• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Investigation of a transonic separating/reattaching shear layer by means of PIV

    2015-11-21 07:27:30Scharnowskihler

    S.Scharnowski,C.J.K?hler

    Institute of Fluid Mechanics and Aerodynamics,Bundeswehr University Munich,Neubiberg,Germany

    Investigation of a transonic separating/reattaching shear layer by means of PIV

    S.Scharnowski?,C.J.K?hler

    Institute of Fluid Mechanics and Aerodynamics,Bundeswehr University Munich,Neubiberg,Germany

    A R T I C L E I N F O

    Article history:

    Received 25 October 2014

    Accepted 8 December 2014

    Available online 3 February 2015

    Backward-facing step

    Shear layer

    Reattachment

    Particle Image Velocimetry

    The separating/reattaching flow over an axisymmetric backward-facing step is analyzed experimentally by means of particle image velocimetry(PIV).The main purpose of the measurements is the investigation of the mean flow field as well as of the Reynolds stress distributions at a Mach number of 0.7 and at a Reynolds number of 3.3×105based on the step height.Due to the strong progress of optical flow measurements in the last years it was possible to resolve all flow scales down to 180μm(≈1%of the step height)with high precision.Thanks to the high spatial resolution it was found for the first time that the Reynolds stress distribution features a local minimum between the first part of the shear layer and a region inside the recirculation region.This implies a more complex wake dynamics than assumed before.

    ?2015 The Authors.Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

    The flow around a backward-facing step(BFS)is one of the canonical test cases in aerodynamics which was extensively studied both experimentally and numerically in the last decades.Although the geometry is rather simple,the flow field is relatively complex,as illustrated in Fig.1.The incoming turbulent boundary layer developing along the forebody is forced to separate at the sharp edge.As a result of a Kelvin-Helmholtz instability tiny coherent vortices are generated in the first part of the very thin shear layer which increases in size as they are convecting downstream.According to Simpson[1],the spanwise coherence starts to break down after 3 step heights due to secondary instabilities,and the turbulent structures become fully three dimensional even faster upstream of reattachment.This on average causes a broadening of the shear layer with increasing distance from the point of separation.Due to the enhanced turbulent mixing the shear layer reattaches on the lower wall.The mean flow field is characterized by a large recirculation region,which is separated from the outer region by the dividing streamline.However,the reattachment location is not fixed in space and time due to the dynamic of coherent vortices.Some of the coherent shear layer vortices move into the recirculation region by an adverse pressure gradient,according to Chandrasuda[2]and McGuinness[3]and they interact with the next generation of shear layer vortices or trigger the instability as they disturb the shear layer itself,if they survive sufficiently long before they vanish due to viscosity.Due to this feedback,the shear layer of a backward-facing step differs significantly from a free shear layer.Furthermore,the vortices traveling upstream into the primary recirculation region decay into smaller vortices due to secondary Kelvin-Helmholtz instabilities,or they become larger and weaker due to viscosity effects.Due to the increasing pressure with decreasing distance from the step,the upward motion of the fluid along the lower wall separates again.As a result,a secondary recirculation region is formed on average in the corner of the primary recirculation region with opposite sign of vorticity.

    Bradshaw and Wong[4]as well as Eaton and Johnston[5]showed in their review papers that for a 2D BFS the stream-wise extension of the primary recirculation region mainly depends on the step height and on the state of the incoming boundary layer. The reattachment length is between 5 and 7 times the step height for a fully turbulent incoming flow state at the point of separation. This holds for a Reynolds number range of Reh=3000-300 000 based on the step height.Simpson[1]showed in his review paper,that the instantaneous impingement location of the shear layer moves up-and downstream by as much as±2 step heights.The second half of the separated flow region is characterized by a strongly curved shear layer,indicated by the dividing streamline in Fig.1.In this region the shear layer broadens and the Reynolds stresses increase.Eaton and Johnston[5]compared several experiments on 2D models and concluded that the streamwise location with maximum stream-wise Reynolds normal stress and shear stress is close to the reattachment location or slightly upstream.However,it is not evident if this is an artifact of a low measurement resolution or in case it holds true,what is the physical effect that leads to the strong intensity of the Reynolds stresses close to the mean reattachment location.

    Fig.1.Backward-facing step flow field.

    The early measurements[4,5]were performed by point-like probes(LDAand hot-wire).Thus,they revealed only profiles rather than spatial distributions of the velocity,and they were not able to detect instantaneous flow structures.PIV,on the other hand,allows to measure non-intrusively thousands of 2D or 3D velocity fields within a few seconds.Huang and Fiedler[6]used PIVto study the temporal development of the starting flow of a backwardfacing step in a water tunnel at Reh=4300.They showed that an initially formed regular vorticity street collapses after a short time(t·U/h=17)due to vorticity interaction.More recent experiments[7,8]investigated turbulent structures within instantaneous velocity fields to detect vortices and measure their size and swirling strength at relatively low Reynolds numbers(Reh≈5000).It was shown thatthe size ofspan-wise aligned rollers grows nearly linearly in the first part of the shear layer for a 2D BFS.Furthermore,a significant fraction of counter rotating vortices indicated an early three dimensional breakdown resulting in a varying reattachment location.Le,Moin,and J.Kim[9]also observed this phenomena in direct numericalsimulations(DNS)for a similar test case.

    Roshko and Thomke[10]investigated the turbulent reattachment downstream of an axisymmetric step in supersonic flow by means of intrusive pitot probe measurements and non-intrusive schlieren images.They found that the reattachment length is only 2.8-3.7 times the step height for Mach numbers between 2 and 4.5.Bitter et al.[11]performed measurements at Ma=0.7 and presented also a value of 3.7 for this quantity.Low speed experiments also showed a decreased length of the reattachment location[12,13]indicating that the round shape of the model reduces this quantity significantly.The flow over a cylindrical forebody elongated by a second cylinder of smaller diameter and finite length was in the focus of several numerical investigations[14-17]andofexperiments presented in Ref.[18].Depres etal.[18]performed unsteady wallpressure measurements on the elongated cylinder at Mach numbers between 0.6 and 0.85.Two characteristic frequencies were found inthe pressure spectra.The corresponding Strouhal numbers(based on the forebody's diameter d)are Std=0.2 and Std=0.6,which are related to the formation oflarge scale vortices and convection of turbulent eddies in the separated shear layer,respectively.Bitter etal.[11]analyzed the pressure dynamics for a similar model,with a very long base cylinder,using fast-responding pressure-sensitive paint.They showed the spatial distribution of the surface pressure:The maximum amplitude corresponds to a Strouhal number of Std=0.21 and was detected at a location shortly after reattachment.

    The aim of this work is the estimation of the mean velocity and the Reynolds stress distribution in the wake of an axisymmetric BFS at a transonic Mach number and a high Reynolds number. Since only little information is available in the literature for such conditions,these statistical flow properties are very important for the validation of new numerical approaches as well as for the comparison of different experiments.To achieve the aim a large amount of statistically independent PIV recordings will be analyzed with high resolution evaluation methods.Only nonintrusive and spatially resolving techniques,like PIV,are suited to provide the required results.

    Fig.2.Axisymmetric backward-facing step with rearsting.The laserlightsheetand the field of view(FOV)for high-repetition rate PIV measurements are illustrated. Numerical values are given in mm.

    The measurements were performed in the Trisonic Wind tunnel at the Bundeswehr University in Munich.It is a blow down wind tunnel with a test section of 675 mm height,300 mm width and 1200 mm length.The total pressure range of the wind tunnel is pt=(1.2,...,5)bar,leading to a Reynolds number range of Reh≈(1.2,...,12)×105.The Mach number is adjustable between 0.3 and 3.0.The facility is described in detail in Ref.[19].

    The tests were performed on a blunt axisymmetric model,sketched in Fig.2.The configuration consists of a 36°cone with a spherical nose of R=5 mm and a cylindrical part with a length of 164.3 mm and a diameter of d=54 mm.The connection between cone and main body is smooth to avoid leading edge separation. The model was made of aluminum and the surface is polished to avoid diffuse reflections at the wall,which would bias the near wall PIV measurements[20,21].A rear sting,21.5 mm in diameter,in the base of the cylinder was used for mounting the model in the middle of the test section of the wind tunnel.Thus the step height is h=16.25 mm.Compared to a strut mounting,applied by van Oudheusden and Scarano[22],the rear sting avoids strong 3D effects on the flow in and around the base region of the model. The model's size is selected to optimize for the blockage effect in the test section of the wind tunnel and the spatial resolution of the PIV measurements.

    For the PIV measurements the flow is seeded with DEHS(Di-Ethyl-Hexyl-Sebacat)tracer particles with a mean diameter of 1μm[23].Due to the limited run time of the facility(about 50 s)and the large number of recordings required for the measurement of statistical quantities,a high-repetition rate PIV system was used.The laser beam is shaped into a 1 mm thick light sheet which illuminates the tracer particles on the field of view(FOV),as sketched in Fig.2.21 500 PIV double images,1280×400 px in size,were captured at a Mach number of Ma=0.7 and a total pressure of p0=1.5 bar leading to a Reynolds number of Reh= 3.3×105,based on the step height.The recording frequency was 2 kHz,corresponding to a total measurement time of T=10.75 s. Since the vortex shedding frequency is around 900 Hz[11],the images are considered as uncorrelated,which is essential for the computation of statistical values.

    Two different evaluation procedures were applied to the PIV images in order to achieve instantaneous as well as ensemble averaged velocity fields.The first method,window correlation including iterative concepts with window shifting and image deformation[24],allows to compute 21 500 instantaneous velocity fields from which one is shown in Fig.3(a).Here,the spatial resolution is rather low(322px corresponding to 5%of the main body diameter)because each interrogation window should contain at least 6-10 particle images in order to keep the number of spurious vectors at an acceptable level[25,26].The second evaluation approach is the single-pixel ensemble-correlation. It can be used for a large amount of PIV image pairs and results in improved spatial resolution and dynamic spatial range[27,28].Recently,the single-pixelevaluation was further expanded to estimate Reynolds stresses in turbulentflows with nearly singlepixel resolution[29].Furthermore the evaluation technique wasenhanced by compensating bias errors due to curved stream lines[30].

    In the following the approaches are used to evaluate the mean velocity as well as the Reynolds stress distribution.The instantaneous velocity fields,computed by window correlation,are used to analyze the shape and size of coherent structures in the model's wake.

    Instantaneous flow fields,as shown in Fig.3(a),are unique and not very useful for the comparison of different experiments or for the validation of numerical flow simulation.For this reason the mean velocity distribution is required.Figure 3(b)shows the mean velocity field computed from 21 500 PIV image pairs with singlepixel ensemble-correlation.According to the findings of K?hler et al.[27],the in-plane resolution of the vector field is about 180μm≈0.01h.

    The boundary layer upstream of the BFS strongly influences the wake flow topology[4,5].The boundary layer thickness and the free stream velocity at x/h=-0.3 were estimated to beδ99=(0.40±0.02)h=(6.5±0.3)mm and u∞=(237±1)m.s-1,respectively.The displacement thickness at x/h=-0.3 is

    Fig.4.Maximum velocity gradient in the separated shear layer.

    leading to a shape factor of H12=δ1/δ2≈1.17.Thus,for the analyzed Mach and Reynolds number combination the boundary layer at the end of the main body is fully turbulent.From the last data points,the near wall gradient was estimated to be?u/?y|y=h>8.6×105s-1.Hence,the wall-shear stress can be estimated to

    and the friction velocity

    where the viscosity and the density areμ=1.66×10-5Ps.s and ρ=1.43 kg.m-3,respectively.The viscous sub-layer could not be resolved with the chosen setup and evaluation techniques.A higher resolution combined with PTV evaluation techniques,based on those discussed in Cierpka,Scharnowski,and K?hler[21],would be required for this task.

    At x/h=0 the separation forms a thin shear layer which broadens further downstream.Fig.4 shows the developmentofthe maximum velocity gradient with respect to the horizontal location estimated from the velocity distribution in Fig.3(b).A reciprocal fit function shows good agreement with the measurement points. The decay of the velocity gradient goes hand in hand with a growing shear-layer thickness,which reaches values in the order of the step height downstream of reattachment.At x/h=3.52±0.10 the ensemble-averaged flow reattaches on the rear sting,which is slightly shorter than numerical predictions presented by Deck and Thorigny[14].The difference might be due to differences in the turbulence level of the incoming and boundary layer flow along the model,as discussed in Isomoto and Honami[31]or the disturbances in the recirculation region are not high enough in the numerical simulation.Inside the dividing streamline a distinct recirculation region develops,wherein the maximum mean upstream velocity is≈88 m s-1.

    Besides the mean velocity distribution,analyzed in the previous section,the velocity fluctuations are essential to characterize the flow over the BSF and to compare to other experiments or to validate turbulence models used for CFD simulations.Fig.5 shows the distribution ofthe Reynolds normalstress in the axialdirection,in the radial direction,and the Reynolds shear stress computed by using the single-pixel approach.This method allows for the reliable estimation of Reynolds stresses without spatial lowpass filtering,by analyzing the shape of single-pixel correlation functions.The evaluation procedure was developed by the authors and is discussed in detail in Scharnowski,Hain,and K?hler[29].

    The normal stress in the axial direction,in Fig.5(a),has a maximum around x/h≈2.5 and it decreases towards the upstream part of the recirculation region as well as for locations downstream of reattachment,in agreement with the findings of Eaton and Johnston[5].Additionally,the shear layer shortly after separation shows high stress values.The stress distribution clearly shows two maxima and a valley in between at y/h≈0.75 within the recirculation region.The two regions of high stress intensity with the valley in between were not reported in the works based on point-wise measurements[4,5].Also,more recent PIV measurements by Hudy et al.[13]and Bitter et al.[19]did not resolve this topology,due to the limited spatial resolution and spatial low-pass filtering.Recently,Weiss and Deck[32]detected a similar distribution with two maxima in numerical flow simulations.Scharnowski et al.[33]analyzed the spatialdistribution ofvortices in the models wake and showed that the double peak structure in the streamwise Reynolds stress distribution is a result of the mean vortexdistribution.They detected a very high density of vortices in the developing shear layer and a small region just below in that the amount of detected vortices is significantly lower.This region corresponds to the local minimum in the stress distributions from Fig.5(a).Furthermore,the single-pixel evaluation detects increasing stresses near the surface of the rear sting at y/h=0.The high stress values at the reattachment location are caused by the strong fluctuation of the reattachment line.Profiles of the axial Reynolds stress at the location ofreattachmentpresented in the literature[8,5,13]are in good qualitative agreement with those in Fig.5(a). However,they did not report a strong increase in the near wall region.

    The maximum position of the Reynolds normal stress in the radial direction,in Fig.5(b),is shifted downstream to x/h≈3.3 compared to that of the u′2-distribution.In the radial direction,the v′2-distribution has its maximum at y/h≈0.3 close to reattachment.Figure 5(b)shows not a very deep valley,as in the case of u′2,but two inflection points around y/h≈0.7 can be clearly resolved.

    The Reynolds shear stress distribution in Fig.5(c)is mainly negative within the separated region leading to turbulence production.The maximum position of the u′v′distribution is around x/h≈3.6,which is in agreementwith the findings ofEaton and Johnston[5].The line plots within the recirculation region in Fig.5(c)show again two maxima around y/h=0.7.The primary maximum at y/h≈0.9 corresponds to the oscillating shear layer and the secondary one at y/h≈0.5 is a result of the higher probability of vortices in the recirculation region,as discussed in Ref.[33].

    To examine the relation between vortical motion and Reynolds stresses,the two pointcorrelation function was calculated fromthe instantaneous velocity fields.For the velocity component ui,the two-point correlation coefficient is defined as

    Fig.5.Distribution of the Reynolds normal stresses in(a)the axial direction,in(b)the radial direction,and(c)the Reynolds shear stress estimated from the shape of the correlation functions using single-pixel ensemble-correlation.

    Fig.6.Two-point correlation of the axial(a)and radial(b)velocity component for a characteristic location in the shear layer.Dividing streamlines of the primary and secondary recirculation regions are indicated by dashed lines.

    Figure 6 shows the spatial distribution of the two-point correlation coefficient of the axial Ruuand radial velocity component R vv for a characteristic location in the shear layer.It can be seen from Ruu(Fig.6(a))that large coherent structures develop in the separated region.The shape of the structures reveals a direct connection between both sides of the dividing stream line,leading to the conclusion thatvortices inside and outside the recirculation region are coherent with each other.

    In Fig.6(b),the two-point correlation of the vertical velocity component Rvvis illustrated.The negative correlation next to the maximumindicates vortices with their center axis aligned perpendicular to the measurementplane:The verticalvelocity component in the upstream and downstream part of a vortex are of opposite sign,which causes a negative correlation coefficient.Additionally,the correlation with the previous and the following vortex can be seen from the neighboring extrema in the Rvv-distribution.Thus,it can be concluded that the shear layer vortices are generated more or less periodically as expected from the Kelvin-Helmholtz instability.The distance between neighboring minimum and maximum in R vv grows with increasing distance from the model's base as the Kelvin-Helmholtz vortices grow in size.Figure 7 shows this distance with respect to the horizontal position x/h for shear layer vortices at y/h=1.Whereλis the distance between the maximum and the minimum and the corresponding x-location in Fig.7 is the mean between the center position of both extrema.The distance 2λis the mean separation oftwo coherentvortices,which increases nearly linearly with x,as can be seen from the figure.From this it can be concluded that the size of the vortices in the shear layer grows linearly and the vortices are accelerated while traveling downstream.Both effects resultin a constant Strouhalnumber.

    Due to improved PIV evaluation methods it was possible to estimate turbulence statistics in the wake of a axisymmetric backward-facing step flow without spatial low-pass filtering at a Mach number of 0.7 and at a Reynolds number of 3.3×105. A low magnification imaging approach combined with singlepixel ensemble-correlation allows to achieve a very large dynamicspatial range and high accuracy required to resolve the strong flow gradients.

    The mean flow field of the axisymmetric backward-facing step features a recirculation region that extends more than one model diameter in the axial direction in accordance with the literature. The shear layer reattaches on the model's rear sting at x/h= 3.52 which matches well with previous investigations by other authors at low Ma numbers.The motion of the separated shear layer causes an increase in the velocity fluctuations and thus in the Reynolds stress level.Between the shear layer and the primary recirculation region a distinct valley in the stress distributions was found.Two-point correlation of the in-plane velocity components revealed large coherent structures in the recirculation region.A periodic generation of shear layer vortices was found and the spatial separation between coherent structures was determined. The results are very important for the validation of new numerical methods as well as for a better understanding of the flow physics.

    This work was supported by the German Research Foundation DFG in the framework of the TRR40.Technical language revisions by Rodrigo Segura are also appreciated.

    Fig.7.Separation between neighboring coherent structures estimated from the distance between minimum and maximum of Rvvas shown in Fig.6(b).

    [1]R.L.Simpson,Turbulent boundary-layer separation,Annu.Rev.Fluid Mech.21(1989)205-234.

    [2]C.Chandrasuda,A reattaching turbulent shear layer in incompressible flow(Ph.D.thesis),Imperial College London,University of London,1975.

    [3]M.McGuinness,F(xiàn)low with a separation bubble:steady and unsteady aspects(Ph.D.thesis),University of Cambridge,1978.

    [4]P.Bradshaw,F(xiàn).Y.F.Wong,The reattachment and relaxation of a turbulent shear layer,J.Fluid Mech.52(1972)113-135.http://dx.doi.org/10.1017/ S002211207200299X.

    [5]J.K.Eaton,J.P.Johnston,A review of research on subsonic turbulent flow reattachment,AIAA J.19(1981)1093-1100.http://dx.doi.org/10.2514/3. 60048.

    [6]H.T.Huang,H.E.Fiedler,A DPIV study of a starting flow downstream of a backward-facing step,Exp.Fluids 23(1997)395-404.http://dx.doi.org/10. 1007/s003480050127.

    [7]F.Scarano,C.Benocci,M.L.Riethmuller,Pattern recognition analysis of the turbulentflow pasta backward facing step,Phys.Fluids11(1999)3808.http:// dx.doi.org/10.1063/1.870240.

    [8]C.Schram,P.Rambaud,M.L.Riethmuller,Wavelet based eddy structure education from a backward facing step flow investigated using particle image velocimetry,Exp.Fluids 36(2004)233-245.http://dx.doi.org/10.1007/ s00348-003-0695-9.

    [9]H.Le,P.Moin,K.J.Kim,Direct numerical simulation of turbulent flow over a backward facing step,J.Fluid Mech.330(1997)349-374.http://dx.doi.org/10. 1017/S0022112096003941.

    [10]A.Roshko,G.J.Thomke,Observations of turbulent reattachment behind an axisymmetric downstream-facing step in supersonic flow,AIAA J.4(1966)975-980.

    [11]M.Bitter,T.Hara,R.Hain,D.Yorita,K.Asai,C.J.K?hler,Characterization of pressure dynamics in an axisymmetric separating/reattaching flow using fast-responding pressure-sensitive paint,Exp.Fluids 53(2012)1737-1749. http://dx.doi.org/10.1007/s00348-012-1380-7.

    [12]L.M.Hudy,A.M.Naguib,J.W.M.Humphreys,Wall-pressure-array measurements beneath a separating/reattaching flow region,Phys.Fluids 15(2003)706-717.http://dx.doi.org/10.1063/1.1540633.

    [13]L.M.Hudy,A.M.Naguib,W.M.Humphreys,S.M.Bartram,Particle image velocimetry measurements of a two/three-dimensional separating/reattaching boundary layer downstream of an axisymmetric backward-facing step,in: 43rd AIAA Aerospace Sciences Meeting and Exhibit,Reno,NV,United States,10-13 Jan,2005.

    [14]S.Deck,P.Thorigny,Unsteadiness of an axisymmetric separating-reattaching flow:Numerical investigation,Phys.Fluids 19(2007)065103.http://dx.doi. org/10.1063/1.2734996.

    [15]P.E.Weiss,S.Deck,J.C.Robinet,P.Sagaut,On the dynamics of axisymmetric turbulent separating/reattaching flows,Phys.Fluids 21(2009)075103. http://dx.doi.org/10.1063/1.3177352.

    [16]J.H.Meiss,W.Schr?der,Large-eddy simulation of the base flow of a cylindrical space vehicle configuration,in:6th European Symposium on Aerothermodynamics for Space Vehicles,Versailles,F(xiàn)rance,2008.

    [17]V.Statnikov,C.Glatzer,M.Meinke,W.Schr?der,EUCASS Flight Physics Book,Vol.5,2012.

    [18]D.Depres,P.Reijasse,J.P.Dussauge,Analysis of unsteadiness in afterbody transonic flows,AIAA J.42(2004)2541-2550.

    [19]M.Bitter,S.Scharnowski,R.Hain,C.J.K?hler,High-repetition-rate PIV investigations on a generic rocket model in sub-and supersonic flows,Exp. Fluids 50(2011)1019-1030.http://dx.doi.org/10.1007/s00348-010-0988-8.

    [20]C.J.K?hler,U.Scholz,J.Ortmanns,Wall-shear-stress and near-wall turbulence measurements up to single pixel resolution by means of longdistance micro-PIV,Exp.Fluids 41(2006)327-341.http://dx.doi.org/10.1007/ s00348-006-0167-0.

    [21]C.Cierpka,S.Scharnowski,C.J.K?hler,Parallax correction for precise near-wall flow investigations using particle imaging,Appl.Opt.52(2013)2923-2931. http://dx.doi.org/10.1364/AO.52.002923.

    [22]B.W.van Oudheusden,F(xiàn).Scarano,PIV investigation of supersonic base-flowplume interaction,in:A.Schr?der,C.E.Willert(Eds.),Topics in Applied Physics,Springer Verlag,2008,pp.465-474.

    [23]C.J.K?hler,B.Sammler,J.Kompenhans,Generation and control of particle size distributions for optical velocity measurement techniques in fluid mechanics,Exp.Fluids 33(2002)736-742.http://dx.doi.org/10.1007/s00348-002-0492-x.

    [24]M.Stanislas,K.Okamoto,C.J.K?hler,J.Westerweel,F(xiàn).Scarano,Main results of the third international PIV Challenge,Exp.Fluids 45(2008)27-71. http://dx.doi.org/10.1007/s00348-008-0462-z.

    [25]M.Raffel,C.E.Willert,S.T.Wereley,J.Kompenhans,Particle Image Velocimetry:a Practical Guide,Springer Verlag,2007.

    [26]R.J.Adrian,J.Westerweel,Particle Image Velocimetry,Cambridge University Press,2010.

    [27]C.J.K?hler,S.Scharnowski,C.Cierpka,On the resolution limitofdigitalparticle image velocimetry,Exp.Fluids 52(2012)1629-1639.http://dx.doi.org/10. 1007/s00348-012-1280-x.

    [28]C.J.K?hler,S.Scharnowski,C.Cierpka,On the uncertainty of digital PIV and PTV near walls,Exp.Fluids 52(2012)1641-1656.http://dx.doi.org/10.1007/ s00348-012-1307-3.

    [29]S.Scharnowski,R.Hain,C.J.K?hler,Reynolds stress estimation up to singlepixel resolution using PIV-measurements,Exp.Fluids 52(2012)985-1002. http://dx.doi.org/10.1007/s00348-011-1184-1.

    [30]S.Scharnowski,C.J.K?hler,On the effect of curved streamlines on the accuracy of PIV vector fields,Exp.Fluids 54(2013)1435.http://dx.doi.org/10.1007/ s00348-012-1435-9.

    [31]K.Isomoto,S.Honami,The effect of inlet turbulence intensity on the reattachment process over a backward-facing step,J.Fluids Eng.111(1989)87-92.

    [32]P.Weiss,S.Deck,Numerical investigation of the robustness of an axisymmetric separating/reattaching flow to an external perturbation using ZDES,F(xiàn)low Turbul.Combust.91(2013)697-715.http://dx.doi.org/10.1007/ s10494-013-9484-6.

    [33]S.Scharnowski,V.Statnikov,M.Meinke,W.Schr?der,C.J.K?hler,Combined experimental and numerical investigation of a transonic space launcher wake,in:5th European Conference for Aeronautics and Space Sciences EUCASS,Munich,Germany,2013.

    ?Corresponding author.

    E-mail address:sven.scharnowski@unibw.de(S.Scharnowski).

    *This article belongs to the Fluid Mechanics

    中文在线观看免费www的网站| 精品不卡国产一区二区三区| 村上凉子中文字幕在线| 欧美一区二区国产精品久久精品| 一本久久精品| 女的被弄到高潮叫床怎么办| 日韩成人伦理影院| 亚洲精品,欧美精品| 亚洲内射少妇av| 性插视频无遮挡在线免费观看| 婷婷色av中文字幕| 特级一级黄色大片| 亚洲欧美日韩无卡精品| 欧美激情在线99| 女人被狂操c到高潮| 亚洲人成网站在线观看播放| 精品一区二区三区人妻视频| 国产精品人妻久久久影院| 性色avwww在线观看| 如何舔出高潮| 少妇高潮的动态图| 午夜a级毛片| 国产黄色小视频在线观看| 三级国产精品片| 成人无遮挡网站| 能在线免费看毛片的网站| 蜜桃亚洲精品一区二区三区| 岛国毛片在线播放| 黄片无遮挡物在线观看| 91在线精品国自产拍蜜月| 一级黄片播放器| 美女被艹到高潮喷水动态| 亚洲电影在线观看av| 久久久久久伊人网av| 性插视频无遮挡在线免费观看| 午夜福利成人在线免费观看| 波野结衣二区三区在线| 亚洲一级一片aⅴ在线观看| 18禁在线无遮挡免费观看视频| 午夜福利成人在线免费观看| 最近中文字幕2019免费版| 国内揄拍国产精品人妻在线| 亚洲精品国产av成人精品| 久久久久久久国产电影| 小说图片视频综合网站| 亚洲精品色激情综合| 性色avwww在线观看| 午夜久久久久精精品| av天堂中文字幕网| 黑人高潮一二区| 国语对白做爰xxxⅹ性视频网站| 日本三级黄在线观看| 国产精品.久久久| 日韩中字成人| 成人无遮挡网站| 老师上课跳d突然被开到最大视频| 欧美最新免费一区二区三区| 亚洲怡红院男人天堂| 天天躁日日操中文字幕| 亚洲人成网站高清观看| 免费观看在线日韩| 久久久久久国产a免费观看| 欧美xxxx性猛交bbbb| 国产激情偷乱视频一区二区| 亚洲激情五月婷婷啪啪| 少妇裸体淫交视频免费看高清| 建设人人有责人人尽责人人享有的 | 国内精品一区二区在线观看| 精品一区二区免费观看| 日韩亚洲欧美综合| 欧美变态另类bdsm刘玥| 亚洲精品日韩av片在线观看| av国产久精品久网站免费入址| 在线播放国产精品三级| 欧美三级亚洲精品| 久久久久久大精品| 女人被狂操c到高潮| 日韩国内少妇激情av| 欧美日韩精品成人综合77777| 亚洲欧美日韩卡通动漫| 最近最新中文字幕大全电影3| av.在线天堂| 日韩三级伦理在线观看| 最近的中文字幕免费完整| 国产午夜精品一二区理论片| eeuss影院久久| 日韩av在线大香蕉| 啦啦啦观看免费观看视频高清| 麻豆久久精品国产亚洲av| 99在线人妻在线中文字幕| 水蜜桃什么品种好| 熟妇人妻久久中文字幕3abv| 美女国产视频在线观看| 久99久视频精品免费| 精品久久久久久久人妻蜜臀av| 日韩精品青青久久久久久| 国产精品爽爽va在线观看网站| 麻豆乱淫一区二区| 两性午夜刺激爽爽歪歪视频在线观看| 3wmmmm亚洲av在线观看| 亚洲综合精品二区| 精品国内亚洲2022精品成人| h日本视频在线播放| 精品少妇黑人巨大在线播放 | 精品久久久久久久久久久久久| 精品国产一区二区三区久久久樱花 | 99久久无色码亚洲精品果冻| 久久久精品大字幕| 男的添女的下面高潮视频| 国产成人精品婷婷| 免费看日本二区| 白带黄色成豆腐渣| 99在线人妻在线中文字幕| 午夜激情欧美在线| 白带黄色成豆腐渣| 一边亲一边摸免费视频| 久久精品久久久久久久性| 亚洲欧美日韩东京热| 亚洲欧洲国产日韩| 亚洲精品影视一区二区三区av| 别揉我奶头 嗯啊视频| 国产精品1区2区在线观看.| 日韩制服骚丝袜av| 精品人妻熟女av久视频| 国产免费男女视频| 99久久中文字幕三级久久日本| 大香蕉97超碰在线| 亚洲精华国产精华液的使用体验| 看非洲黑人一级黄片| 国产成人a∨麻豆精品| 老师上课跳d突然被开到最大视频| 国产免费一级a男人的天堂| 一级毛片电影观看 | 大话2 男鬼变身卡| 有码 亚洲区| 国产视频内射| 欧美不卡视频在线免费观看| 国产黄a三级三级三级人| 韩国av在线不卡| 欧美激情国产日韩精品一区| 国产成人91sexporn| 亚洲av免费高清在线观看| a级一级毛片免费在线观看| 久久99蜜桃精品久久| 99国产精品一区二区蜜桃av| 免费观看精品视频网站| 26uuu在线亚洲综合色| 免费观看的影片在线观看| 国产精品野战在线观看| 听说在线观看完整版免费高清| 午夜精品国产一区二区电影 | 国产高清国产精品国产三级 | 久久久久久久久久黄片| 青春草国产在线视频| 搞女人的毛片| 精品午夜福利在线看| 三级毛片av免费| 日韩国内少妇激情av| 婷婷六月久久综合丁香| 中文乱码字字幕精品一区二区三区 | 免费一级毛片在线播放高清视频| 国内揄拍国产精品人妻在线| 午夜激情欧美在线| 插逼视频在线观看| 欧美性猛交黑人性爽| 久热久热在线精品观看| 精品熟女少妇av免费看| 最近中文字幕高清免费大全6| 亚洲精品一区蜜桃| 欧美又色又爽又黄视频| 久久99热这里只频精品6学生 | av免费观看日本| 成人无遮挡网站| 波多野结衣巨乳人妻| av免费观看日本| 禁无遮挡网站| 伊人久久精品亚洲午夜| 久久人人爽人人爽人人片va| 一卡2卡三卡四卡精品乱码亚洲| 免费观看在线日韩| 国产高清有码在线观看视频| 青春草视频在线免费观看| 欧美日本亚洲视频在线播放| 99久国产av精品国产电影| 亚洲欧美成人精品一区二区| 七月丁香在线播放| 如何舔出高潮| 日韩av在线免费看完整版不卡| 国产高清有码在线观看视频| 青春草视频在线免费观看| 精品人妻视频免费看| 一本久久精品| 欧美激情久久久久久爽电影| 色综合站精品国产| 日韩欧美国产在线观看| 亚洲精品自拍成人| 精品久久久久久久久亚洲| 男人的好看免费观看在线视频| 午夜视频国产福利| www.色视频.com| 51国产日韩欧美| 国产精品国产高清国产av| 亚洲av福利一区| 久久精品久久久久久久性| 插逼视频在线观看| 久久6这里有精品| 一级毛片aaaaaa免费看小| 97人妻精品一区二区三区麻豆| 男插女下体视频免费在线播放| 18+在线观看网站| 亚洲美女视频黄频| 韩国av在线不卡| 九九在线视频观看精品| 日日干狠狠操夜夜爽| 99热这里只有是精品50| 久久精品久久久久久噜噜老黄 | 国产三级在线视频| 久久久久网色| 国产高清不卡午夜福利| 噜噜噜噜噜久久久久久91| 亚洲精品乱码久久久v下载方式| 91午夜精品亚洲一区二区三区| 91久久精品国产一区二区成人| 国产欧美日韩精品一区二区| 男人舔女人下体高潮全视频| 啦啦啦啦在线视频资源| 中文天堂在线官网| 亚洲婷婷狠狠爱综合网| 熟妇人妻久久中文字幕3abv| 淫秽高清视频在线观看| 免费观看精品视频网站| www.色视频.com| 久久99热6这里只有精品| 精品国产露脸久久av麻豆 | 一区二区三区乱码不卡18| 18+在线观看网站| 色吧在线观看| 亚洲精品456在线播放app| 国产精品乱码一区二三区的特点| 色噜噜av男人的天堂激情| 性插视频无遮挡在线免费观看| 欧美97在线视频| 亚洲精品,欧美精品| 午夜老司机福利剧场| 看片在线看免费视频| 国产 一区精品| 国产精品日韩av在线免费观看| 国产成年人精品一区二区| 久久精品综合一区二区三区| 午夜福利在线观看吧| 国产在视频线在精品| 波多野结衣巨乳人妻| 少妇被粗大猛烈的视频| 午夜福利在线观看吧| 直男gayav资源| 永久网站在线| 国产成人精品婷婷| 人妻少妇偷人精品九色| 成人一区二区视频在线观看| 国产老妇女一区| 国产私拍福利视频在线观看| 国产亚洲av嫩草精品影院| 青春草视频在线免费观看| 欧美精品一区二区大全| 成年女人永久免费观看视频| 免费黄色在线免费观看| 一级爰片在线观看| 国内精品美女久久久久久| 美女黄网站色视频| 亚洲va在线va天堂va国产| 欧美成人免费av一区二区三区| 精品少妇黑人巨大在线播放 | 亚洲欧美日韩高清专用| 免费观看精品视频网站| 亚洲激情五月婷婷啪啪| 国产黄片视频在线免费观看| 亚洲国产精品国产精品| 欧美精品一区二区大全| 久久久色成人| 成年女人看的毛片在线观看| 插阴视频在线观看视频| 国产老妇女一区| 亚洲av熟女| 久久亚洲国产成人精品v| 五月玫瑰六月丁香| 九九爱精品视频在线观看| 村上凉子中文字幕在线| 国产视频内射| 日韩一本色道免费dvd| 少妇裸体淫交视频免费看高清| 99九九线精品视频在线观看视频| 天堂网av新在线| 精品国产三级普通话版| 免费看av在线观看网站| 2022亚洲国产成人精品| 一级黄片播放器| 纵有疾风起免费观看全集完整版 | 国产在视频线精品| 国产精品1区2区在线观看.| 一夜夜www| 日韩欧美在线乱码| 国产精品日韩av在线免费观看| 国产一区有黄有色的免费视频 | 变态另类丝袜制服| 中文在线观看免费www的网站| 欧美日韩精品成人综合77777| 日韩一区二区三区影片| 一区二区三区高清视频在线| 精品一区二区三区视频在线| 午夜福利网站1000一区二区三区| 99在线视频只有这里精品首页| 小说图片视频综合网站| av国产久精品久网站免费入址| 黄色配什么色好看| 99国产精品一区二区蜜桃av| 久久精品国产亚洲av涩爱| or卡值多少钱| 人人妻人人看人人澡| 亚洲av成人av| 精品国内亚洲2022精品成人| 精品久久久久久久久av| 亚洲人成网站高清观看| 久久久久久久久大av| 18禁动态无遮挡网站| 91aial.com中文字幕在线观看| 亚洲欧美一区二区三区国产| 亚洲精品乱码久久久久久按摩| 国内精品宾馆在线| 插逼视频在线观看| 最后的刺客免费高清国语| 国产白丝娇喘喷水9色精品| 视频中文字幕在线观看| 亚洲国产日韩欧美精品在线观看| 亚洲国产欧洲综合997久久,| 国产单亲对白刺激| 亚洲欧美精品自产自拍| 精品久久国产蜜桃| 国产视频内射| 九草在线视频观看| 亚洲国产精品专区欧美| 亚洲欧美清纯卡通| 99久久精品一区二区三区| 亚洲第一区二区三区不卡| 丰满乱子伦码专区| 干丝袜人妻中文字幕| 欧美三级亚洲精品| 丝袜美腿在线中文| 国产精品电影一区二区三区| 中文欧美无线码| 国模一区二区三区四区视频| 日韩一区二区视频免费看| 男人舔奶头视频| av国产久精品久网站免费入址| a级一级毛片免费在线观看| 国产一区二区在线观看日韩| 日本一二三区视频观看| 看黄色毛片网站| 男人舔奶头视频| 欧美xxxx黑人xx丫x性爽| 中国美白少妇内射xxxbb| 激情 狠狠 欧美| 精品久久久久久久人妻蜜臀av| 亚洲国产欧美人成| 免费一级毛片在线播放高清视频| or卡值多少钱| 欧美人与善性xxx| 亚洲av一区综合| 人人妻人人看人人澡| 91久久精品国产一区二区三区| 看黄色毛片网站| 精品久久久久久久久av| 可以在线观看毛片的网站| 精品久久久久久久久av| 成人欧美大片| a级毛片免费高清观看在线播放| 美女被艹到高潮喷水动态| 精品久久国产蜜桃| 精品久久久久久久人妻蜜臀av| 久久精品综合一区二区三区| 中国美白少妇内射xxxbb| 美女xxoo啪啪120秒动态图| 日韩成人伦理影院| 一级毛片久久久久久久久女| 岛国毛片在线播放| 色播亚洲综合网| 免费av不卡在线播放| 成人无遮挡网站| 高清午夜精品一区二区三区| 一本一本综合久久| 纵有疾风起免费观看全集完整版 | 蜜桃亚洲精品一区二区三区| 久久这里只有精品中国| 精品久久久久久久久久久久久| 国产精品久久久久久精品电影| 国产在视频线在精品| 丰满人妻一区二区三区视频av| 国产又黄又爽又无遮挡在线| 变态另类丝袜制服| 欧美变态另类bdsm刘玥| 我要看日韩黄色一级片| 国产伦在线观看视频一区| 嫩草影院新地址| 亚洲最大成人中文| 91在线精品国自产拍蜜月| 成年版毛片免费区| 亚洲精品影视一区二区三区av| 成人亚洲欧美一区二区av| 久久久久九九精品影院| 99在线视频只有这里精品首页| 黄色欧美视频在线观看| 又粗又硬又长又爽又黄的视频| 啦啦啦观看免费观看视频高清| 有码 亚洲区| 人人妻人人看人人澡| 欧美一区二区亚洲| 国产探花极品一区二区| 少妇猛男粗大的猛烈进出视频 | 尾随美女入室| 女人十人毛片免费观看3o分钟| 网址你懂的国产日韩在线| 欧美xxxx黑人xx丫x性爽| 久久精品91蜜桃| 麻豆成人午夜福利视频| 久久久亚洲精品成人影院| 国产精品一二三区在线看| 日韩欧美精品v在线| 亚洲欧美精品综合久久99| 国产一区二区在线观看日韩| 老女人水多毛片| 久久精品影院6| 国产淫语在线视频| 我的女老师完整版在线观看| 久热久热在线精品观看| 国内少妇人妻偷人精品xxx网站| 亚洲aⅴ乱码一区二区在线播放| 国产欧美日韩精品一区二区| 国产一区二区三区av在线| 最近手机中文字幕大全| 亚洲性久久影院| 久久热精品热| 午夜福利视频1000在线观看| 免费看光身美女| 有码 亚洲区| 国产又黄又爽又无遮挡在线| 男女下面进入的视频免费午夜| 国产精品美女特级片免费视频播放器| 在线a可以看的网站| 一个人免费在线观看电影| 久久久久久大精品| 天堂网av新在线| 97超视频在线观看视频| 精品久久久久久成人av| 天堂中文最新版在线下载 | 久久精品91蜜桃| 性插视频无遮挡在线免费观看| 不卡视频在线观看欧美| 久久久久久大精品| 亚洲丝袜综合中文字幕| 我的女老师完整版在线观看| 亚洲图色成人| av免费观看日本| 国产精品伦人一区二区| 自拍偷自拍亚洲精品老妇| 亚洲成人久久爱视频| 成年女人看的毛片在线观看| 一边摸一边抽搐一进一小说| 三级经典国产精品| 欧美zozozo另类| 高清视频免费观看一区二区 | 亚洲精品影视一区二区三区av| www.色视频.com| 久久亚洲精品不卡| 天堂网av新在线| 中文字幕熟女人妻在线| 看十八女毛片水多多多| 国产精品熟女久久久久浪| 国产乱人视频| 亚洲av电影不卡..在线观看| 亚洲av免费在线观看| 免费一级毛片在线播放高清视频| 最近中文字幕高清免费大全6| 精品国产一区二区三区久久久樱花 | 亚洲精品一区蜜桃| 国产精品三级大全| 伊人久久精品亚洲午夜| 国产亚洲av嫩草精品影院| 亚洲av中文av极速乱| 中文字幕亚洲精品专区| 亚洲av免费在线观看| 在线播放无遮挡| 亚洲五月天丁香| 三级国产精品欧美在线观看| 麻豆av噜噜一区二区三区| 精品久久久久久电影网 | 青青草视频在线视频观看| 在线观看66精品国产| 国产精品美女特级片免费视频播放器| 欧美bdsm另类| 午夜精品一区二区三区免费看| 偷拍熟女少妇极品色| 在线a可以看的网站| 精品人妻熟女av久视频| 久久精品久久久久久噜噜老黄 | 日本免费a在线| 三级男女做爰猛烈吃奶摸视频| 精品一区二区三区视频在线| av免费观看日本| 一级爰片在线观看| 深爱激情五月婷婷| 99视频精品全部免费 在线| 日韩 亚洲 欧美在线| 97人妻精品一区二区三区麻豆| 久久久a久久爽久久v久久| 最近视频中文字幕2019在线8| 一个人看的www免费观看视频| 亚洲欧美中文字幕日韩二区| 日本午夜av视频| av在线老鸭窝| 视频中文字幕在线观看| 日本黄色视频三级网站网址| 麻豆精品久久久久久蜜桃| www.色视频.com| 国产成人午夜福利电影在线观看| 久久午夜福利片| 日韩精品青青久久久久久| 亚洲不卡免费看| 欧美一区二区国产精品久久精品| 国语自产精品视频在线第100页| 久99久视频精品免费| 久久精品久久久久久噜噜老黄 | 国产黄片视频在线免费观看| 国产成人精品久久久久久| 麻豆av噜噜一区二区三区| 亚洲一级一片aⅴ在线观看| 日日摸夜夜添夜夜添av毛片| 午夜免费激情av| 午夜福利在线在线| 别揉我奶头 嗯啊视频| a级毛片免费高清观看在线播放| 亚洲经典国产精华液单| 乱系列少妇在线播放| 精品国产三级普通话版| 成人午夜精彩视频在线观看| 性插视频无遮挡在线免费观看| 日韩av不卡免费在线播放| 日本三级黄在线观看| 国产亚洲最大av| 亚洲av二区三区四区| 热99re8久久精品国产| 精品一区二区免费观看| 97超碰精品成人国产| 一区二区三区免费毛片| 国产极品天堂在线| 国产综合懂色| 天美传媒精品一区二区| av在线蜜桃| 晚上一个人看的免费电影| 少妇的逼好多水| 看十八女毛片水多多多| 少妇人妻精品综合一区二区| 久久久久久伊人网av| av在线亚洲专区| 亚洲四区av| 哪个播放器可以免费观看大片| 中文字幕久久专区| 亚洲av熟女| 又粗又爽又猛毛片免费看| 日本三级黄在线观看| 舔av片在线| 亚洲第一区二区三区不卡| 欧美成人精品欧美一级黄| 有码 亚洲区| av福利片在线观看| 在线观看av片永久免费下载| 国产精品一区www在线观看| 日韩中字成人| 小蜜桃在线观看免费完整版高清| 日韩欧美精品免费久久| 2021天堂中文幕一二区在线观| 国产成人精品一,二区| 嫩草影院新地址| 22中文网久久字幕| 亚洲精品一区蜜桃| 久久综合国产亚洲精品| av在线蜜桃| 高清毛片免费看| 国产一区二区亚洲精品在线观看| 欧美日韩综合久久久久久| 色视频www国产| 天堂√8在线中文| 白带黄色成豆腐渣| 麻豆精品久久久久久蜜桃| 亚洲国产欧美在线一区| 久久久久久久久久久免费av| 青春草国产在线视频| 又粗又硬又长又爽又黄的视频| 国语自产精品视频在线第100页| 青春草国产在线视频| 欧美精品国产亚洲| 免费无遮挡裸体视频| 中文字幕精品亚洲无线码一区| 国产精品,欧美在线| 国产精品乱码一区二三区的特点| 欧美xxxx性猛交bbbb| 国产精品国产三级国产av玫瑰| 亚洲国产精品合色在线| 国产中年淑女户外野战色| av又黄又爽大尺度在线免费看 | 国产精品精品国产色婷婷| 成年女人看的毛片在线观看| 成年av动漫网址| 深爱激情五月婷婷| 欧美精品一区二区大全| videos熟女内射| 99国产精品一区二区蜜桃av|