested,and the case that achieved the maximum speed was selected for this study.Key quantities of the body shape and locomotion are summarized in Table 1,where L is the body length,l is the fin span length,U is the swimming speed,A is the flapping amplitude of the fin mid-chord,f is the flapping frequency,St is the Strouhal number defined as St=fA/U,and Re is the Reynolds number.

    The reconstruction model is shown in Fig.1(b).Upper two plots are the side view of the original MantaBot and the meshed model in 3D reconstruction at the beginning of downstroke and upstroke,respectively.The lower plot is the front view of the model showing the maximum fin bending.The most apparent feature from the fin kinematic reconstruction is the spanwise flapping with large bending at distal part.As shown in Fig.1(c),the flapping angleφ is the angle between the base-to-tip line and the horizontal plane,where the fin base is 0.33l away from middle section of the body. The spanwise bending can be quantified by inflexion angle(β)[1]. The maximum bending happens mostly at 0.67l from the fin base. This location is defined as the inflexion pointshown in Fig.1(c).βis the angle between the lines ofbase-to-inflexionpoint and inflexion point-to-tip.The pitching angleαin Fig.1(c)is defined as the angle between the chord at inflexion point and the horizontal plane.

    Figure 1(d)shows the time course ofφ,β,andα,which are averaged over four consecutive flapping strokes from meshed fin models.The time variation ofφindicates that the basic fin flapping motion is not symmetric.The downward excursion is more than twice the upward excursion.Spanwise bending is prominent because the inflexion angleβhas larger peak-to-peak amplitude values among all three angles.The maximum amplitude ofβis about 45°,which is slightly larger than the average inflexion angle observed in most swimming and flying animals[1].This indicates that the MantaBot fins can achieve large amplitude of bending of the distal parts.The chordwise pitching is observed varying in between±16°during this steady swimming motion.It is worth noting that the tensegrity actuation structures in the MantaBot cannot generate chordwise pitching directly.The fin pitching is passively generated by the interaction between the surrounding flows and the soft fins.It is also found that this pitching motion can only be clearly observed in the distal part of the fin.

    Fig.1.(a)MantaBot with tensegrity actuator and kinematic markers and experimental measurement setup.(b)Side views of original MantaBot(upper left)and meshed model(upper right)and a front view of the MantaBot model(lower)at t/T=0 and t/T=0.5.(c)Definition for flapping,inflexion and pitching angles(φ,βandα,respectively).(d)The time course of the measured kinematics in one typical flapping cycle.

    Table 1Key quantities of the body shape and swimming motion.

    The hydrodynamic mechanism of the ray-inspired underwater vehicle propulsion is then explored using an immersed boundary method[4]based high fidelity CFD simulation.In particular,the solver is time-accurate and non-dissipative,and allows body motion.The details of the solver can be found elsewhere[5-7].To study the long-term hydrodynamic performance of the flapping fins in steady swimming,a uniform flow of speed U passing the MantaBot modelis utilized to save on computation cost.The goalof current simulations is to capture the key features ofthe wake structures for addressing the fundamental hydrodynamic mechanisms ofthe flapping swimming.To this end,the actual Reynolds number is reduced to 1200 for meeting the requirement ofthe mesh resolution and computation costby directnumericalsimulation ofswimming objects[8-12].This is equivalentto either a smaller size bodyperforming a similar motion or using the same body performing a slower motion[12].The nominal grid size employed in the simulations is 264×178×264,which gives approximately 12.4 million grid points in total.Comprehensive studies have been carried out to assess the effectofgrid resolution and domain size on the salient features of the flow,and to demonstrate the accuracy of nominal grid size.According to the stability requirements of the flow solver,time step is chosen to be T/480,where T is the period ofthe flapping motion.For a completed simulation of the MantaBot flow reaching to the steady state using a 10-6convergence criteria for velocity,92 CPU hours on a single Intel(R)Core(TM)i7-3770 CPU @3.4 GHz computer node are generally needed.Results presented here have been obtained by simulating the flow over six fin strokes. The hydrodynamic forces producedby the fin during the stroke will be discussed first,followed by a description of the instantaneous vortex structures formed during the fin strokes in order to elucidate the flow mechanisms responsible for force production.

    First,it is noted that both downstroke and upstroke produces peaks in thrust force.The peak in the upstroke is about 0.84,which is 1.75 times the peak in the downstroke.This matches with the findings in real ray swimming by Heine[14]that upstrokes should play a more important role in thrust producing than that in downstrokes.This may be attributed to both geometric and kinematic asymmetry between the dorsal and the ventral side of the fin.

    Second,the thrust is highly correlated with the inflexion by comparing Fig.1(d)with Fig.2(a).The peaks in CTappear at the same moments asβandαexhibit peak/trough values.Moreover,a negative CTwhich means pressure drag always located at/near the time of zeroβandα.Noting that pitching motion is purely passive and is dependent on the inflexion angle in this case,the thrust production is mainly correlated with the inflexion angle.

    The cycle-averaged value of CTis 0.15,which is slightly higher than the absolute value of cycle-averaged CD(0.11).This is reasonable even though the MantaBot was observed performing steady swimming.The MantaBot only has one degree of freedom while the other five degrees are restrained by the rail(shown in Fig.1(a)).Therefore,the MantaBot has to generate extra thrust to overcome the friction force between the slider and the rail.

    Fig.2.Simulation results ofthe modeled MantaBotatReynolds number1200.(a)The time history ofthrustand drag coefficients atthe fifth flapping cycle.(b)Distribution of cycle-averaged thrust coefficients on the body surface.(c),(d)Side views of the iso-surface contours of the wake topology at t/T=0.19(c)and t/T=0.63(d)(performance peaks in(a)).The vortex structure is identified by Q-criterion at Q=1.0,and colored by the distance from the mid-plane of the body,where yellow represents near the body and red represents away from the body.(e),(f)Contours of the instantaneous spanwise vorticityωzon the sectional slices at 0.30l(e)and 0.95l(f)from the fin root when t/T=0.63.(For interpretation of the references to color in this figure legend,the reader is referred to the web version of this article.)

    Table 2Mean values and root-mean-square deviations of thrust and drag coefficients.

    To further understand the thrust producing mechanism of the MantaBot fins,wake topology and vortex dynamics are investigated.Figures 2(c)and 2(d)highlight two snapshots of the 3D flow fields when fins reach to peak thrust in the downstroke and the upstroke respectively.The isosurfaces of Q-criteria are used to identify the wake topologies.During each downstroke or upstroke,there is a vortex ring shed from the trailing edge of the fin.These vortex rings are labeled from V1 to V11 following the shedding order.For instance,V1 is the earliest shed vortex ring in the plots while V11 is the latest.In addition,some smaller vortex structures(in red),which are further away from the bodythan those labeled vortex rings,can also be observed.In the sixth flapping cycle,the downstream wake mainly consists of two sets ofcomplex shaped vortex rings,which convect at oblique angles to the wake centerline.Those vortex rings are inclined with respectto the free stream.It is also noted that there are a number of vortex contrails that extend towards the two adjacent counter-rotating rings.As the vortices convect downstream,these contrails become weaker and ultimately disappear(as for vortex ring V1),leaving only fairly well-defined vortex rings.The overall characteristics of the wake structure are similar to that of a pitching-plunging plate[15].

    The time instance shown in Fig.2(d)is half a cycle later than that shown in Fig.2(c).It is worth noting that the shapes of vortex rings far away from the body(V1-V6)do not change much during the half cycle,while the shapes of vortex rings near the body(V9 and V10)change significantly.For instance,V9 has a groove on the surface in Fig.2(c).After half a cycle,the groove stretches and separates away from V9,further forming a hairpin-like vortex structure with the two legs still connecting with V9(see Fig.2(d)). This hairpin-like vortex structure will be totally detached from V9 and forms a new vortex ring as the one near V7 shown in Fig.2(d).

    To better understand the flow induced by the 3D vortex structures,two vertical slices are used to show the contour of spanwise vorticityωzat the basal part and distal part of the fin,respectively.Avon Kármán vortex street,which is a drag producing vortex structure,is found on the slice at the basal part(0.3l away from the fin base,see Fig.2(e)).However,due to the large flapping amplitude in the distal parts,effective Strouhal number is increased to 1.1 based on Atip.This is about four times of the mid-chord Strouhal number,which is measured 0.27 based on the flapping amplitude of the fin mid-chord,A.Thus,at 0.95l(Fig.2(f)),there are two sets of vortex pairs aligned at oblique angles to the wake centerline.This is the same as the wake topology of vortex rings shown in Fig.2(c).Each vortex pair will induce a strong local jet.The orientation of the jets induced by some of the vortex pairs is identified by arrows in Fig.2(f).These jets are mainly responsible for the thrust producing of the fins.It should be noted that the upper set of vortex pairs are much stronger than corresponding lower vortex pairs.This explains why the thrust generated during upstroke is larger than that generated during downstroke.

    In summary,the double vortex ring loops shed from the distal part of the MantaBot fins are responsible for thrust production of the propulsors.The large inflexion angle of the oscillatory fin not only helps the fin distal parts to achieve a higher effective Strouhal number for thrust production but also allows the fin basal parts to maintain minimum flapping amplitude,which results in a small amount of drag during the MantaBot's steady swimming.

    Acknowledgment

    This work was supported by the Office of Naval Research(ONR)(N00014-14-1-0533 and N00014-08-1-0642).H.Bart-Smith would like to acknowledge The David and Lucille Packard Foundation.

    [1]K.N.Lucas,N.Johnson,W.T.Beaulieu,E.Cathcart,G.Tirrell,S.P.Colin,B.J. Gemmell,J.O.Dabiri,J.H.Costello,Bending rules for animal propulsion,Nature Commun.5(2014)3293.

    [2]K.Moored,T.Kemp,N.Houle,H.Bart-Smith,Analytical predictions,optimization,and design of a tensegrity-based artificial pectoral fin,Int.J. Solids Struct.48(2011)3142-3159.

    [3]C.Koehler,Z.Liang,Z.Gaston,H.Wan,H.Dong,3D reconstruction and analysis of wing deformation in free-flying dragonflies,J.Exp.Biol.215(2012)3018-3027.

    [4]M.Bozkurttas,R.Mittal,H.Dong,G.Lauder,P.Madden,Low-dimensional models and performance scaling of a highly deformable fish pectoral fin,J.Fluid Mech.631(2009)311-342.

    [5]H.Dong,M.Bozkurttas,R.Mittal,P.Madden,G.Lauder,Computational modelling and analysis of the hydrodynamics of a highly deformable fish pectoral fin,J.Fluid Mech.645(2010)345-373.

    [6]H.Dong,C.Koehler,Z.Liang,H.Wan,Z.Gaston,An integrated analysis of a dragonfly in free flight,in:40th AIAA Fluid Dynamics Conference and Exhibit,AIAA,Chicago,Illinois,2010,pp.2010-4390.

    [7]Z.Liang,H.Dong,M.Wei,Computational analysis of hovering hummingbird flight,in:48th AIAA Aerospace Sciences Meeting Including the New Horizons Forumand Aerospace Exposition,AIAA,Orlando,F(xiàn)lorida,2010,pp.2010-2555.

    [8]J.Carling,T.Williams,G.Bowtell,Self-propelled anguilliform swimming: simultaneous solution of the two-dimensional Navier-Stokes equations and Newton's laws of motion,J.Exp.Biol.201(1998)3143-3166.

    [9]S.Kern,P.Koumoutsakos,Simulations of optimized anguilliform swimming,J.Exp.Biol.209(2006)4841-4857.

    [10]G.J.Dong,X.Y.Lu,Characteristics of flow over traveling wavy foils in a side-byside arrangement,Phys.Fluids 19(2007)057107.1994-present.

    [11]S.Wang,X.Zhang,G.He,Numerical simulation of a three-dimensional fishlike body swimming with finlets,Commun.Comput.Phys.11(4)(2012)1323-1333.

    [12]I.Borazjani,F(xiàn).Sotiropoulos,E.D.Tytell,G.V.Lauder,Hydrodynamics of the bluegill sunfish C-start escape response:three-dimensional simulations and comparison with experimental data,J.Exp.Biol.215(2012)671-684.

    [13]R.Ghias,R.Mittal,H.Dong,A sharp interface immersed boundary method for compressible viscous flows,J.Comput.Phys.225(2007)528-553.

    [14]C.Heine,Mechanics of flapping fin locomotion in the cownose ray(Ph.D. dissertation),Duke University,Durham,1992.

    [15]H.Dong,R.Mittal,F(xiàn).Najjar,Wake topology and hydrodynamic performance of low-aspect-ratio flapping foils,J.Fluid Mech.566(2006)309-344.

    ?Corresponding author.

    E-mail address:haibo.dong@virginia.edu(H.Dong).

    *This article belongs to the Fluid Mechanics

    国产v大片淫在线免费观看| 国产日本99.免费观看| 午夜老司机福利片| 欧美日韩亚洲国产一区二区在线观看| 夜夜躁狠狠躁天天躁| www.精华液| 亚洲国产精品久久男人天堂| 国产精品电影一区二区三区| 色综合婷婷激情| 国产熟女xx| 欧美 亚洲 国产 日韩一| 亚洲自偷自拍图片 自拍| 夜夜夜夜夜久久久久| 精品久久久久久成人av| 亚洲一区高清亚洲精品| 国产精品久久电影中文字幕| 看片在线看免费视频| 一本大道久久a久久精品| 亚洲av五月六月丁香网| 老熟妇乱子伦视频在线观看| 久久久久久九九精品二区国产 | 99国产精品99久久久久| 欧美性长视频在线观看| 亚洲精品国产区一区二| 亚洲自拍偷在线| 草草在线视频免费看| 久久中文看片网| 成人免费观看视频高清| 日本 欧美在线| 香蕉国产在线看| 99久久国产精品久久久| 人妻久久中文字幕网| 正在播放国产对白刺激| 好看av亚洲va欧美ⅴa在| 岛国在线观看网站| 每晚都被弄得嗷嗷叫到高潮| 中文字幕人成人乱码亚洲影| 黄色视频不卡| 亚洲黑人精品在线| 可以在线观看的亚洲视频| e午夜精品久久久久久久| svipshipincom国产片| 日本一本二区三区精品| www日本在线高清视频| 亚洲五月色婷婷综合| 悠悠久久av| 国产野战对白在线观看| 中文字幕人妻丝袜一区二区| 亚洲七黄色美女视频| 免费看a级黄色片| 黄色女人牲交| 91麻豆精品激情在线观看国产| 一进一出抽搐gif免费好疼| 高潮久久久久久久久久久不卡| 三级毛片av免费| 国产精品亚洲av一区麻豆| 国产精品 欧美亚洲| 精品国产乱子伦一区二区三区| 一区二区三区国产精品乱码| 亚洲va日本ⅴa欧美va伊人久久| 精品少妇一区二区三区视频日本电影| 999久久久精品免费观看国产| 亚洲一区二区三区色噜噜| 日本熟妇午夜| 此物有八面人人有两片| 久久亚洲精品不卡| 天天添夜夜摸| 1024手机看黄色片| 一卡2卡三卡四卡精品乱码亚洲| 亚洲欧美日韩高清在线视频| 成人国产综合亚洲| 成人国产一区最新在线观看| 国产精品美女特级片免费视频播放器 | 无人区码免费观看不卡| 91大片在线观看| 国产亚洲精品av在线| 又紧又爽又黄一区二区| 人人妻人人澡欧美一区二区| 波多野结衣高清作品| 国内毛片毛片毛片毛片毛片| 男人操女人黄网站| 亚洲精品国产一区二区精华液| 夜夜躁狠狠躁天天躁| 美国免费a级毛片| 国产亚洲av高清不卡| 日韩免费av在线播放| 免费电影在线观看免费观看| 精品国产乱码久久久久久男人| 久久天躁狠狠躁夜夜2o2o| 欧美色视频一区免费| 精品无人区乱码1区二区| 精品日产1卡2卡| 日日爽夜夜爽网站| 亚洲人成网站在线播放欧美日韩| 午夜两性在线视频| av欧美777| 深夜精品福利| 免费看十八禁软件| 国产精品亚洲av一区麻豆| xxx96com| 成人18禁在线播放| 欧美丝袜亚洲另类 | 熟妇人妻久久中文字幕3abv| 麻豆久久精品国产亚洲av| 国产精品久久久av美女十八| 成人亚洲精品一区在线观看| 制服诱惑二区| 国产av一区在线观看免费| 一级毛片精品| 国产精品亚洲一级av第二区| 19禁男女啪啪无遮挡网站| av超薄肉色丝袜交足视频| 一级作爱视频免费观看| 九色国产91popny在线| 美国免费a级毛片| 99久久99久久久精品蜜桃| 国产伦一二天堂av在线观看| 欧美性长视频在线观看| 亚洲 欧美 日韩 在线 免费| 亚洲 国产 在线| 久久久久久九九精品二区国产 | 亚洲精品在线美女| 亚洲国产看品久久| 国产精品av久久久久免费| 香蕉国产在线看| 成人18禁在线播放| 欧美日韩精品网址| 久久久国产欧美日韩av| av有码第一页| 国产欧美日韩一区二区精品| 精品久久久久久久久久免费视频| 欧美又色又爽又黄视频| videosex国产| 亚洲成国产人片在线观看| 日日夜夜操网爽| 一本综合久久免费| 少妇被粗大的猛进出69影院| 一个人观看的视频www高清免费观看 | 国产片内射在线| 91九色精品人成在线观看| 亚洲国产欧美日韩在线播放| 啦啦啦 在线观看视频| а√天堂www在线а√下载| 午夜免费激情av| 亚洲av电影不卡..在线观看| 白带黄色成豆腐渣| 久久国产精品男人的天堂亚洲| 少妇裸体淫交视频免费看高清 | 天堂√8在线中文| 少妇裸体淫交视频免费看高清 | 日韩欧美三级三区| 久久精品国产亚洲av香蕉五月| 免费观看人在逋| 国产国语露脸激情在线看| cao死你这个sao货| 色在线成人网| 国产97色在线日韩免费| 亚洲人成77777在线视频| 亚洲av成人不卡在线观看播放网| av欧美777| 老汉色∧v一级毛片| 亚洲人成网站在线播放欧美日韩| 欧美丝袜亚洲另类 | 亚洲成人国产一区在线观看| 熟妇人妻久久中文字幕3abv| 国产97色在线日韩免费| 亚洲色图 男人天堂 中文字幕| 亚洲一区二区三区不卡视频| 国产色视频综合| 精品一区二区三区av网在线观看| 亚洲性夜色夜夜综合| 婷婷精品国产亚洲av| 天堂影院成人在线观看| 久9热在线精品视频| av有码第一页| 国产一级毛片七仙女欲春2 | 国内毛片毛片毛片毛片毛片| av欧美777| 色综合婷婷激情| 亚洲精华国产精华精| 日韩欧美 国产精品| 在线观看66精品国产| 99国产精品99久久久久| 高潮久久久久久久久久久不卡| 国产精品久久久久久人妻精品电影| 一边摸一边做爽爽视频免费| 亚洲aⅴ乱码一区二区在线播放 | 亚洲全国av大片| 99久久国产精品久久久| 免费人成视频x8x8入口观看| 9191精品国产免费久久| 国产精品一区二区三区四区久久 | cao死你这个sao货| 91麻豆精品激情在线观看国产| 亚洲 国产 在线| 波多野结衣高清作品| 中亚洲国语对白在线视频| 97超级碰碰碰精品色视频在线观看| 淫妇啪啪啪对白视频| 中文资源天堂在线| 国产午夜福利久久久久久| 精品国产美女av久久久久小说| 国产精品久久久久久精品电影 | 2021天堂中文幕一二区在线观 | 久久天堂一区二区三区四区| 露出奶头的视频| 啪啪无遮挡十八禁网站| 久久香蕉激情| 天堂√8在线中文| 久久99热这里只有精品18| 国产蜜桃级精品一区二区三区| 婷婷六月久久综合丁香| 美女高潮喷水抽搐中文字幕| 免费人成视频x8x8入口观看| 久久久久久亚洲精品国产蜜桃av| 中文字幕av电影在线播放| 又黄又粗又硬又大视频| 亚洲精品国产区一区二| 岛国视频午夜一区免费看| 国产高清激情床上av| 嫩草影院精品99| 国产精华一区二区三区| 日本 欧美在线| 免费看日本二区| 亚洲人成网站高清观看| 性欧美人与动物交配| 亚洲avbb在线观看| 国产精品 国内视频| 欧美日韩亚洲国产一区二区在线观看| 男男h啪啪无遮挡| 中文字幕av电影在线播放| 国产精品98久久久久久宅男小说| 亚洲狠狠婷婷综合久久图片| 国产99久久九九免费精品| 一a级毛片在线观看| 别揉我奶头~嗯~啊~动态视频| 精品国产乱子伦一区二区三区| 搡老岳熟女国产| 国产熟女午夜一区二区三区| 精品国产国语对白av| 无遮挡黄片免费观看| 免费女性裸体啪啪无遮挡网站| 国产精品二区激情视频| 变态另类成人亚洲欧美熟女| 日本五十路高清| 女性生殖器流出的白浆| 美女高潮到喷水免费观看| 国产精品久久视频播放| 欧美黄色淫秽网站| 国产1区2区3区精品| 91字幕亚洲| 女生性感内裤真人,穿戴方法视频| 亚洲人成电影免费在线| 国产成人精品久久二区二区免费| 国产又爽黄色视频| 99riav亚洲国产免费| 成人精品一区二区免费| 人人妻人人澡欧美一区二区| 欧美zozozo另类| 亚洲在线自拍视频| 亚洲国产高清在线一区二区三 | 欧美成人一区二区免费高清观看 | 久久性视频一级片| 看免费av毛片| 久久精品人妻少妇| 久久久精品欧美日韩精品| 国产区一区二久久| 日韩国内少妇激情av| 久久精品国产清高在天天线| 午夜精品久久久久久毛片777| 91大片在线观看| 久久精品人妻少妇| 国产精品自产拍在线观看55亚洲| 久久这里只有精品19| 香蕉久久夜色| 久久狼人影院| 成人手机av| 亚洲中文日韩欧美视频| 欧美日本亚洲视频在线播放| 久久天躁狠狠躁夜夜2o2o| 黄色毛片三级朝国网站| 亚洲国产精品999在线| 欧美日韩乱码在线| 成人国语在线视频| 激情在线观看视频在线高清| 欧美黑人精品巨大| 成人手机av| 国产激情欧美一区二区| 亚洲真实伦在线观看| 99国产精品一区二区蜜桃av| 淫妇啪啪啪对白视频| 在线视频色国产色| 久久人妻福利社区极品人妻图片| 国产成人一区二区三区免费视频网站| 欧美最黄视频在线播放免费| 国产精品亚洲一级av第二区| 久久久国产欧美日韩av| 免费观看人在逋| 成熟少妇高潮喷水视频| 不卡av一区二区三区| 成人国产综合亚洲| 国产精品免费一区二区三区在线| a级毛片在线看网站| 制服人妻中文乱码| 久久国产精品影院| av欧美777| 狠狠狠狠99中文字幕| 久久这里只有精品19| 国产熟女xx| 亚洲成人久久性| 国产精品久久久人人做人人爽| 大型av网站在线播放| 午夜福利成人在线免费观看| 中文亚洲av片在线观看爽| 国产精品,欧美在线| 久久亚洲真实| 国内精品久久久久精免费| 妹子高潮喷水视频| www.999成人在线观看| 69av精品久久久久久| 亚洲国产中文字幕在线视频| 亚洲五月色婷婷综合| 亚洲av成人av| 亚洲五月婷婷丁香| 国产又黄又爽又无遮挡在线| 日韩免费av在线播放| 国产一区二区激情短视频| 十分钟在线观看高清视频www| 老熟妇乱子伦视频在线观看| 在线永久观看黄色视频| 久久午夜亚洲精品久久| 老司机在亚洲福利影院| 亚洲精华国产精华精| 亚洲av五月六月丁香网| 精品免费久久久久久久清纯| 国产精品乱码一区二三区的特点| 亚洲人成77777在线视频| 国产99久久九九免费精品| 日韩欧美三级三区| 男女那种视频在线观看| 宅男免费午夜| 日本一本二区三区精品| 美女高潮喷水抽搐中文字幕| 怎么达到女性高潮| 一二三四社区在线视频社区8| 观看免费一级毛片| 99精品欧美一区二区三区四区| 99热这里只有精品一区 | 99久久国产精品久久久| 神马国产精品三级电影在线观看 | 怎么达到女性高潮| 日韩欧美一区二区三区在线观看| 亚洲欧洲精品一区二区精品久久久| 亚洲精品一区av在线观看| 中文字幕精品亚洲无线码一区 | 黄片大片在线免费观看| 欧美三级亚洲精品| 两性夫妻黄色片| 一区二区三区激情视频| 精品欧美国产一区二区三| 亚洲精品在线美女| 精品免费久久久久久久清纯| 亚洲一区中文字幕在线| 99国产精品一区二区蜜桃av| 国语自产精品视频在线第100页| 99国产精品一区二区蜜桃av| 欧美日韩精品网址| 亚洲精品久久国产高清桃花| 国产视频一区二区在线看| 国产精品久久视频播放| 中文亚洲av片在线观看爽| 日韩大码丰满熟妇| 欧美 亚洲 国产 日韩一| 久久中文看片网| 中文在线观看免费www的网站 | 亚洲黑人精品在线| 在线观看66精品国产| 18美女黄网站色大片免费观看| 好看av亚洲va欧美ⅴa在| 欧美久久黑人一区二区| 宅男免费午夜| 久久人妻av系列| 黄片小视频在线播放| 国产成人欧美在线观看| 97人妻精品一区二区三区麻豆 | 成人av一区二区三区在线看| 国产麻豆成人av免费视频| 亚洲熟女毛片儿| 嫁个100分男人电影在线观看| 女同久久另类99精品国产91| a在线观看视频网站| 少妇 在线观看| 亚洲国产精品成人综合色| 日韩精品中文字幕看吧| 欧美zozozo另类| 精品福利观看| 麻豆av在线久日| 国产视频一区二区在线看| 日韩大码丰满熟妇| 丝袜在线中文字幕| 人人妻人人澡人人看| 欧美+亚洲+日韩+国产| 免费在线观看亚洲国产| 国产男靠女视频免费网站| 免费在线观看成人毛片| 丁香欧美五月| 欧美中文综合在线视频| 香蕉av资源在线| 久久热在线av| 他把我摸到了高潮在线观看| 国内精品久久久久久久电影| 不卡一级毛片| 久久中文字幕人妻熟女| 精品午夜福利视频在线观看一区| 最新美女视频免费是黄的| av欧美777| 一卡2卡三卡四卡精品乱码亚洲| 国产精品久久久久久亚洲av鲁大| 午夜精品久久久久久毛片777| 精品一区二区三区视频在线观看免费| 中文字幕另类日韩欧美亚洲嫩草| netflix在线观看网站| 国产一区二区激情短视频| 人妻丰满熟妇av一区二区三区| 一区福利在线观看| 三级毛片av免费| 欧美成人午夜精品| 国产精品久久久久久人妻精品电影| 国产熟女xx| 久久久国产精品麻豆| 九色国产91popny在线| 男女做爰动态图高潮gif福利片| www国产在线视频色| 亚洲中文字幕一区二区三区有码在线看 | 可以在线观看毛片的网站| 天堂动漫精品| 国产在线精品亚洲第一网站| 国产av一区二区精品久久| 特大巨黑吊av在线直播 | 热99re8久久精品国产| 一区二区三区激情视频| 日本 欧美在线| 欧美激情久久久久久爽电影| 亚洲av第一区精品v没综合| 亚洲狠狠婷婷综合久久图片| 亚洲成av片中文字幕在线观看| 亚洲一区中文字幕在线| 免费观看人在逋| 美女大奶头视频| 午夜福利在线观看吧| 免费在线观看视频国产中文字幕亚洲| 色综合站精品国产| 精品国产乱子伦一区二区三区| 久久精品国产亚洲av香蕉五月| 人妻久久中文字幕网| 国产亚洲精品第一综合不卡| 一级片免费观看大全| 午夜两性在线视频| 国产成人一区二区三区免费视频网站| 国产一区在线观看成人免费| 精品久久久久久久久久久久久 | 99热6这里只有精品| 久久国产精品男人的天堂亚洲| 精品久久久久久久久久久久久 | 91大片在线观看| 国产精品九九99| 国产免费男女视频| 嫁个100分男人电影在线观看| 日韩免费av在线播放| 国产单亲对白刺激| 国产精品免费一区二区三区在线| 人人妻人人看人人澡| av视频在线观看入口| 夜夜看夜夜爽夜夜摸| 无人区码免费观看不卡| av欧美777| 高潮久久久久久久久久久不卡| 久久久精品欧美日韩精品| 婷婷亚洲欧美| 99在线视频只有这里精品首页| 免费看a级黄色片| 久久伊人香网站| 亚洲久久久国产精品| 韩国av一区二区三区四区| 日本 欧美在线| 成人av一区二区三区在线看| 精品欧美一区二区三区在线| 岛国视频午夜一区免费看| 精品卡一卡二卡四卡免费| 色播亚洲综合网| 国产成人欧美| 久久久久国产一级毛片高清牌| 亚洲成人国产一区在线观看| 9191精品国产免费久久| 午夜福利在线观看吧| 日韩免费av在线播放| 特大巨黑吊av在线直播 | 国产伦在线观看视频一区| 99久久无色码亚洲精品果冻| 麻豆久久精品国产亚洲av| 性欧美人与动物交配| 宅男免费午夜| 在线观看舔阴道视频| 夜夜爽天天搞| 亚洲全国av大片| 亚洲avbb在线观看| 国产午夜精品久久久久久| 欧美精品啪啪一区二区三区| 好男人在线观看高清免费视频 | 久久国产精品人妻蜜桃| av在线天堂中文字幕| 国产精品99久久99久久久不卡| 在线观看日韩欧美| 男女下面进入的视频免费午夜 | 亚洲第一青青草原| 在线国产一区二区在线| 国产精品久久视频播放| 亚洲av成人不卡在线观看播放网| 成人18禁在线播放| 精品久久久久久久毛片微露脸| 亚洲欧美精品综合一区二区三区| 热99re8久久精品国产| 久久精品aⅴ一区二区三区四区| 亚洲精品av麻豆狂野| 欧美zozozo另类| 午夜视频精品福利| 熟女少妇亚洲综合色aaa.| 日韩一卡2卡3卡4卡2021年| 国产精品久久久人人做人人爽| 中文字幕高清在线视频| 中国美女看黄片| 波多野结衣高清无吗| 丰满人妻熟妇乱又伦精品不卡| 欧美日韩中文字幕国产精品一区二区三区| 午夜激情av网站| 国产麻豆成人av免费视频| 婷婷六月久久综合丁香| 精品卡一卡二卡四卡免费| 18美女黄网站色大片免费观看| 男人舔奶头视频| 国产激情久久老熟女| 国产精品日韩av在线免费观看| 午夜激情av网站| 午夜老司机福利片| 久久精品国产清高在天天线| 美国免费a级毛片| 青草久久国产| 久久国产精品男人的天堂亚洲| 啦啦啦观看免费观看视频高清| 日日干狠狠操夜夜爽| 日韩欧美 国产精品| 国产精品久久电影中文字幕| 久久久久久大精品| 白带黄色成豆腐渣| 操出白浆在线播放| 日韩欧美一区二区三区在线观看| 欧美乱码精品一区二区三区| 国产色视频综合| 一级a爱片免费观看的视频| 精品国内亚洲2022精品成人| 一个人观看的视频www高清免费观看 | 美女 人体艺术 gogo| 黄色女人牲交| 国产亚洲精品一区二区www| 久久九九热精品免费| 欧美在线黄色| 精品久久久久久久人妻蜜臀av| 午夜福利在线观看吧| 午夜影院日韩av| 高潮久久久久久久久久久不卡| 亚洲一码二码三码区别大吗| 自线自在国产av| 亚洲天堂国产精品一区在线| 日本免费a在线| 不卡一级毛片| 亚洲男人的天堂狠狠| 成人亚洲精品一区在线观看| 中文亚洲av片在线观看爽| 久久精品国产99精品国产亚洲性色| 美女高潮喷水抽搐中文字幕| www日本在线高清视频| 18禁黄网站禁片午夜丰满| 精品国产美女av久久久久小说| 美国免费a级毛片| 麻豆国产av国片精品| 国产主播在线观看一区二区| 在线观看舔阴道视频| 国产av又大| 久久精品aⅴ一区二区三区四区| netflix在线观看网站| 成年人黄色毛片网站| 国产精品香港三级国产av潘金莲| 亚洲av成人一区二区三| 午夜精品在线福利| 日本 av在线| 好看av亚洲va欧美ⅴa在| 99在线视频只有这里精品首页| 久久精品aⅴ一区二区三区四区| 在线观看舔阴道视频| 好男人在线观看高清免费视频 | 久久 成人 亚洲| 国产成人影院久久av| 美女午夜性视频免费| 亚洲av片天天在线观看| 欧美乱妇无乱码| 日韩欧美一区视频在线观看| 国产伦在线观看视频一区| av福利片在线| 国产91精品成人一区二区三区| 欧美国产精品va在线观看不卡| 日韩有码中文字幕| 欧美激情 高清一区二区三区| 岛国在线观看网站| 日韩一卡2卡3卡4卡2021年| 亚洲精品美女久久久久99蜜臀|