• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Broadband low-frequency acoustic absorber based on metaporous composite

    2022-06-29 09:19:32JiaHaoXu徐家豪XingFengZhu朱興鳳DiChaoChen陳帝超QiWei魏琦andDaJianWu吳大建
    Chinese Physics B 2022年6期
    關(guān)鍵詞:徐家

    Jia-Hao Xu(徐家豪) Xing-Feng Zhu(朱興鳳) Di-Chao Chen(陳帝超) Qi Wei(魏琦) and Da-Jian Wu(吳大建)

    1Jiangsu Key Laboratory on Opto-Electronic Technology,School of Physics and Technology,Nanjing Normal University,Nanjing 210023,China

    2Key Laboratory of Modern Acoustics,School of Physics,Nanjing University,Nanjing 210093,China

    Keywords: acoustic metamaterial,low-frequency acoustic absorber,broadband,metaporous

    1. Introduction

    Low-frequency acoustic absorption has been a challenging problem due to the weak energy dissipation in conventional acoustic absorbers, such as porous or fibrous materials.[1–3]A thickness comparable to the working wavelength is required to achieve prominent acoustic absorption, which hinders practical applications in a low-frequency range.[4]The emergence of metamaterials provides a new approach to the high acoustic absorption at low frequency because of their locally resonant units along with large density of states inside.[5–23]Many metamaterial absorbers, such as acoustic membranes,[5–7]Helmholtz resonators,[8–12]labyrinthine metamaterials,[13–15]metasurface-based absorbers,[16–18]and split-tube resonators,[19–23]have been devised to improve the low-frequency acoustic absorption. However, most of these absorbers work in single or multiple discrete narrow bands since the high absorption occurs only at resonance.

    In recent years,absorbers constructed by embedding resonators in porous materials have been proposed to widen the absorption band.[24–31]Longet al.[29]achieved perfect absorption for low-frequency audible sound waves by embedding the split ring resonator into the porous material. In Zhouet al.’s work,[30]an acoustic metaporous composite (AMC)constructed by embedding Archimedean spiral structure in the porous materials was proposed to realize the low-frequency acoustic absorption. In these absorbers, a resonant absorption is introduced into the low-frequency range based on the critical coupling mechanism in the combined systems. But their absorption bandwidths are also limited and an absorption valley will appear between the resonant absorption and the trapped mode. To further extend the bandwidth, multiple resonant units are generally required to be integrated,[32–35]which inevitably brings some restrictions on the applications in limited space.

    In this work, an absorber based on an AMC is proposed for achieving the broadband low-frequency acoustic absorption. The AMC contains an embedded metamaterial resonator(two split squares with a channel structure)and a porous material layer. The finite-element simulations show that two resonant absorption peaks and one trapped mode peak can be obtained by the AMC absorber. The two resonance frequencies can be manipulated by adjusting the length of the channel. By coupling the three absorption modes, a high absorption can be achieved in a frequency range from 290 Hz to 1074 Hz.Acoustic field distribution and impedance matching theory are demonstrated to reveal the origin of the absorption peaks. Furthermore,the simulations are confirmed by the experiment results.

    2. The model of the AMC

    Figure 1 illustrates the two-dimensional (2D) crosssection of the AMC absorber,which is constructed by a metamaterial resonator embedded in porous material. The AMC is backed by a rigid wall that is located in thexdirection.The length of the porous material layer isL=120 mm, and its thickness isD=90 mm. The metamaterial resonator consists of two 180°-twisted split squares and a narrow channel attached to the inner split. The orientation of the splits and channel are along theydirection. The side lengths of outer and inner square area1=60 mm anda2=43 mm, respectively. The thickness of resonator walls ist= 2 mm. The widths of two splits and channel arew=3 mm. Theldenotes the length of the channel and theθis the incident angle of the sound wave as shown in Fig.1.

    Based on the Johnson–Champoux–Allard (JCA)model,[2]the air-saturated porous material can be considered as a homogeneous effective fluid. The effective densityρeand bulk modulusKecan be described as

    whereρ0is the air density,P0is the atmospheric pressure,ηis the air dynamic viscosity,γis the specific heat ratio,Pris the Prandtl number,ων=σφ/ρ0α∞andω′c=σ′φ/ρ0α∞are the angular Biot and adiabatic cross-over angular frequencies,respectively. Other parameters that describe the acoustic properties of porous material are porosityφ,tortuosityα∞,flow resistivityσ,thermal characteristic lengthΛ′,viscous characteristic lengthΛ,and thermal resistivityσ′=8α∞η/φΛ′.According to the simulated and measured absorptances of the porous material, the five acoustic parameters can be obtained by the backward deduction method based on genetic algorithm.[36,37]In the present study, the parameters of the used porous material areφ=0.96,α∞=1.43,σ=7000.1 N·s·m-4,Λ′=342.9 μm,andΛ=190.5 μm.

    Fig.1. Geometry of modeled system,where acoustic metaporous composite(AMC)is constructed by a metamaterial resonator embedded in porous material.

    Finite element method (FEM) based on COMSOL Multiphysics software is employed to perform numerical simulations,and acoustic–thermoacoustic interaction module is used.The surrounding medium is air with densityρ0=1.21 kg/m3and sound speedc0= 343 m/s. The walls are modeled as being acoustically rigid with respect to air due to the huge impedance mismatch between them. The plane wave with incident angleθ=0°is modeled as a background pressure field with an amplitude of 1.0 Pa. Figure 1 shows the geometry of the modeled system, in which the solid and dashed lines indicate the boundaries of the model domain. Floquet–Bloch periodicity conditions are applied to the left side and right side of the porous material, and the rigid boundary condition and the plane-wave radiation boundary condition are applied to the up boundary and bottom boundary.The complex reflectanceRcan be obtained from the numerical simulations and the transmittanceTequals zero due to the rigid wall backed. Then the absorptanceAcan be calculated fromA=1-R.

    3. Results and discussion

    Figure 2(a) shows the absorption spectrum as a function of channel lengthl, with other parameters fixed. Three absorption peaks(marked by P1,P2,and P3)can be observed in a frequency range from about 200 Hz to 1300 Hz. The P1undergoes a slight frequency shift from about 360 Hz to 305 Hz whenlincreases from 0 to 25 mm. The P2remains almost unchanged, while the P3moves markedly from about 1210 Hz to 855 Hz withlincreasing. Without the narrow channel(l=0 mm), an absorption valley appears at about 1050 Hz due to the large distance between P2and P3. Aslincreases,the enhanced coupling between P2and P3compensates for the valley between them, making the absorption continuous and efficient. Further increasingl,the P3gets too close to P2and the absorption bandwidth decreases. Meanwhile, the separation between P1and P2leads to an absorption valley at about 385 Hz. Here, the split-square with a channel structure can give rise to another absorption peak P3, and the absorption peaks P1and P3can be tuned by changing the channel length in the target frequency band. Thus, by selecting an appropriate length ofl, the three absorption peaks can be connected together to get high acoustic absorption in a broad frequency range.In Fig.2(b),we plot the absorptance forl=14 mm as a function of frequency for a better view. The absorptances are all above 0.8 in the frequency range from 290 Hz to 1074 Hz.Therefore, by embedding a single metamaterial resonator in porous material, high broadband acoustic absorption can be obtained.

    Fig.2. (a)Acoustic absorption spectrum as a function of the channel length l, with other parameters fixed. Three white dash–dot–dot lines represent the positions of three peaks P1,P2,and P3,respectively. (b)Acoustic absorptance of the AMC for l=14 mm. Black arrows mark the positions of three absorption peaks P1,P2,and P3. Distribution of((c),(d),(e))acoustic pressure|P/P0|and((f),(g),(h))velocity fields at the three peak frequencies for l=14 mm,with P being scattered acoustic pressure and P0 denoting incident acoustic pressure.

    To reveal the origin of the absorption peaks,the distributions of the|P/P0| and velocity fields at the three peak frequencies forl=14 mm are displayed in Figs. 2(c)–2(e) and 2(f)–2(h),respectively.ThePis the scattered acoustic pressure andP0is the incident acoustic pressure. Figure 2(c) exhibits a maximum pressure field in the inner cavity of the AMC at 325 Hz, corresponding to a resonance mode. The large difference in acoustic pressure amplitude between inner cavity and outer split leads to a large sound velocity along the path of the splits as shown in Fig. 2(f). In consequence, the incidence sound energy is dissipated into heat due to the friction between the sound wave and walls at resonance, resulting in the absorption peak P1. Similarly,the absorption peak P3occurs at 949 Hz due to another resonance mode, which can be seen in Figs.2(e)and 2(h).Thus the principle of the metamaterial resonator is similar to that of a lossy Helmholtz resonator.For the absorption peak P1,the interior cavity acts as the tank of the Helmholtz resonator and contributes the acoustic capacitance. The function of the coiled tube between the inner and outer split shells is the long neck of the resonator,contributing the acoustic inductance and also acoustic resistance for an efficient absorption. While for another absorption peak P3, the coiled tube and the split parts of the shells paly the roles of the tank and the neck of the resonator,respectively. The added narrow channel can change the effective length of the coiled tube and then influence the positions and amplitudes of the resonance modes P1and P3.As shown in Fig.2(d),a large acoustic pressure is located between the resonator and the rigid wall at 609 Hz,which is the characteristic of a trapped mode.[24–28]The trapped mode is excited by the energy trapping between the resonator and the rigid backing,which can enhance the viscous loss and thermal loss inside the porous materials. Here,the trapped mode P2is not strong because of the large distance between resonator and the backed rigid wall,[25–27]but it can link the two resonance modes(P1and P3)and make a high absorption in a wide frequency band.The distribution of velocity field in Fig.2(g)shows that both the loss of the sound wave in porous material layer and the coupling between the resonator and porous material layer contribute to the absorption of P2.

    We also conduct an analysis from the viewpoint of the impedance to explain the absorption peaks. The acoustic absorptanceAhas a relationship with the normalized acoustic impedanceZ/Z0of the AMC and it can be expressed as

    where ˉpis the average pressure and ˉvis the average velocity at the interface between air and AMC. Figures 3(a) and 3(b)exhibit the real parts and imaginary parts ofZ/Z0forl=0,14, and 24 mm, respectively. Forl=14 mm, the real and imaginary parts of the normalized impedance get close to 1 and 0 (green dot line) respectively in the range of 300 Hz–1100 Hz,which is consistent with high absorption in our calculation result. The real parts and imaginary parts of the normalized impedance get away from 1 and 0 at about 1050 Hz and 385 Hz forl=0 mm and 24 mm,respectively,where the absorption valleys appear.

    Fig. 3. (a) Real parts and (b) imaginary parts of normalized acoustic impedance for l =0, 14, 24 mm, with arrows indicating positions of three absorption peaks when l=14 mm.

    Fig. 4. (a) Schematic diagram of experimental setup, with resonator used in the work being fabricated by standard 3D printing technology and the porous material being a kind of polyurethane sponge. (b)Simulated (Sim., black solid line) and measured (Exp. red dots) absorptances of AMC compared with simulated (blue dashed line) and measured(green triangles)absorptances of the porous material without the embedded resonator.

    To verify our simulation results,we measure the absorption of the AMC and the absorption of the porous material without the embedded resonator in an impedance tube by using the two-microphone method.[38]Figure 4(a) shows the schematic of the experiment setup. The resonator that we are using is fabricated by standard 3D printing technology. The porous material is the polyurethane sponge, which is commonly used for acoustic testing and sound applications. The side length of the square tube is 120 mm, corresponding to a plane wave cut-off frequency at 1429 Hz. A loudspeaker and the AMC are placed at two ends of the impedance tube to emit and absorb plane waves, respectively. The acoustic signals are received by two microphones (1/4 in., B&K Type-4938-A-011) and then analyzed by a multi-analyzer system (B&K Type-3160-A-042) to obtain the amplitude and phase of the sound wave.The acoustic absorptances measured in the experiment are shown with red dots in Fig.4(b),and the black solid line represents the simulated results. The measured(green triangles)and simulated(blue dashed line))absorptances for the porous material without the embedded resonator are also plotted in Fig. 4(b) for comparison. It is observed that the absorption of the polyurethane sponge can be described well by using the acoustic parameters of porous material in the JCA model and the porous layer has a weak absorption in the low frequency region. Three absorption peaks are observed in the presetting frequency range from about 300 Hz to 1100 Hz,which are generally consistent with the simulation results.The higher measured absorption than the simulated ones can be attributed to additional losses in the experimental setup,such as the energy leakage between different pieces forming the apparatus,the material losses,or the visco-thermal losses in the tube. The deviation of the absorption peaks P1and P3can be ascribed to the imperfect metamaterial resonator sample fabrication.

    Fig.5. (a)Absorptances of AMC at different incident angles. (b)Absorptances of AMC(black solid line)compared with porous material without the embedded resonator(red dashed line)at random incident angle.

    We finally study the effect of the incident angleθon the absorption of AMC. The absorptances forθ=0°, 30°, and 60°are plotted in Fig. 5(a). The absorption peaks are robust against the variation of the incident angle due to the subwavelength spatial dimension of the AMC.The frequencies of two resonance peaks (P1and P3) are almost unvaried while the frequency of trapped peak (P2) increases withθincreasing,which is in accord with the results reported previously.[30,31]The whole absorption increases with the incident angleθincreasing, because the increase of incidence angle is similar to the increase of the thickness of the porous material in the direction of sound wave propagation. Thus,the broadband absorption of the AMC can be maintained under the oblique incidence. In reality,a complicated sound field includes a number of waves with various directions rather than a single plane wave. To show the acoustic absorption of such a sound field,the random incidence absorptanceαrandof the AMC is illustrated by black solid line in Fig.5(b). Theαrandis calculated from[39]

    whereA(θ) is the simulated absorptance atθ. In Fig. 5(b),theαrandfor the porous material without embedded resonator is also plotted with a red dashed curve for comparison. It can be seen that the AMC enhances the acoustic absorption especially at low frequency. These results demonstrate that the proposed AMC absorber still keeps broadband high-efficient absorption in the case of random incident acoustic waves.

    4. Conclusions

    We proposed an AMC absorber composed of a porous layer with a single embedded metamaterial resonator. High absorptions occur at resonant and trapped modes for the AMC absorber. The resonance frequency can be tuned by adjusting the length of the channel of the AMC, while the trapped mode frequency remains almost unchanged. The broadband absorption is achieved when the resonant modes and trapped mode are close enough to excite coupled modes. It is found that a high absorption(A >0.8)is obtained within a frequency range from 290 Hz to 1074 Hz, but the thickness of AMC is only 1/13 of the relevant wavelength at 290 Hz. The numerical simulations are experimentally validated. Additionally,the proposed AMC absorber still kept broadband high-efficient absorption in the case of random incident acoustic waves. The characteristics of high-efficiency,broadband,and compact absorber can possess the applications in building acoustics and noise remediation.

    Acknowledgement

    Project supported by the National Natural Science Foundation of China (Grant Nos. 12174197, 11874222, and 12027808).

    猜你喜歡
    徐家
    Enhancing terahertz photonic spin Hall effect via optical Tamm state and the sensing application
    The existence and blow-up of the radial solutions of a (k1, k2)-Hessian system involving a nonlinear operator and gradient
    徐家玨作品
    美術(shù)界(2022年4期)2022-04-26 11:07:00
    Synthesis and thermoelectric properties of Bi-doped SnSe thin films?
    STABILITY ANALYSIS OF CAUSAL INTEGRAL EVOLUTION IMPULSIVE SYSTEMS ON TIME SCALES?
    南京市棲霞區(qū)徐家村M4 出土器物
    南京市棲霞區(qū)徐家村M1 出土器物
    徐家柱 用愛喚醒沉睡12年的妻子
    “多多益善”的政協(xié)主席
    徐家河尾礦庫潰壩分析
    老司机在亚洲福利影院| 一级毛片精品| 性高湖久久久久久久久免费观看| 超碰97精品在线观看| 热99国产精品久久久久久7| 欧美中文综合在线视频| 91国产中文字幕| 久久中文字幕一级| 91字幕亚洲| 久久国产精品人妻蜜桃| 午夜激情久久久久久久| 久久午夜亚洲精品久久| 亚洲人成77777在线视频| 欧美黑人欧美精品刺激| 97在线人人人人妻| 一级黄色大片毛片| 成人影院久久| 亚洲精品乱久久久久久| 亚洲人成电影观看| 在线观看免费日韩欧美大片| 99热国产这里只有精品6| 精品国产一区二区久久| 久久精品国产99精品国产亚洲性色 | 黑丝袜美女国产一区| 精品久久久久久久毛片微露脸| 亚洲第一青青草原| 亚洲精品在线观看二区| 国产福利在线免费观看视频| 国产无遮挡羞羞视频在线观看| 99九九在线精品视频| 大片电影免费在线观看免费| 欧美日韩成人在线一区二区| 纵有疾风起免费观看全集完整版| 女人久久www免费人成看片| 考比视频在线观看| 国产高清视频在线播放一区| 免费日韩欧美在线观看| 啦啦啦视频在线资源免费观看| 国产区一区二久久| 久久精品亚洲av国产电影网| 日韩人妻精品一区2区三区| 亚洲九九香蕉| 黄色视频不卡| 日韩免费av在线播放| 少妇 在线观看| 久久精品亚洲精品国产色婷小说| 日本av手机在线免费观看| 伦理电影免费视频| 色综合欧美亚洲国产小说| e午夜精品久久久久久久| 日韩精品免费视频一区二区三区| 亚洲人成电影观看| 国产xxxxx性猛交| 中文字幕高清在线视频| 国产亚洲欧美在线一区二区| 久久天堂一区二区三区四区| tube8黄色片| 黄色 视频免费看| 女同久久另类99精品国产91| 热99国产精品久久久久久7| 少妇猛男粗大的猛烈进出视频| 久久久精品94久久精品| 99热网站在线观看| 日本一区二区免费在线视频| 国产成人精品无人区| 精品人妻熟女毛片av久久网站| av在线播放免费不卡| 在线观看www视频免费| 一级毛片精品| 欧美黄色淫秽网站| 亚洲熟女精品中文字幕| 国产亚洲欧美在线一区二区| 美女高潮喷水抽搐中文字幕| 涩涩av久久男人的天堂| 丰满饥渴人妻一区二区三| av不卡在线播放| 亚洲成人手机| 亚洲国产欧美在线一区| 三级毛片av免费| 久久天躁狠狠躁夜夜2o2o| 99国产综合亚洲精品| 欧美日本中文国产一区发布| 日韩视频在线欧美| 国产日韩欧美亚洲二区| 中文字幕制服av| 中文字幕最新亚洲高清| 在线av久久热| 波多野结衣一区麻豆| 亚洲一区二区三区欧美精品| 国产亚洲精品久久久久5区| 90打野战视频偷拍视频| 亚洲精品美女久久久久99蜜臀| 久热这里只有精品99| 少妇精品久久久久久久| 老司机靠b影院| 国产日韩欧美视频二区| 精品少妇一区二区三区视频日本电影| 免费日韩欧美在线观看| 搡老熟女国产l中国老女人| 窝窝影院91人妻| 欧美久久黑人一区二区| 色尼玛亚洲综合影院| 日本wwww免费看| 久久久久国内视频| cao死你这个sao货| 高清黄色对白视频在线免费看| 纵有疾风起免费观看全集完整版| 国产精品久久久av美女十八| 老司机在亚洲福利影院| av不卡在线播放| 夜夜骑夜夜射夜夜干| 久久 成人 亚洲| av国产精品久久久久影院| 91老司机精品| 精品人妻在线不人妻| 国产一区二区三区视频了| 女性被躁到高潮视频| 亚洲va日本ⅴa欧美va伊人久久| 亚洲欧美一区二区三区久久| 丁香六月欧美| 久久人人爽av亚洲精品天堂| 国产精品秋霞免费鲁丝片| 精品熟女少妇八av免费久了| 精品国产一区二区久久| 日本wwww免费看| 99热国产这里只有精品6| 欧美日韩福利视频一区二区| 亚洲一卡2卡3卡4卡5卡精品中文| 久久性视频一级片| 纵有疾风起免费观看全集完整版| 久久精品国产亚洲av高清一级| 久久国产精品男人的天堂亚洲| 中文字幕制服av| 一区二区三区乱码不卡18| 欧美日韩精品网址| 大型黄色视频在线免费观看| 电影成人av| 色94色欧美一区二区| 99riav亚洲国产免费| 国产精品免费大片| 国产av国产精品国产| 免费在线观看视频国产中文字幕亚洲| 老汉色∧v一级毛片| 精品一区二区三卡| 色94色欧美一区二区| 又大又爽又粗| 久久这里只有精品19| 国产精品免费大片| 精品少妇内射三级| 亚洲三区欧美一区| 精品人妻1区二区| 欧美黑人欧美精品刺激| 夜夜爽天天搞| 国产成人欧美在线观看 | 99热网站在线观看| 久久青草综合色| 女同久久另类99精品国产91| 国产精品香港三级国产av潘金莲| 亚洲人成77777在线视频| 久久香蕉激情| 多毛熟女@视频| 啦啦啦中文免费视频观看日本| 老熟妇乱子伦视频在线观看| 国产男靠女视频免费网站| 国产一卡二卡三卡精品| 欧美日韩中文字幕国产精品一区二区三区 | 黄色 视频免费看| 午夜福利欧美成人| 人人妻人人澡人人爽人人夜夜| 亚洲国产欧美一区二区综合| 在线观看免费午夜福利视频| 丰满人妻熟妇乱又伦精品不卡| 一区二区三区乱码不卡18| 欧美成人午夜精品| 国产一区有黄有色的免费视频| 十八禁网站网址无遮挡| 亚洲七黄色美女视频| 99热国产这里只有精品6| 成人18禁高潮啪啪吃奶动态图| 精品国产国语对白av| 女同久久另类99精品国产91| 色在线成人网| 19禁男女啪啪无遮挡网站| 中文字幕人妻丝袜制服| 最黄视频免费看| 最新美女视频免费是黄的| 又黄又粗又硬又大视频| 国产亚洲av高清不卡| 亚洲精品久久成人aⅴ小说| 俄罗斯特黄特色一大片| 亚洲天堂av无毛| 国产男女内射视频| 亚洲欧美一区二区三区久久| 侵犯人妻中文字幕一二三四区| 亚洲欧美色中文字幕在线| 国产精品九九99| 叶爱在线成人免费视频播放| av网站免费在线观看视频| 狂野欧美激情性xxxx| 日日爽夜夜爽网站| 久久久久久人人人人人| 精品少妇黑人巨大在线播放| 汤姆久久久久久久影院中文字幕| 国产亚洲欧美精品永久| 丝袜美足系列| 老熟妇仑乱视频hdxx| 国产亚洲欧美在线一区二区| 欧美日韩福利视频一区二区| 国产精品久久久久久人妻精品电影 | 成人18禁在线播放| www日本在线高清视频| 在线观看人妻少妇| 亚洲性夜色夜夜综合| 免费在线观看黄色视频的| 精品国产乱子伦一区二区三区| 亚洲欧美精品综合一区二区三区| 欧美一级毛片孕妇| 亚洲国产欧美网| 精品一区二区三区视频在线观看免费 | 久久毛片免费看一区二区三区| 免费观看人在逋| 一区二区av电影网| 看免费av毛片| 久久久久久免费高清国产稀缺| 欧美老熟妇乱子伦牲交| 亚洲七黄色美女视频| 中文字幕色久视频| 中文字幕精品免费在线观看视频| 91成人精品电影| 亚洲人成77777在线视频| 一边摸一边抽搐一进一小说 | av一本久久久久| 美女国产高潮福利片在线看| 久久国产精品男人的天堂亚洲| 人人妻人人爽人人添夜夜欢视频| 中文字幕人妻丝袜制服| 麻豆国产av国片精品| 国产精品一区二区免费欧美| 欧美精品亚洲一区二区| 国产精品久久久人人做人人爽| 国产精品偷伦视频观看了| 黑人欧美特级aaaaaa片| 天堂俺去俺来也www色官网| 亚洲久久久国产精品| 久久性视频一级片| 日本黄色日本黄色录像| 乱人伦中国视频| 黄色视频不卡| 在线观看免费午夜福利视频| 窝窝影院91人妻| 飞空精品影院首页| 欧美中文综合在线视频| 欧美+亚洲+日韩+国产| 国产欧美亚洲国产| 99精品欧美一区二区三区四区| 国产成人精品久久二区二区91| 极品人妻少妇av视频| 中文字幕高清在线视频| 一级毛片女人18水好多| 久久久久网色| 精品人妻在线不人妻| 亚洲七黄色美女视频| 又大又爽又粗| 成人影院久久| 99re在线观看精品视频| 精品人妻熟女毛片av久久网站| 久久影院123| 成年人黄色毛片网站| 色视频在线一区二区三区| 亚洲伊人久久精品综合| 成人精品一区二区免费| 欧美日韩亚洲高清精品| 亚洲精品久久成人aⅴ小说| www.精华液| 如日韩欧美国产精品一区二区三区| 久久精品91无色码中文字幕| 久久午夜亚洲精品久久| 亚洲伊人久久精品综合| 黑人操中国人逼视频| 欧美大码av| 免费一级毛片在线播放高清视频 | 中文字幕精品免费在线观看视频| 欧美一级毛片孕妇| 精品少妇黑人巨大在线播放| 欧美日韩亚洲综合一区二区三区_| 亚洲成a人片在线一区二区| 亚洲欧美日韩另类电影网站| 纵有疾风起免费观看全集完整版| 无限看片的www在线观看| 亚洲精品美女久久av网站| 亚洲综合色网址| 日韩制服丝袜自拍偷拍| 免费在线观看黄色视频的| 亚洲欧美日韩另类电影网站| 久久精品国产亚洲av高清一级| 在线 av 中文字幕| 国产在视频线精品| 国产成人欧美在线观看 | 欧美精品一区二区大全| 色婷婷av一区二区三区视频| 久久国产精品人妻蜜桃| 亚洲欧美精品综合一区二区三区| 男女无遮挡免费网站观看| 亚洲av欧美aⅴ国产| 国产精品欧美亚洲77777| 国产精品免费视频内射| 蜜桃在线观看..| 国产成人欧美在线观看 | 久久久水蜜桃国产精品网| 777米奇影视久久| 老熟妇仑乱视频hdxx| 超色免费av| 成年人午夜在线观看视频| 国产男女超爽视频在线观看| 美女福利国产在线| 啦啦啦 在线观看视频| 亚洲欧洲精品一区二区精品久久久| 国产精品久久久av美女十八| 成人国语在线视频| 新久久久久国产一级毛片| 亚洲一卡2卡3卡4卡5卡精品中文| 国产亚洲一区二区精品| a在线观看视频网站| 美女国产高潮福利片在线看| 亚洲国产精品一区二区三区在线| 久久精品亚洲熟妇少妇任你| 免费观看人在逋| 91精品国产国语对白视频| 人人妻人人爽人人添夜夜欢视频| 久久影院123| 少妇被粗大的猛进出69影院| 国产精品 欧美亚洲| 国产精品久久久av美女十八| 精品午夜福利视频在线观看一区 | 99精品久久久久人妻精品| 日韩一区二区三区影片| 欧美精品一区二区大全| 黄色成人免费大全| av网站免费在线观看视频| 国产精品久久久久成人av| 亚洲av电影在线进入| 国产99久久九九免费精品| 久久中文看片网| 一级毛片电影观看| 国产免费av片在线观看野外av| 午夜激情久久久久久久| 亚洲国产看品久久| 一级片'在线观看视频| 亚洲成人免费av在线播放| 无人区码免费观看不卡 | 日韩大片免费观看网站| 亚洲成人免费av在线播放| 99久久精品国产亚洲精品| 999久久久国产精品视频| 麻豆国产av国片精品| 丰满饥渴人妻一区二区三| 一级片免费观看大全| 在线 av 中文字幕| 久久免费观看电影| 97人妻天天添夜夜摸| 高清黄色对白视频在线免费看| 日韩免费高清中文字幕av| 亚洲人成77777在线视频| 国产1区2区3区精品| 国产一区二区三区综合在线观看| 亚洲 欧美一区二区三区| www.999成人在线观看| 国产成人av激情在线播放| 黄片小视频在线播放| 国产片内射在线| 久久久精品免费免费高清| 熟女少妇亚洲综合色aaa.| 国产精品香港三级国产av潘金莲| 免费av中文字幕在线| 久久狼人影院| 法律面前人人平等表现在哪些方面| 国产高清激情床上av| 国产男女内射视频| 久久精品国产亚洲av香蕉五月 | 午夜两性在线视频| 久久九九热精品免费| 日本黄色视频三级网站网址 | 精品一区二区三区av网在线观看 | 国产精品 欧美亚洲| 少妇被粗大的猛进出69影院| 国产高清国产精品国产三级| 高清视频免费观看一区二区| 黄片播放在线免费| 欧美日本中文国产一区发布| 美女福利国产在线| 香蕉丝袜av| 亚洲va日本ⅴa欧美va伊人久久| 国产伦人伦偷精品视频| 岛国在线观看网站| 母亲3免费完整高清在线观看| 欧美日韩黄片免| 久久午夜亚洲精品久久| 好男人电影高清在线观看| 黄色片一级片一级黄色片| 亚洲 国产 在线| 无人区码免费观看不卡 | 丰满人妻熟妇乱又伦精品不卡| 精品人妻在线不人妻| 中文字幕最新亚洲高清| 亚洲精品美女久久av网站| 久久 成人 亚洲| videosex国产| 国产亚洲精品一区二区www | www.精华液| 久久久欧美国产精品| 亚洲欧洲精品一区二区精品久久久| 精品乱码久久久久久99久播| 久久99热这里只频精品6学生| 国产在线视频一区二区| 中文字幕高清在线视频| 亚洲av第一区精品v没综合| 欧美日韩av久久| 久久免费观看电影| 婷婷成人精品国产| 满18在线观看网站| 丰满人妻熟妇乱又伦精品不卡| 亚洲精品自拍成人| 成人三级做爰电影| 欧美日韩国产mv在线观看视频| 亚洲第一av免费看| 免费人妻精品一区二区三区视频| 又黄又粗又硬又大视频| 天堂动漫精品| 亚洲avbb在线观看| 亚洲av成人不卡在线观看播放网| 一边摸一边抽搐一进一小说 | 一区二区三区国产精品乱码| 欧美日韩中文字幕国产精品一区二区三区 | 无人区码免费观看不卡 | 伦理电影免费视频| 欧美变态另类bdsm刘玥| 极品人妻少妇av视频| 在线观看免费视频日本深夜| 午夜精品久久久久久毛片777| 久久影院123| 国产在线观看jvid| 无遮挡黄片免费观看| 国产成人av教育| 国产成人免费无遮挡视频| 国产精品麻豆人妻色哟哟久久| 亚洲精华国产精华精| 亚洲午夜理论影院| 人人妻人人爽人人添夜夜欢视频| 男女高潮啪啪啪动态图| 亚洲欧美激情在线| 黄色片一级片一级黄色片| 无遮挡黄片免费观看| 亚洲欧洲日产国产| 国产精品免费一区二区三区在线 | 久久国产精品人妻蜜桃| 色94色欧美一区二区| 一本久久精品| 母亲3免费完整高清在线观看| 久久久精品区二区三区| aaaaa片日本免费| 巨乳人妻的诱惑在线观看| 久久ye,这里只有精品| 十八禁网站免费在线| 男男h啪啪无遮挡| 中文字幕人妻丝袜制服| 亚洲专区国产一区二区| 欧美人与性动交α欧美精品济南到| 建设人人有责人人尽责人人享有的| 欧美精品人与动牲交sv欧美| 99九九在线精品视频| 天天躁日日躁夜夜躁夜夜| 亚洲成人国产一区在线观看| 后天国语完整版免费观看| 在线观看舔阴道视频| 99re6热这里在线精品视频| 人妻久久中文字幕网| 三上悠亚av全集在线观看| 国产黄频视频在线观看| 国产精品一区二区精品视频观看| 亚洲精品中文字幕一二三四区 | 一区二区日韩欧美中文字幕| 一本色道久久久久久精品综合| 好男人电影高清在线观看| 午夜精品久久久久久毛片777| 丝袜在线中文字幕| 亚洲人成伊人成综合网2020| 久久亚洲精品不卡| 中文字幕av电影在线播放| 香蕉丝袜av| 亚洲精品成人av观看孕妇| 一进一出抽搐动态| 一个人免费看片子| 亚洲欧洲精品一区二区精品久久久| 亚洲精品国产精品久久久不卡| 亚洲va日本ⅴa欧美va伊人久久| 桃红色精品国产亚洲av| 韩国精品一区二区三区| 高清av免费在线| 美女高潮喷水抽搐中文字幕| 精品卡一卡二卡四卡免费| 高清黄色对白视频在线免费看| 精品一区二区三区视频在线观看免费 | av线在线观看网站| 熟女少妇亚洲综合色aaa.| 国产欧美日韩精品亚洲av| 欧美人与性动交α欧美软件| a在线观看视频网站| 久久精品国产a三级三级三级| 自拍欧美九色日韩亚洲蝌蚪91| 国产91精品成人一区二区三区 | 交换朋友夫妻互换小说| 婷婷成人精品国产| 可以免费在线观看a视频的电影网站| 久久中文看片网| 午夜91福利影院| av网站免费在线观看视频| 亚洲国产成人一精品久久久| 欧美另类亚洲清纯唯美| 国产一区二区三区综合在线观看| 在线十欧美十亚洲十日本专区| 久久久久久久久久久久大奶| 欧美成人午夜精品| 亚洲人成电影观看| 五月天丁香电影| 亚洲欧美精品综合一区二区三区| 精品福利永久在线观看| 一级黄色大片毛片| 亚洲一区二区三区欧美精品| 老熟妇乱子伦视频在线观看| 91av网站免费观看| 国产亚洲精品一区二区www | 成在线人永久免费视频| 咕卡用的链子| 午夜福利在线免费观看网站| 精品国产国语对白av| 捣出白浆h1v1| 正在播放国产对白刺激| 国产免费av片在线观看野外av| 欧美精品av麻豆av| 欧美黑人精品巨大| 亚洲免费av在线视频| 久久久国产欧美日韩av| 少妇的丰满在线观看| 欧美在线黄色| 欧美另类亚洲清纯唯美| 80岁老熟妇乱子伦牲交| 亚洲欧洲日产国产| 亚洲成人国产一区在线观看| 亚洲精品久久午夜乱码| 国产成人精品在线电影| 水蜜桃什么品种好| 人人妻人人澡人人看| bbb黄色大片| 啦啦啦免费观看视频1| 亚洲 欧美一区二区三区| 欧美精品一区二区大全| 丝瓜视频免费看黄片| 国产精品欧美亚洲77777| av有码第一页| 变态另类成人亚洲欧美熟女 | 国产主播在线观看一区二区| 午夜日韩欧美国产| 国产黄色免费在线视频| 激情视频va一区二区三区| 18禁裸乳无遮挡动漫免费视频| 蜜桃在线观看..| 成人永久免费在线观看视频 | 涩涩av久久男人的天堂| 久久人人爽av亚洲精品天堂| 黄频高清免费视频| 美女视频免费永久观看网站| 国产精品免费大片| 亚洲av日韩精品久久久久久密| 国产精品一区二区精品视频观看| 色婷婷av一区二区三区视频| 男女床上黄色一级片免费看| 王馨瑶露胸无遮挡在线观看| 1024视频免费在线观看| 极品少妇高潮喷水抽搐| 亚洲免费av在线视频| 成年动漫av网址| 精品久久蜜臀av无| 午夜91福利影院| 99精品欧美一区二区三区四区| 亚洲色图综合在线观看| 成人免费观看视频高清| 大片免费播放器 马上看| 欧美激情高清一区二区三区| 香蕉久久夜色| 最近最新中文字幕大全免费视频| 国产精品国产高清国产av | 亚洲七黄色美女视频| 黄色成人免费大全| 亚洲熟女精品中文字幕| 老熟妇仑乱视频hdxx| 国产97色在线日韩免费| 午夜福利一区二区在线看| 黑人操中国人逼视频| 制服诱惑二区| 日韩精品免费视频一区二区三区| netflix在线观看网站| tocl精华| 在线观看免费视频网站a站| 欧美乱码精品一区二区三区| 久9热在线精品视频| 久久精品aⅴ一区二区三区四区| 亚洲av片天天在线观看| 一区二区三区精品91| 免费少妇av软件| 色播在线永久视频| 亚洲色图 男人天堂 中文字幕| av在线播放免费不卡| 精品国产乱子伦一区二区三区| 十八禁网站免费在线| 一本久久精品|