• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis and thermoelectric properties of Bi-doped SnSe thin films?

    2021-11-23 07:29:48JunPang龐軍XiZhang張析LimengShen申笠蒙JiayinXu徐家胤YaNie聶婭andGangXiang向鋼
    Chinese Physics B 2021年11期
    關(guān)鍵詞:徐家

    Jun Pang(龐軍), Xi Zhang(張析), Limeng Shen(申笠蒙),Jiayin Xu(徐家胤), Ya Nie(聶婭), and Gang Xiang(向鋼)

    College of Physics,Sichuan University,Chengdu 610064,China

    Keywords: SnSe thin films,Bi doping,thermoelectric properties,Seebeck coefficient

    1. Introduction

    Thermoelectric (TE) materials, enabling energy conversion between heat and electricity,[1,2]offer a possibility for electricity generation and refrigeration.[3-7]The efficiency of TE materials is usually measured by power factor (σS2) and a dimensionless figure of merit, which is defined asZT=σS2T/κ, whereσis the electrical conductivity,Sis the Seebeck coefficient,Tis the absolute temperature, andκis the thermal conductivity,respectively.A highσS2or a lowκis required for excellent thermoelectric materials. There are three strategies to optimizeZTvalues. First, the Seebeck coefficient can be increased through carrier doping or energy filtering of charge carriers.[8,9]Second, the electrical conductivity can be increased by lowering the effective mass of the carriers or modulation doping in a quantum well.[10,11]Third, the thermal conductivity can be reduced by adding interfaces and phonon scattering centers in a nanowire, nanotube, superlattice,alloy or composite.[12,13]Such methods are typically used in the synthesis of excellent polycrystalline thermoelectric materials.

    As a new generation of thermoelectric materials with great potential, SnSe and its related thermoelectric materials have drawn extensive attention for its excellent thermoelectric properties.[14-20]For example,Zhaoet al. reported that p-type SnSe single crystals exhibited ultralow thermal conductivity and an outstandingZTvalue of 2.6 at 923 K.[15]Bi doped ntype SnSe single crystals also showed a highZTvalue of 2.2 at 733 K.[16]Geet al. found that Re and Cl co-doping could significantly enhance the electrical transport performance and reduce the thermal conductivity of n-type SnSe bulk samples,which results in aZTvalue of 1.5 at 793 K.[18]As we know,thin film fabrication is important for modern micro-and nanodevices since thin film materials can be easily incorporated into complex structures for various applications.[21]Because of this, SnSe thin films have been extensively investigated and shown great potentials in the fields of miniaturized optoelectronic,photovoltaic,and thermoelectric devices.[22-24]At the same time, researches have shown that the thermoelectric and optoelectronic properties of p-type SnSe thin films can be improved by doping suitable elements such as Ag, Co, Pb,and Zn.[25-27]At the same time, n-type Bi-doped SnSe bulk samples have been studied and exhibited good thermoelectric properties.[16,28]However,the report on the synthesis of n-type SnSe thin films,especially Bi-doped SnSe thin films,is rare.

    In this work, we synthesized Bi-doped n-type SnSe thin films by chemical vapor deposition and investigated the thermoelectric properties of Bi-doped SnSe thin films. Our data show that the Seebeck coefficient of the Bi-doped SnSe thin films reaches a maximum absolute value of?905.8 μV·K?1at 600 K.Further first-principles calculations indicate that appropriate Bi-doping can shift the Fermi level up in the energy band and improve the overall thermoelectric performance of the SnSe thin films. Our results suggest the potentials of ntype SnSe thin films in the thermoelectric application.

    2. Experimental and theoretical methods

    SnSe powder (purity 99.999%, 100 mg) was first evenly mixed with different amount of Bi powder (purity 99.999%,0, 2.5, 3, 4 mg), then the mixed powder was placed in the center of the high-temperature zone in the CVD system as the source. A piece of intrinsic Si (100) was placed in the lowtemperature zone as the substrate to grow continuous SnSe thin films. The mixed powder was heated to 1100 K at a rate of 20 K·min?1, and the low-temperature zone was heated to 900 K at a rate of 15 K·min?1. Ar (5% H2) gas with a flow ratio of 40-standard cubic centimeter per minute(SCCM)was introduced as the carrier gas. The pressure was adjusted to 10 Torr(1 Torr=1.33322×102Pa)during the film growth.After a growth duration of 40 min,the system was cooled to room temperature naturally.

    Density functional theory (DFT) was used to calculate electronic properties of the SnSe samples, which is implemented in Viennaab initiosimulation package(VASP)[29-31]with the projector augmented wave (PAW) method. The exchange-correlation functional was defined using a generalized gradient approximation (GGA) of Perdew-Burke-Ernzerhof(PBE).[32]A supercell with 48 Sn atoms and 48 Se atoms (3×2×2,Pnma) was built, and a Sn atom was randomly replaced with a Bi atom corresponding to a doping concentration of 2%.The plane wave cutoff was set to 520 eV,and a Monkhorst-Packk-mesh of 3×3×3 was used to sample the Brillouin zone(BZ)for integrations in reciprocal space. Both atomic positions and lattice constants were fully relaxed until the magnitude of the force acting on all atoms became less than 0.01 eV·?A?1and electronic convergence threshold for energy was set to be 10?5eV.

    The crystal structures were analyzed by x-ray diffraction(XRD,Fangyuan,DX-2500)with a CuKα(λ=0.15418 nm)radiation source. X-ray photoelectron spectroscopy (XPS,Thermo Scientific Escalab 250Xi) measurement was carried out to study the chemical state of the sample. The morphologies of the Bi-doped SnSe thin films were characterized by scanning electron microscopy (SEM, Thermo Scientific, Apreo-S). The elementary compositions of the SnSe film were investigated by energy dispersive x-ray spectrometry(EDS,Oxford, X-MaxN 80). The microstructures were characterized by high resolution transmission electron microscope(HRTEM, FEI Tecnai, G2 F20). The electrical properties of the samples were measured using a van der Pauw method in an east changing magneto-transport equipment (ET9007).The Seebeck coefficient was measured by an SB1000 Seebeck measurement system with K2000 digital temperature controller. Owing to its high resistivity, the intrinsic silicon substrate can be viewed as an insulator that has little effect on the electrical conductivities of our samples.

    3. Results and discussion

    The structures of the synthsized SnSe thin films were first studied. The XRD patterns of undoped and Bi-doped SnSe thin films with different Bi concentrationx(x=0,0.005,0.01,0.02) were shown in Fig. 1(a). The actual elemental compositions of the samples were obtained from energy dispersive x-ray spectrometry. The major diffraction peaks can be well indexed to the orthorhombic SnSe (JCPDS: 48-1224). The obvious difference in relative diffraction intensity in(400)and(111)planes indicates the existence of anisotropy of the samples. Owing to the substitution of a smaller atom Sn by a bigger atom Bi, the peak positions of the Sn0.99Bi0.01Se sample shift a little bit to smaller angles with respect to that of the undoped sample. However,the peak positions of Sn0.98Bi0.02Se sample shift toward bigger angles, which indicates that some of Bi ions may be incorporated into the lattice interstitial of SnSe,which were also observed in other studies.[28,33]

    Fig.1. (a)XRD of undoped and Bi-doped SnSe thin films. (b)SEM image and the inset shows the cross-section SEM image of Sn0.99Bi0.01Se thin film. (c)HRTEM image and the inset shows the corresponding SAED of Sn0.99Bi0.01Se thin film. (d)-(f)EDS mapping images of Sn,Se,and Bi from Sn0.99Bi0.01Se thin film.

    Fig.2. XPS of Sn0.99Bi0.01Se thin film. (a)Survey scans and high-resolution scans of(b)Sn 3d,(c)Se 3d,and(d)Bi 4f in Sn0.99Bi0.01Se thin film.

    In Fig. 1(b), the SEM image shows that our film is uniform except some dots formed on it. EDS mapping shows that the Bi concentration of white dots is same as that of the thin film (not shown). The total thickness of our thin film was also measured and estimated as 90 nm as shown in the cross-section SEM image. Further structural characterizations were performed by using high-resolution transmission electron microscope. Figure 1(c) reveals that the layer distance is 0.316 nm, corresponding to that of the(011)face of SnSe.The corresponding selected area electron diffraction (SAED)data exhibit a clear orthogonally symmetric spot pattern, as shown in the inset of Fig. 1(c), indicating the high phase purity and high crystallinity of the SnSe thin film. Figures 1(d)-1(f) show the EDS mapping images of Sn, Se, and Bi from Sn0.99Bi0.01Se film, we can see that the elementary distribution of the Bi-doped SnSe film is uniform.

    The composition and the chemical states of Bi-doped SnSe thin films were then studied by x-ray photoelectron spectroscopy(XPS).In Fig.2(a),the XPS survey scan of the sample shows the presence of Sn, Se, Bi, C, and O in a typical Bi-doped thin film (Sn0.99Bi0.01Se). In Fig. 2(b), the Sn 3d spin-orbit doublet peaks appear at 486.42 eV and 494.81 eV with splitting of 8.4 eV,which can be assigned to Sn 3d5/2and Sn 3d3/2,[34]respectively. Figure 2(c) shows the broad peak of Se can be deconvoluted as Se 3d5/2and Se 3d3/2peaks at binding energies of 53.10 eV and 53.96 eV, respectively.[35]In Fig. 2(d), the presence of Bi 4f7/2and Bi 4f5/2peaks at 157.6 eV and 162.9 eV can be attributed to Bi3+states in Bidoped SnSe sample,[28,34]while the peaks at 159.48 eV and 164.76 eV belong to the Bi5+ions.[36]Considering the facts the XRD patterns show peak shifting owing to the Bi-doping and EDS mappings indicate that Bi elements were evenly distributed in the sample,the XPS results agree with the previous analysis.

    Then the thermoelectric properties of the Bi-doped SnSe thin films were characterized in Fig. 3. Figure 3(a)shows the temperature-dependent Seebeck coefficients(S)for Sn1?xBixSe (x= 0, 0.005, 0.01, 0.02) thin films. The undoped SnSe shows positiveSvalues but three Bi-doped SnSe show negativeSvalues. The reason for positiveSvalue in undoped SnSe is that undoped SnSe samples often have Sn vacancy defects unavoidably generated during growth,and exhibit p-type characteristics.[16,37,38]The reason for negativeSvalue in Bi-doped SnSe is that the Bi-dopants are donors and will generate electrons in SnSe, which makes SnSe change from p-type to n-type. If one look at the absoluteSvalues,the temperature dependencies of the absoluteSvalues of Bi doped SnSe are similar to that of the undoped SnSe,in which the absoluteSvalues decrease as the temperature increases above 600 K due to the so called bipolar transport.[15,39]The maximalSvalue is achieved as?905.8 μV·K?1at 600 K in Sn0.99Bi0.01Se thin film, which is better than previously reported values of?400 μV·K?1to?900 μV·K?1in highquality Bi-doped SnSe crystalline bulks at 300 K-700 K.[16,28]Since the lattice mismatchε=(asi?aSnSe)/asibetween the SnSe thin film and Si substrate is negative and n-type Seebeck coefficient can be increased by compressive strain,[40]the higherSvalue of our n-type SnSe thin films is probably owing to the compressive strain between the SnSe thin films and the Si substrate. As shown in Fig. 3(b), the electrical conductivity (σ) of undoped SnSe and Bi-doped SnSe shows different trends. The explanations are as follows. As to the undoped SnSe,theσvalue first increases with increasing temperature up to 450 K owing to the thermal excitation of minority carriers, and then starts to decrease from 450 K owing to the formation of deep level defects,[41]which is like those observed in undoped SnSe bulks.[28,42]Theσvalues of all the Bi-doped SnSe samples show increasing trends as the temperature increases up to 700 K,since Bi dopants decrease the deep level defect concentration by suppressing the formation of traps.[43,44]Doping n-type dopant Bi into p-type SnSe will decrease the electrical conductivity first,which is accompanied by the decreased Hall carrier concentration, as shown in Fig. 3(d). The carrier type changes from hole to electron and carrier concentration decreases from 6.14×1017cm?3to 1.36×1017cm?3when the undoped SnSe (more accurately,p-type unintentionally doped) is doped and become n-type Sn0.995Bi0.005Se with 0.5%Bi dopants,owing to the electrons generated by Bi dopants. After that, the carrier type remain electron and carrier concentration keep increasing as Bi doping concentration increases. Meanwhile, the Hall mobility of carrier first increases owing to less carrier scattering resulted from the neutralization effect between n-type Bi dopants and unintentionally doped p-type defects, and then decreases owing to more and more carrier scattering when the Bi doping concentration increases. It is noted that the mobility of the SnSe thin film is lower than that of bulk materials,[28,45]which is probably caused by the phonon scattering at the surface and grain boundary in the thin films.

    Fig. 3. Temperature-dependent (a) Seebeck coefficient, (b) electrical conductivity, (c) power factor (σS2), and (d) room-temperature Hall carrier concentration and Hall mobility of Sn1?xBixSe(x=0,0.005,0.01,0.02)thin films.

    Figure 3(c) shows the temperature-dependent PF of different SnSe thin films. Low PF values with small variations are obtained in undoped SnSe and Sn0.995Bi0.005Se thin films due to their low Seebeck coefficients. Owing to the significant increase of Seebeck coefficient, the higher PF values are obtained in Sn0.99Bi0.01Se and Sn0.98Bi0.02Se thin films. Specifically,the PF value reaches a maximum of 0.6μW·cm?1·K?2at 700 K when Bi doping concentration is 2%.

    In fact, the measurement of thermal conductivity of thin films is notoriously difficult.[46-48]As other groups have pointed out, thin films are usually expected to have lower thermal conductivity than their bulk counterparts due to the phonon scattering at the surface and grain boundary,and hence many of them have used the thermal conductivity of the corresponding bulk materials to estimate the lower bound ofZTs of the thin films.[46-48]At the same time, previous studies have shown that the thermal conductivity of Bi-doped SnSe bulk samples is comparable to or even lower than that of bulk SnSe.[16,49,50]Therefore,we use the thermal conductivity of the bulk polycrystalline SnSe reported in the literature[51]to estimate the lower bound ofZTs of our Bi-doped SnSe films. Temperature dependence of the thermal conductivity of the bulk polycrystalline SnSe is shown in Fig. 4, owing to the fact that phonon scattering increases gradually with increasing temperature,κdecreases with increasing temperature. The conservatively estimateZTvalues as a function of temperature for all samples are shown in Fig. 4. TheZTvalues of Sn0.99Bi0.01Se and Sn0.98Bi0.02Se are significantly improved compared to that of pristine SnSe,which can be attributed to enhanced PF values. The obtained maximumZTof Sn0.98Bi0.02Se is 0.074 at 700 K.As discussed earlier,the actualZTof our SnSe thin film may be higher than the estimated value here.

    Fig. 4. Temperature-dependent figure of merit (ZT) for the Sn1?xBixSe(x=0, 0.005, 0.01, 0.02)thin films. The bottom curve is the total thermal conductivity of the reported bulk SnSe,[51] which is used to conservatively estimate the ZT of our SnSe thin films.

    Since the Seebeck coefficients of Sn0.99Bi0.01Se and Sn0.98Bi0.02Se are improved dramatically compared to that of undoped SnSe,we calculated their electronic structures to understand the effect of Bi-doping on the thermoelectric properties of the SnSe samples. Figure 5 shows the comparison between the pristine SnSe sample and a typical Bi-doped SnSe sample (Sn0.98Bi0.02Se). The density of states (DOSs) near the Fermi level are mainly composed of the s-orbitals and porbitals of Sn, and the p-orbitals of Se. After doping Bi into SnSe, the Fermi level is shifted up into the conduction band,and hence the DOSs near the Fermi level is increased and Bidoped SnSe become n-type, as shown Fig. 5. According to Mott expression,[52]the increase in the local DOSs near the Fermi level can enhance the Seebeck coefficient. The band structure of Sn0.98Bi0.02Se is shown in Fig. 5(d) where four conduction bands named CB1, CB2, CB3, and CB4 are near theΓpoint in the Brillouin zone. The differences between the four band energies are on the order ofkBT, suggesting that doping Bi into SnSe will introduce some carrier pockets near the Fermi level. Previous studies have shown that the increase of carrier pockets near the Fermi level will also improve the Seebeck coefficient.[53-55]Therefore, doping Bi into SnSe is indeed an effective way to improve the thermoelectric properties of SnSe. The results of theoretical calculations agree well with the experimental results.

    Fig.5. [(a)and(b)]DOSs and[(c)and(d)]electronic band structures of the undoped SnSe and Sn0.98Bi0.02Se samples.

    4. Conclusion

    In this work, Bi-doped SnSe thin films were prepared on Si substrate by CVD and their structures and thermoelectric properties were studied. TheZTvalues of Sn0.99Bi0.01Se and Sn0.98Bi0.02Se thin films are significantly improved compared to that of pristine SnSe, which can be attributed to the enhanced PF values. The obtained maximumZTof Sn0.98Bi0.02Se thin film is 0.074 at 700 K.The enhancement of the thermoelectric properties is related to the Fermi level lifting and the carrier pockets increasing near the Fermi level due to Bi doping in the SnSe samples. Our results thus provide an effective way to improve the thermoelectric properties of SnSe thin films.

    Acknowledgements

    We are very grateful to the help from the Analytical and Testing Center of Sichuan University.

    猜你喜歡
    徐家
    Enhancing terahertz photonic spin Hall effect via optical Tamm state and the sensing application
    The existence and blow-up of the radial solutions of a (k1, k2)-Hessian system involving a nonlinear operator and gradient
    Broadband low-frequency acoustic absorber based on metaporous composite
    徐家玨作品
    美術(shù)界(2022年4期)2022-04-26 11:07:00
    STABILITY ANALYSIS OF CAUSAL INTEGRAL EVOLUTION IMPULSIVE SYSTEMS ON TIME SCALES?
    南京市棲霞區(qū)徐家村M4 出土器物
    南京市棲霞區(qū)徐家村M1 出土器物
    徐家柱 用愛(ài)喚醒沉睡12年的妻子
    “多多益善”的政協(xié)主席
    徐家河尾礦庫(kù)潰壩分析
    久久精品国产亚洲网站| 高清午夜精品一区二区三区| 久久久亚洲精品成人影院| 美女内射精品一级片tv| 午夜福利网站1000一区二区三区| 男女啪啪激烈高潮av片| 男女边摸边吃奶| 久久久久网色| 人人妻人人澡人人爽人人夜夜| 肉色欧美久久久久久久蜜桃| 水蜜桃什么品种好| 欧美人与善性xxx| 韩国av在线不卡| 日韩中字成人| 免费黄色在线免费观看| 国产成人精品无人区| 夜夜爽夜夜爽视频| 午夜激情福利司机影院| 日韩av不卡免费在线播放| 特大巨黑吊av在线直播| 春色校园在线视频观看| 国产亚洲最大av| 视频区图区小说| 国产男女超爽视频在线观看| 熟妇人妻不卡中文字幕| 日韩成人av中文字幕在线观看| 国产男人的电影天堂91| 人妻一区二区av| 纯流量卡能插随身wifi吗| av又黄又爽大尺度在线免费看| 亚洲精品亚洲一区二区| 国产伦在线观看视频一区| 免费黄色在线免费观看| 日日撸夜夜添| 亚洲精品久久久久久婷婷小说| 欧美成人精品欧美一级黄| 精品亚洲成国产av| 久久国产乱子免费精品| 蜜桃在线观看..| 男人添女人高潮全过程视频| av又黄又爽大尺度在线免费看| 少妇人妻 视频| 内射极品少妇av片p| 一二三四中文在线观看免费高清| 久久精品久久久久久噜噜老黄| 大陆偷拍与自拍| 亚洲在久久综合| 国产精品一区二区在线观看99| 熟女电影av网| 久久国产精品大桥未久av | 91久久精品国产一区二区三区| 国产精品偷伦视频观看了| 成人毛片a级毛片在线播放| 日韩电影二区| 欧美日韩综合久久久久久| 在线观看www视频免费| 色视频在线一区二区三区| 午夜激情久久久久久久| 91久久精品电影网| 久久久欧美国产精品| 大片免费播放器 马上看| 99九九线精品视频在线观看视频| av福利片在线观看| 免费观看av网站的网址| 精品少妇内射三级| 在线观看免费日韩欧美大片 | 91精品伊人久久大香线蕉| 精品午夜福利在线看| 亚洲精品亚洲一区二区| 另类精品久久| 高清毛片免费看| 久久婷婷青草| 久久久久视频综合| 秋霞伦理黄片| 丰满少妇做爰视频| 国产av码专区亚洲av| 久久久久久人妻| 国产精品秋霞免费鲁丝片| 久久精品久久久久久久性| 如日韩欧美国产精品一区二区三区 | av天堂中文字幕网| 男男h啪啪无遮挡| 九九久久精品国产亚洲av麻豆| 国产亚洲av片在线观看秒播厂| 久久久久视频综合| 日本色播在线视频| 亚洲三级黄色毛片| a 毛片基地| 国产黄片视频在线免费观看| 亚洲精品久久久久久婷婷小说| 超碰97精品在线观看| 亚洲精品自拍成人| 国产精品熟女久久久久浪| 最近中文字幕2019免费版| 街头女战士在线观看网站| 亚洲人与动物交配视频| 啦啦啦中文免费视频观看日本| 久久精品熟女亚洲av麻豆精品| 十分钟在线观看高清视频www | 久久久国产精品麻豆| 大又大粗又爽又黄少妇毛片口| 熟妇人妻不卡中文字幕| 青春草国产在线视频| 欧美丝袜亚洲另类| 性色av一级| 国产乱来视频区| 国产精品久久久久成人av| 欧美精品亚洲一区二区| 亚洲精品成人av观看孕妇| 中文字幕亚洲精品专区| 人妻人人澡人人爽人人| 啦啦啦在线观看免费高清www| 国产 一区精品| 久久精品国产自在天天线| 观看av在线不卡| 国产一区二区在线观看日韩| 成人毛片60女人毛片免费| 又爽又黄a免费视频| 韩国av在线不卡| 亚洲精品日本国产第一区| 国产亚洲欧美精品永久| 国产又色又爽无遮挡免| 亚洲不卡免费看| 天美传媒精品一区二区| 深夜a级毛片| 秋霞伦理黄片| 免费黄网站久久成人精品| 亚洲综合精品二区| 久久人妻熟女aⅴ| 最近的中文字幕免费完整| 免费黄网站久久成人精品| 女人精品久久久久毛片| 国产精品三级大全| 亚洲成人手机| 国产日韩欧美视频二区| 麻豆成人午夜福利视频| 国产欧美日韩一区二区三区在线 | 青春草视频在线免费观看| 亚洲三级黄色毛片| 波野结衣二区三区在线| 日日啪夜夜撸| 菩萨蛮人人尽说江南好唐韦庄| 国产亚洲午夜精品一区二区久久| 亚洲精品久久午夜乱码| 国产在视频线精品| 性色av一级| 国产精品嫩草影院av在线观看| 晚上一个人看的免费电影| 久久综合国产亚洲精品| 中国三级夫妇交换| 日韩亚洲欧美综合| 精品国产乱码久久久久久小说| h日本视频在线播放| 欧美日韩一区二区视频在线观看视频在线| 亚洲国产日韩一区二区| 精品少妇黑人巨大在线播放| 一个人免费看片子| 中文在线观看免费www的网站| 又爽又黄a免费视频| av线在线观看网站| 中文字幕免费在线视频6| 狠狠精品人妻久久久久久综合| 少妇熟女欧美另类| 一本一本综合久久| 国产精品秋霞免费鲁丝片| 精品国产乱码久久久久久小说| 自拍偷自拍亚洲精品老妇| 水蜜桃什么品种好| 伊人亚洲综合成人网| 肉色欧美久久久久久久蜜桃| 三级经典国产精品| 精品一区二区免费观看| 最新中文字幕久久久久| 边亲边吃奶的免费视频| 人妻夜夜爽99麻豆av| 国产永久视频网站| 少妇高潮的动态图| 欧美日本中文国产一区发布| 亚洲人成网站在线观看播放| 欧美97在线视频| 欧美一级a爱片免费观看看| 日韩精品免费视频一区二区三区 | a级毛色黄片| 亚洲一区二区三区欧美精品| 亚洲av成人精品一区久久| 在线观看www视频免费| 热re99久久精品国产66热6| 国产无遮挡羞羞视频在线观看| 99久久综合免费| 青青草视频在线视频观看| 狂野欧美激情性xxxx在线观看| 亚洲欧美成人综合另类久久久| 视频区图区小说| 美女国产视频在线观看| 国产一区亚洲一区在线观看| 777米奇影视久久| 国产精品免费大片| 丰满迷人的少妇在线观看| av天堂久久9| 黄色毛片三级朝国网站 | 精品酒店卫生间| 全区人妻精品视频| 亚洲第一区二区三区不卡| av.在线天堂| 高清黄色对白视频在线免费看 | 自拍欧美九色日韩亚洲蝌蚪91 | 99久久精品一区二区三区| 男女无遮挡免费网站观看| 国产探花极品一区二区| 在线观看免费视频网站a站| 国产成人午夜福利电影在线观看| 久久久久久久久久成人| 黄色日韩在线| 欧美日韩一区二区视频在线观看视频在线| 肉色欧美久久久久久久蜜桃| 欧美人与善性xxx| 国产av一区二区精品久久| 亚洲国产精品999| 亚洲性久久影院| 免费少妇av软件| 亚洲精品一区蜜桃| 国产美女午夜福利| 国产日韩欧美视频二区| 久久久久久久大尺度免费视频| 女的被弄到高潮叫床怎么办| 一级毛片我不卡| 国产老妇伦熟女老妇高清| 久久精品国产亚洲网站| 自线自在国产av| 国产日韩欧美在线精品| 另类亚洲欧美激情| 久久久久久久久久成人| 久久久久久久久久人人人人人人| av.在线天堂| 亚洲熟女精品中文字幕| 爱豆传媒免费全集在线观看| 日本wwww免费看| 久久人妻熟女aⅴ| 国产精品无大码| 国产欧美另类精品又又久久亚洲欧美| 成人漫画全彩无遮挡| 天美传媒精品一区二区| 色婷婷久久久亚洲欧美| 国产精品一二三区在线看| 国产乱人偷精品视频| 少妇精品久久久久久久| 夜夜爽夜夜爽视频| 亚洲国产日韩一区二区| 久久99一区二区三区| 日本av免费视频播放| 大片电影免费在线观看免费| 美女内射精品一级片tv| 人妻系列 视频| 乱码一卡2卡4卡精品| www.av在线官网国产| 国产精品成人在线| 十分钟在线观看高清视频www | 日韩欧美精品免费久久| 插阴视频在线观看视频| 午夜福利视频精品| 亚洲欧美一区二区三区国产| 乱人伦中国视频| 青春草视频在线免费观看| 精品酒店卫生间| av.在线天堂| 婷婷色综合大香蕉| 少妇的逼好多水| 美女福利国产在线| 色婷婷久久久亚洲欧美| 丝袜喷水一区| 最新中文字幕久久久久| 2018国产大陆天天弄谢| a级毛片在线看网站| 97超碰精品成人国产| 国产免费一区二区三区四区乱码| 一本—道久久a久久精品蜜桃钙片| 女性生殖器流出的白浆| 秋霞在线观看毛片| 国产高清有码在线观看视频| freevideosex欧美| 成人综合一区亚洲| 香蕉精品网在线| 免费av中文字幕在线| 久久久国产精品麻豆| 国产av一区二区精品久久| 国产精品国产av在线观看| av不卡在线播放| 久久韩国三级中文字幕| 插阴视频在线观看视频| 国产成人a∨麻豆精品| 搡老乐熟女国产| 亚洲真实伦在线观看| 黑丝袜美女国产一区| 蜜桃久久精品国产亚洲av| 国产精品久久久久成人av| 欧美精品国产亚洲| 少妇被粗大猛烈的视频| 精华霜和精华液先用哪个| 美女主播在线视频| 最近中文字幕2019免费版| 国产色婷婷99| 精品一品国产午夜福利视频| a级一级毛片免费在线观看| 丝瓜视频免费看黄片| a 毛片基地| 老司机亚洲免费影院| 国产精品熟女久久久久浪| 久久精品国产亚洲网站| 国产日韩欧美视频二区| 香蕉精品网在线| 久久人人爽av亚洲精品天堂| 男女边摸边吃奶| 国产免费福利视频在线观看| 国产av码专区亚洲av| 女的被弄到高潮叫床怎么办| 在线观看美女被高潮喷水网站| 天美传媒精品一区二区| 国产精品久久久久久av不卡| 一级毛片久久久久久久久女| 黄色配什么色好看| .国产精品久久| 欧美日韩一区二区视频在线观看视频在线| 亚洲欧美日韩东京热| 一个人免费看片子| 下体分泌物呈黄色| 99久久中文字幕三级久久日本| 欧美日韩在线观看h| 国产一区二区在线观看av| 亚洲欧洲国产日韩| 99热国产这里只有精品6| 久久精品国产自在天天线| 久久久亚洲精品成人影院| 国产真实伦视频高清在线观看| 国产欧美日韩综合在线一区二区 | 秋霞伦理黄片| 久热这里只有精品99| a级一级毛片免费在线观看| 精品少妇黑人巨大在线播放| 人妻一区二区av| 女人久久www免费人成看片| 免费观看av网站的网址| 亚洲精品亚洲一区二区| 自线自在国产av| 久久久久久久国产电影| 又爽又黄a免费视频| 夜夜爽夜夜爽视频| 午夜免费男女啪啪视频观看| 老司机影院毛片| 日韩av在线免费看完整版不卡| 99久久精品热视频| 欧美 日韩 精品 国产| 国产精品久久久久久av不卡| 午夜老司机福利剧场| 免费av中文字幕在线| 十分钟在线观看高清视频www | 一级片'在线观看视频| 九九爱精品视频在线观看| 自线自在国产av| 亚洲国产毛片av蜜桃av| av专区在线播放| 国产熟女欧美一区二区| 欧美精品亚洲一区二区| 日日啪夜夜爽| 亚洲人成网站在线观看播放| 国产深夜福利视频在线观看| 热re99久久国产66热| 91在线精品国自产拍蜜月| 人人妻人人澡人人看| 国产一区二区三区av在线| 亚洲国产欧美在线一区| 国产精品三级大全| 久久99蜜桃精品久久| 高清黄色对白视频在线免费看 | 黑人高潮一二区| 久久人人爽av亚洲精品天堂| 免费观看的影片在线观看| 性色av一级| 内地一区二区视频在线| 欧美高清成人免费视频www| 国产女主播在线喷水免费视频网站| 女性生殖器流出的白浆| 国产精品99久久久久久久久| kizo精华| 日韩一本色道免费dvd| 日本午夜av视频| 一级毛片电影观看| 曰老女人黄片| 人人澡人人妻人| 亚洲av中文av极速乱| 色网站视频免费| 亚洲电影在线观看av| 午夜影院在线不卡| 中国美白少妇内射xxxbb| a 毛片基地| 亚洲国产成人一精品久久久| 国产在线男女| 日本av手机在线免费观看| 丰满迷人的少妇在线观看| 大香蕉97超碰在线| 狂野欧美白嫩少妇大欣赏| 三级国产精品片| 国产亚洲最大av| 免费不卡的大黄色大毛片视频在线观看| 人人妻人人澡人人看| 69精品国产乱码久久久| 国产欧美另类精品又又久久亚洲欧美| 精品国产一区二区三区久久久樱花| 亚洲欧美一区二区三区黑人 | 亚洲精品国产av蜜桃| 一级毛片aaaaaa免费看小| 免费看不卡的av| 国产成人精品久久久久久| 免费观看在线日韩| 国产极品粉嫩免费观看在线 | 免费大片黄手机在线观看| 亚洲av国产av综合av卡| 亚洲一级一片aⅴ在线观看| 久久6这里有精品| 在线免费观看不下载黄p国产| 国产精品久久久久久久久免| 久久婷婷青草| .国产精品久久| 国产午夜精品久久久久久一区二区三区| 久久久久精品久久久久真实原创| 欧美国产精品一级二级三级 | 人妻制服诱惑在线中文字幕| 婷婷色麻豆天堂久久| 日日撸夜夜添| 久久 成人 亚洲| 精品少妇久久久久久888优播| 国产淫片久久久久久久久| 久久久久久久大尺度免费视频| 午夜免费男女啪啪视频观看| 91久久精品电影网| 国产伦精品一区二区三区视频9| 大片电影免费在线观看免费| 人妻人人澡人人爽人人| 久久精品国产a三级三级三级| 大陆偷拍与自拍| 亚洲精品乱码久久久久久按摩| 精品久久久久久电影网| 久久人妻熟女aⅴ| 观看av在线不卡| 日本爱情动作片www.在线观看| 18禁动态无遮挡网站| h日本视频在线播放| 欧美日韩在线观看h| 校园人妻丝袜中文字幕| 成人无遮挡网站| 日本爱情动作片www.在线观看| 中文字幕久久专区| 国产毛片在线视频| 在线看a的网站| 日韩中字成人| 一区二区三区乱码不卡18| 在线亚洲精品国产二区图片欧美 | 黄色日韩在线| 男人舔奶头视频| 成人漫画全彩无遮挡| 大码成人一级视频| 一本一本综合久久| 国产在视频线精品| 天堂8中文在线网| 在线亚洲精品国产二区图片欧美 | 黑人猛操日本美女一级片| 自拍偷自拍亚洲精品老妇| 午夜福利网站1000一区二区三区| 亚洲国产精品专区欧美| 精品少妇久久久久久888优播| 成人特级av手机在线观看| 久久综合国产亚洲精品| 国产69精品久久久久777片| 国产白丝娇喘喷水9色精品| 少妇被粗大猛烈的视频| 美女福利国产在线| 久久精品国产a三级三级三级| 国产在视频线精品| 国产精品麻豆人妻色哟哟久久| 你懂的网址亚洲精品在线观看| 亚州av有码| 免费观看无遮挡的男女| 嘟嘟电影网在线观看| 午夜影院在线不卡| 22中文网久久字幕| 人人妻人人澡人人看| 熟女人妻精品中文字幕| 国产在线男女| 婷婷色综合大香蕉| 热re99久久国产66热| 国产成人精品一,二区| 久久免费观看电影| 久久人人爽av亚洲精品天堂| 中文字幕亚洲精品专区| 大陆偷拍与自拍| 亚洲自偷自拍三级| a 毛片基地| 老女人水多毛片| 亚洲精品视频女| 亚洲精品久久午夜乱码| 99热这里只有精品一区| 天堂中文最新版在线下载| 成人18禁高潮啪啪吃奶动态图 | 老司机影院毛片| 免费不卡的大黄色大毛片视频在线观看| 日本欧美国产在线视频| 亚洲精品成人av观看孕妇| 亚洲人成网站在线播| 亚洲国产精品一区二区三区在线| 一级二级三级毛片免费看| 老熟女久久久| 欧美精品人与动牲交sv欧美| 最近中文字幕高清免费大全6| videos熟女内射| av在线观看视频网站免费| 婷婷色综合www| 亚洲国产精品999| 亚洲免费av在线视频| av免费在线观看网站| 久久久久国内视频| 国产日韩一区二区三区精品不卡| 国产深夜福利视频在线观看| 一级片免费观看大全| 国产1区2区3区精品| 精品亚洲成国产av| 欧美精品一区二区免费开放| 91九色精品人成在线观看| 一区福利在线观看| tocl精华| 一本久久精品| 精品人妻在线不人妻| 夜夜夜夜夜久久久久| 国产亚洲av高清不卡| 国产精品自产拍在线观看55亚洲 | 欧美成狂野欧美在线观看| 亚洲专区字幕在线| 18禁国产床啪视频网站| 夜夜夜夜夜久久久久| 99热全是精品| 国产精品自产拍在线观看55亚洲 | 黑人巨大精品欧美一区二区蜜桃| 91成年电影在线观看| 国产精品欧美亚洲77777| 亚洲 国产 在线| 亚洲国产欧美一区二区综合| 9色porny在线观看| 91成人精品电影| 超色免费av| 久久精品国产综合久久久| 一区二区日韩欧美中文字幕| 香蕉国产在线看| 欧美 亚洲 国产 日韩一| 亚洲男人天堂网一区| 亚洲avbb在线观看| 久久久久国产精品人妻一区二区| 亚洲精品国产精品久久久不卡| 欧美一级毛片孕妇| 欧美 日韩 精品 国产| 亚洲国产精品一区二区三区在线| av国产精品久久久久影院| 久久久精品免费免费高清| 亚洲伊人久久精品综合| 侵犯人妻中文字幕一二三四区| 日韩,欧美,国产一区二区三区| 欧美一级毛片孕妇| 午夜视频精品福利| 中亚洲国语对白在线视频| 黄色毛片三级朝国网站| 青春草视频在线免费观看| 国产精品秋霞免费鲁丝片| 国产亚洲一区二区精品| 91av网站免费观看| 亚洲 欧美一区二区三区| 久久精品aⅴ一区二区三区四区| 亚洲伊人久久精品综合| 国产亚洲一区二区精品| 天天操日日干夜夜撸| 多毛熟女@视频| 国产亚洲av高清不卡| 大型av网站在线播放| 少妇猛男粗大的猛烈进出视频| 国产免费av片在线观看野外av| 日本vs欧美在线观看视频| 国产视频一区二区在线看| 叶爱在线成人免费视频播放| 搡老乐熟女国产| 在线观看一区二区三区激情| 午夜精品久久久久久毛片777| 国产精品1区2区在线观看. | 日韩 欧美 亚洲 中文字幕| 国产成人一区二区三区免费视频网站| 亚洲精品成人av观看孕妇| 精品免费久久久久久久清纯 | 国产真人三级小视频在线观看| 欧美日韩一级在线毛片| 婷婷色av中文字幕| 69av精品久久久久久 | 制服人妻中文乱码| 天天躁狠狠躁夜夜躁狠狠躁| 99香蕉大伊视频| 九色亚洲精品在线播放| 国产精品av久久久久免费| 国产男人的电影天堂91| 自线自在国产av| 久久性视频一级片| 亚洲一区中文字幕在线| 午夜福利在线免费观看网站| 亚洲国产精品一区三区| 午夜福利视频在线观看免费| 操出白浆在线播放| 亚洲自偷自拍图片 自拍| 亚洲精品粉嫩美女一区| 91大片在线观看| av欧美777| 狂野欧美激情性xxxx| 久久精品国产a三级三级三级|