• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Any-polar resistive switching behavior in Ti-intercalated Pt/Ti/HfO2/Ti/Pt device*

    2021-11-23 07:32:54JinLongJiao焦金龍QiuHongGan甘秋宏ShiCheng程實YeLiao廖曄ShaoYingKe柯少穎WeiHuang黃巍JianYuanWang汪建元ChengLi李成andSongYanChen陳松巖
    Chinese Physics B 2021年11期
    關(guān)鍵詞:李成

    Jin-Long Jiao(焦金龍) Qiu-Hong Gan(甘秋宏) Shi Cheng(程實) Ye Liao(廖曄) Shao-Ying Ke(柯少穎)Wei Huang(黃巍) Jian-Yuan Wang(汪建元) Cheng Li(李成) and Song-Yan Chen(陳松巖)

    1Department of Physics and Jiujiang Research Institute,Xiamen University,Xiamen 361005,China

    2College of Physics and Information Engineering,Minnan Normal University,Zhangzhou 363000,China

    Keywords: filament,memory,resistive switching

    1. Introduction

    Resistive random access memory (RRAM) devices offer significant application potential in future non-volatile data storage technology[1-4]due to their fast operation speed,high storage density, and process compatibility with today’s silicon technology.[5-7]In previous research of RRAM,the resistive switching modes are generally classified as unipolar resistive switching(URS)mode and bipolar resistive switching(BRS)[8]mode. If the URS can symmetrically occur at both positive and negative voltages, it is also referred to as nonpolar resistive switching mode.[9,10]In recent years, coexistence of URS and BRS was also studied.[11-17]According to our previous study on Pt/LATP/Pt devices, the stable conversion between the unipolar mode and the bipolar mode is named any-polar resistive switching mode.[18]The crystalline channel structure of the LATP(Li1?xAlxTi2?x(PO4)3)[19-21]benefits the easy movement and effective storage of the oxygen ion when used as a resistive switching layer,and thus contributing to the any-polar resistive switching mode.

    Titanium (Ti), as a metal with high affinity with oxygen, is naturally regarded as an ideal oxygen storage material. Using Ti as an electrode or additional interfacial layer to improve the performance of RRAM device has been extensively studied.[22,23]For the widely studied HfO2RRAM,with a thin Ti layer serving as a reactive buffer layer,the TiN/Ti/HfO2/TiN device demonstrated excellent memory performance and satisfactory switching endurance over 106cycles.[23]

    In this work,the effect of Ti intercalation on the conventional HfO2resistive switching device is restudied. The Ti intercalation can be at one side of the HfO2film,or be at each side of the HfO2film.With various device structures,different resistive switching modes are found.When the Ti intercalation layers are inserted at both sides of the HfO2film,the resulting Pt/Ti/HfO2/Ti/Pt device shows the stable any-polar resistive switching behavior.This phenomenon gives a new insight into the fundamental working mechanism of the any-polar resistive switching mode.

    2. Results and discussion

    To fabricate HfO2RRAMs, the Pt-substrate is used as a bottom electrode. The Pt-substrate contains a structure of Pt(100 nm)/Ti(50 nm)/Si(100), which is prepared by successive direct current(DC)magnetron sputtering of Ti and Pt on a Si(100)substrate. The resistive HfO2layer is then grown by atomic layer deposition (ALD) at 275°C with using tetrakis(sthylmethylamido) hafnium (TEMAH) and H2O as precursors.A 5-nm-thick Ti layer is sputtered at the front side and/or at the back side of the HfO2film as an intercalation layer.The Pt top electrodes with a diameter of 800μm are sputtered through a mechanical mask.

    As shown in Fig. 1(a), three types of resistive memory devices are prepared in the present investigation, which are Pt/HfO2(10 nm)/Pt, Pt/HfO2(10 nm)/Ti(5 nm)/Pt, and Pt/Ti(5 nm)/HfO2(10 nm)/Ti(5 nm)/Pt. For basic DCI-Vmeasurements, an external bias is applied to the top Pt electrode, and the bottom Pt electrode is grounded by a Keithley 4200 semiconductor parameter analyzer. All measurements are performed respectively at room temperature,in ambient condition,and in a dark chamber. Transmission electron microscope (TEM) is used to image the cross-section of the Pt/Ti/HfO2/Ti/Pt-substrate device as shown in Fig. 1(b). The TEM samples are prepared by applying thein situfocused ion beam lift-out technique to a dual beam, for focused ion beam/scanning electron microscopy(FEI Company,UK).

    Fig.1. (a)Schematic diagram of RRAM devices with Ti intercalation layers,and(b)cross-section of the Pt/Ti/HfO2/Ti/Pt device.

    The simplest RRAM can be finished by a simple sandwich structure of metal/oxide/metal such as Pt/HfO2/Pt. The Pt/HfO2/Pt RRAM works in URS switching mode. However, the Pt/HfO2/Pt RRAM suffers poor endurance property.After limited switching cycles, the device tends to be break down.[24]Figure 2(a)shows the current-voltage(I-V)switching property of our Pt/HfO2/Pt RRAM.The initial high resistance state(HRS)of the as-fabricated device is about 1010Ω.After electroforming,the RESET voltage is around 0.5 V,and the SET voltages are in a range between 1.5 V and 4.3 V for the following cycles. The on-off ratio at a read voltage of 0.2 V is generally larger than 103. But after 10 cycles,the device fails,ending up with final permanent low resistance state(LRS).The limited switching cycles lie in the oxygen ions migrating towards and escaping from the anode electrode during the switching. This was also confirmed by the observation of gas bubbles at the anode in early studies.[2]

    To improve the switching property of the Pt/HfO2/Pt RRAM, titanium electrode or titanium intercalation layer is introduced. Considering that the oxygen ion is the moving species under switching operations and with the titanium layer acting as the oxygen reservoir, the duration property of the HfO2RRAM device is prominently improved.[23]Once the titanium is introduced, the Ti/HfO2/Pt or the Pt/HfO2/Ti/Pt RRAM device shows bipolar switching mode.[25]When positive bias is exerted on the Ti or the Ti intercalated electrode,the oxygen ions are driven towards and captured by Ti under the action of electric field and the high oxygen density of Ti.Oxygen vacancies accumulate in the HfO2layer, forming a conductive filament. When the applied bias is negative, the oxygen ions are released from Ti and annihilate the filament,finishing the RESET operation.

    Figure 2(b) shows the typical electrical switching property of our Pt/HfO2/Ti(5 nm)/Pt RRAM device. The electroforming occurs at?3.7-V bias. A compliance current(IC)of 1 mA is applied during the following SET operations.A stable bipolar resistive switching is demonstrated(negative SET,positive RESET).The device in Fig.2(b)experiences 65 switching cycles without degradation. The RESET voltages varies around +0.5 V, and the SET voltages spread in a range from?2.4 V to?1.5 V.

    The above BRS mode bring the Pt/HfO2/Ti(5 nm)/Pt into stable and robust switching behavior. But on the other hand,if we change the polarities of the BRS operation,i.e.,negative RESET and positive SET, the device is corrupted soon after only a few cycles. This phenomenon can be understood by the asymmetric structure of the device, which means that the drifting oxygen ions in HfO2can be stored only at the Ti intercalated electrode rather than the counter pure Pt electrode.Obviously, the polarity of the BRS operation in the device of Pt/HfO2/Ti(5 nm)/Pt is unchangeable.

    To implement the so-called any-polar resistive switching properties, the RRAM device needs to possess both the BRS and the URS properties simultaneously. Secondly,the polarities of both operations must be changeable.Finally,each operation mode and each polarity can be exchanged freely,which is independent of their operation history. Up to now,neither of the above two devices(Pt/HfO2/Pt and Pt/HfO2/Ti/Pt)can be called any-polar resistive switching device.

    To implement the any-polar resistive switching mode,the key issue is the ability of the oxygen ions to be stored at both electrode sides of the resistive layer, considering that oxygen vacancy is the species to set up the filament. In the device of the Pt/HfO2/Ti/Pt, oxygen ions can be stored only at the bottom electrode. So,adding another Ti intercalation layer to the top Pt electrode can straightforwardly improve the storage of oxygen. This idea leads to the symmetric device structure of Pt/Ti/HfO2/Ti/Pt. A TEM cross-section image of the fabricated device is shown in Fig.1(b).

    For the symmetric Pt/Ti(5 nm)/HfO2(10 nm)/Ti(5 nm)/Pt RRAM device, the resistive switching property is shown in Fig. 2(c). An electroforming process occurs at?3.725 V to active the device. After forming, 120 uniform operation cycles are captured without any degradation. By recognizing the voltage polarity for each of the SET and the RESET process, all the switching operations can be grouped into four different resistive switching sub-modes, which are named as URS+, URS-, BRS+, and BRS- as shown in Fig. 2(d), respectively. In each conversion process,the conversion of two sub-switching modes is realized by changing the applied voltage polarity of one of the SET and the RESET process, with the voltage polarity of the other process remaining unchanged.In URS+, the SET and the RESET processes are both completed at positive voltages. For URS-, the SET and the RESET processes are both executed under negative voltages. For BRS+, the SET process is completed with negative bias, and the RESET process is completed with positive bias. For BRS-, opposite polarities of the SET and the RESET process may be determined by referring to the BRS+mode.

    The test in Fig.2(c)starts from BRS+mode. After 5-10 BRS+cycles, the operation changes into the URS+mode for another 5-10 cycles. The device subsequently undergoes the BRS-and URS-modes and finally comes back to the BRS+mode. The above transition following the sequence of BRS+,URS+, BRS-, URS-is called a big-loop cycle. The device can also well follow the opposite big-loop cycle with the sequence of BRS+,URS-,BRS-,and URS+.Whether the mode is URS+(or URS-)or BRS+(or BRS-),the on-off ratio is always higher than 100, the absolute value of the SET and the RESET operation are both around 2.0 V and 0.5 V, respectively.

    A comparison among the above three devices is shown in Fig. 3. The resistance distributions of both the HRS and the LRS at±0.2 V for the three devices are shown in Fig. 3(a).Larger memory windows are observed for the Pt/HfO2/Pt device without Ti intercalation than for the other two devices. But as already known, the Pt/HfO2/Pt device suffers poor endurance. For the Pt/HfO2/Ti/Pt device and the Pt/Ti/HfO2/Ti/Pt device, both have stable distributions of the HRS and LRS resistances.The switching ratio of HRS to LRS for each device is generally larger than 100. A comparison of SET/RESET voltage distributions among the three devices is shown in Fig. 3(b). It is found that the SET/RESET voltage distributions of the bipolar Pt/HfO2/Ti/Pt device fall well into those of the any-polar Pt/HfO2/Ti/Pt device,which means that when the any-polar Pt/Ti/HfO2/Ti/Pt device works in its BRSsub-mode, its behavior is similar to that of the Pt/HfO2/Ti/Pt device.

    The migration of ions driven by electric field is the main motivation for resistive switching. Joule heating is another factor to redistribute ions. According to the type of the migration ions, electrochemical metallization memory and valance change memory are sorted. In the former,the conducting filaments are comprised of reduced active metal ions such as Ag+or Cu+, which may drift, forming a metal electrode.[26-30]In the latter, the filaments are formed by oxygen vacancies.[6]The oxygen vacancy model is applicable for all the three devices in this work.

    The Pt/HfO2/Pt also has a symmetric device structure. Its URS property can also be observed with negative bias (denoted as URS-). The symmetric occurrence of URS+ and URS- is also called non-polar resistive switching mode.[9]However, further study finds that the conversion between the two URS modes is impossible. Frequently changing between the URS+and the URS-causes the device to break down immediately.

    Fig.2.Typical I-V switching characteristics based on HfO2 RRAM with different Ti intercalation layers.(a)Unipolar resistive switching mode of Pt/HfO2/Pt RRAM,(b)bipolar resistive switching mode of Pt/HfO2/Ti(5 nm)/Pt RRAM,(c)any-polar resistive switching mode of Pt/Ti(5 nm)/HfO2/Ti(5 nm)/Pt RRAM,and(d)four resistive switching sub-modes extracted from curves in panel(c).

    Fig.3. (a)Switching resistance distributions of three devices of Pt/HfO2/Pt,Pt/HfO2/Ti/Pt and Pt/Ti/HfO2/Ti/Pt at±0.2 V.(b)SET and RESET voltage distributions of these devices.

    The working mechanism of the bipolar Pt/HfO2/Ti/Pt RRAM is depicted in Fig. 4(a). The restoring and releasing of oxygen ions by the Ti intercalation prevent oxygen ions from vanishing during the switching. Thus,the Pt/HfO2/Ti/Pt device possesses a satisfactory endurance property. When adding Ti intercalation to both sides of the HfO2layer, both BRS+ and BRS- operations are now possible. The working mechanism of the Pt/Ti/HfO2/Ti/Pt RRAM is depicted in Fig.4(b).

    When studying the RESET switches of the bipolar Pt/HfO2/Ti/Pt device,Joule heating effect and the electric migration effect are difficult to clearly separate. Both are believed to contribute to the annihilation of the filaments. When considering the BRS+and URS+sub-modes in the any-polar device of Pt/Ti/HfO2/Ti/Pt,it is comprehended that the migration effect may be helpful in implementing the operation of BRS+,but undoubtedly useless in the operation of UPS+. But in Fig. 2(d), the RESET curves of the BRS+ and URS+ submodes are nearly identical.Considering the similarity between the RESET curves of BRS+ and URS-, Joule heating effect rather than the migration effect should be the main mechanism during all the RESET switches for the Pt/Ti/HfO2/Ti/Pt device,including all four sub-modes.

    The any-polar resistive switching property was first proposed in the study of Pt/LATP/Pt.[18]The special switching property is ascribed to the unique crystalline structure of the LATP,which provides the abundant transport routes and storage sites for oxygen ions. In this study,the any-polar switching property is discovered in the Pt/Ti/HfO2/Ti/Pt device. A comparison between both devices indicates that to fulfill the requirement for the any-polar resistive switching,the transport routes and the storage medium for oxygen ions do not have to be in the same layer. In the case of Pt/Ti/HfO2/Ti/Pt,the HfO2acts as the transport route while the Ti intercalations serve as the storage medium.In this sense,if the HfO2layer is replaced by other conventional resistive oxides, such as Ta2O5[31]or TiO2,[32]the any-polar resistance switching property can still be implemented.

    Finally, the current transportation mechanisms of these types of devices are explored. TypicalI-Vcurves of the Pt/HfO2/Ti/Pt and Pt/Ti/HfO2/Ti/Pt are re-plotted on a log-log scale as shown in Fig.5. Whether they are in LRS or HRS,the Pt/HfO2/Ti/Pt and Pt/Ti/HfO2/Ti/Pt devices have the slopes of log(|I|)versuslog(|V|)that are both close to unity,indicating that the ohmic conduction[33]is the dominant mechanism in LRS or HRS region.

    Fig.4. Working mechanism of(a)Pt/HfO2/Ti/Pt device and(b)Pt/Ti/HfO2/Ti/Pt device. Notice that most of oxygen ions are stored in Ti intercalation layer.The four sub operation modes are URS+,URS-,BRS+,and BRS-.

    Fig. 5. Current fitting and current transportation mechanism of resistive switching properties,with blue and red lines representing Pt/HfO2/Ti/Pt and Pt/Ti/HfO2/Ti/Pt.

    3. Conclusions

    In summary, we demonstrate any-polar resistive switching behavior in Ti-intercalated Pt/Ti/HfO2/Ti/Pt device. The any-polar resistive switching comprised of four sub-modes which are BRS+, URS+, BRS-, and URS-. The filaments formed by oxygen vacancies explain the switching mechanism. During switching, the HfO2acts as the transport route while the Ti intercalation layers serve as the storage medium.The investigation of the Pt/Ti/HfO2/Ti/Pt RRAM presents a new insight into the fundamental working mechanism of the any-polar resistive switching device.

    猜你喜歡
    李成
    Dynamics of bubble-shaped Bose–Einstein condensates on two-dimensional cross-section in micro-gravity environment
    書法欣賞
    祖國(2023年23期)2023-02-25 06:14:50
    懷念李成章教授
    Three-Dimensional Model Reconstruction of Nonwovens from Multi-Focus Images
    李成海就200兆瓦農(nóng)牧光互補項目選址現(xiàn)場辦公
    春燕
    北方音樂(2018年17期)2018-10-31 01:21:04
    杜鵑
    北方音樂(2018年17期)2018-10-31 01:21:04
    莊玉庭先負李成蹊
    棋藝(2016年4期)2016-09-20 05:38:45
    行吟黔境
    Effect of vegetation on flow structure and dispersion in strongly curved channels*
    亚洲欧洲日产国产| 国产真人三级小视频在线观看| 少妇 在线观看| 欧美大码av| 亚洲免费av在线视频| 亚洲美女黄色视频免费看| 久久中文字幕一级| 久久中文看片网| 精品人妻1区二区| 亚洲欧美激情在线| 99国产精品一区二区三区| 亚洲色图综合在线观看| 国产精品一区二区在线不卡| 午夜激情久久久久久久| 国产极品粉嫩免费观看在线| 性色av乱码一区二区三区2| 国产一区二区激情短视频 | 俄罗斯特黄特色一大片| 国产一区二区激情短视频 | 欧美日韩亚洲国产一区二区在线观看 | 丝袜喷水一区| 亚洲 国产 在线| 国产精品一二三区在线看| 我要看黄色一级片免费的| 日本av手机在线免费观看| 国产片内射在线| 制服人妻中文乱码| 中文精品一卡2卡3卡4更新| 老司机午夜十八禁免费视频| 波多野结衣一区麻豆| 国产色视频综合| 狠狠狠狠99中文字幕| 俄罗斯特黄特色一大片| 日本精品一区二区三区蜜桃| 啦啦啦免费观看视频1| 丝袜喷水一区| av天堂在线播放| 天天躁狠狠躁夜夜躁狠狠躁| 丰满饥渴人妻一区二区三| 99久久综合免费| 亚洲欧美日韩高清在线视频 | 中文字幕色久视频| 99久久国产精品久久久| 男人操女人黄网站| 操出白浆在线播放| 国产黄色免费在线视频| 99国产精品一区二区蜜桃av | 国产免费视频播放在线视频| 欧美另类一区| 人妻久久中文字幕网| 色综合欧美亚洲国产小说| 国产男人的电影天堂91| 91麻豆av在线| 欧美国产精品一级二级三级| 午夜老司机福利片| 日本wwww免费看| 菩萨蛮人人尽说江南好唐韦庄| 在线观看免费午夜福利视频| 国产极品粉嫩免费观看在线| 国产成人av教育| av片东京热男人的天堂| 少妇人妻久久综合中文| 夜夜夜夜夜久久久久| 中文精品一卡2卡3卡4更新| www.熟女人妻精品国产| 亚洲精品国产一区二区精华液| av片东京热男人的天堂| 高清av免费在线| 国产精品欧美亚洲77777| 中文字幕色久视频| 国产成人一区二区三区免费视频网站| 69精品国产乱码久久久| 伊人亚洲综合成人网| 亚洲av欧美aⅴ国产| 桃红色精品国产亚洲av| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品 国内视频| 免费高清在线观看视频在线观看| 亚洲国产精品一区二区三区在线| 电影成人av| 午夜福利在线观看吧| 中亚洲国语对白在线视频| 欧美xxⅹ黑人| 亚洲国产欧美一区二区综合| 人成视频在线观看免费观看| 老司机影院毛片| 国产亚洲精品久久久久5区| 成人亚洲精品一区在线观看| 热99久久久久精品小说推荐| 在线精品无人区一区二区三| 国产欧美日韩精品亚洲av| 十八禁网站免费在线| 亚洲中文av在线| 国产精品av久久久久免费| 久久女婷五月综合色啪小说| 国产伦人伦偷精品视频| 精品福利永久在线观看| 亚洲欧美一区二区三区黑人| 亚洲国产欧美一区二区综合| 欧美成狂野欧美在线观看| 欧美日韩视频精品一区| 久久精品久久久久久噜噜老黄| 99久久国产精品久久久| 成人三级做爰电影| 久久久精品94久久精品| 精品国内亚洲2022精品成人 | 婷婷成人精品国产| 日韩欧美国产一区二区入口| 欧美av亚洲av综合av国产av| 日韩欧美一区视频在线观看| 午夜福利一区二区在线看| 久久毛片免费看一区二区三区| 91麻豆精品激情在线观看国产 | 日韩熟女老妇一区二区性免费视频| 国产一区二区激情短视频 | 久久 成人 亚洲| 亚洲成人手机| 美女国产高潮福利片在线看| 亚洲精品中文字幕在线视频| 97在线人人人人妻| 丁香六月天网| 日韩电影二区| 久久亚洲国产成人精品v| 深夜精品福利| 19禁男女啪啪无遮挡网站| 精品国产乱码久久久久久男人| 成年美女黄网站色视频大全免费| 亚洲精品日韩在线中文字幕| 99热国产这里只有精品6| 爱豆传媒免费全集在线观看| 9色porny在线观看| 国产在视频线精品| 天天躁日日躁夜夜躁夜夜| 精品少妇内射三级| 美女国产高潮福利片在线看| 一边摸一边抽搐一进一出视频| 国产精品1区2区在线观看. | 两个人免费观看高清视频| 久久影院123| netflix在线观看网站| 国产99久久九九免费精品| 欧美一级毛片孕妇| 日韩精品免费视频一区二区三区| 国产在线一区二区三区精| 久久精品熟女亚洲av麻豆精品| 精品乱码久久久久久99久播| 精品久久久久久久毛片微露脸 | 亚洲精品自拍成人| 99热国产这里只有精品6| 亚洲综合色网址| 黄色怎么调成土黄色| 国产精品熟女久久久久浪| 国产精品久久久久久精品古装| 男人舔女人的私密视频| 日本欧美视频一区| 一二三四社区在线视频社区8| 岛国毛片在线播放| 99国产精品一区二区蜜桃av | 亚洲精品在线美女| av不卡在线播放| 一级黄色大片毛片| 伊人久久大香线蕉亚洲五| 男女国产视频网站| 1024视频免费在线观看| 亚洲五月婷婷丁香| av又黄又爽大尺度在线免费看| 精品国内亚洲2022精品成人 | 国产精品影院久久| 欧美97在线视频| 一本一本久久a久久精品综合妖精| 老司机影院毛片| 国产精品 国内视频| 在线观看免费午夜福利视频| 国产男女内射视频| 亚洲av片天天在线观看| 亚洲欧美激情在线| 好男人电影高清在线观看| av欧美777| 亚洲av日韩精品久久久久久密| 亚洲av国产av综合av卡| 午夜老司机福利片| 亚洲欧洲精品一区二区精品久久久| 丁香六月欧美| 97人妻天天添夜夜摸| 18禁观看日本| 一区二区日韩欧美中文字幕| 色94色欧美一区二区| 国产成人精品久久二区二区91| 亚洲人成电影观看| 日韩中文字幕视频在线看片| 精品国内亚洲2022精品成人 | 成人av一区二区三区在线看 | 精品熟女少妇八av免费久了| 爱豆传媒免费全集在线观看| 精品第一国产精品| 精品国产国语对白av| 国产精品1区2区在线观看. | 人妻一区二区av| 久久人妻熟女aⅴ| 在线观看免费日韩欧美大片| 精品一区二区三区四区五区乱码| 亚洲成国产人片在线观看| 成人影院久久| 色播在线永久视频| 国产精品1区2区在线观看. | 亚洲国产日韩一区二区| 最近中文字幕2019免费版| 黄片大片在线免费观看| 亚洲免费av在线视频| 中国国产av一级| 老司机深夜福利视频在线观看 | 男女之事视频高清在线观看| 男人操女人黄网站| 首页视频小说图片口味搜索| 天堂8中文在线网| 老司机深夜福利视频在线观看 | 亚洲七黄色美女视频| 国产极品粉嫩免费观看在线| 亚洲国产精品一区三区| 妹子高潮喷水视频| 日韩欧美一区二区三区在线观看 | 亚洲欧美精品自产自拍| 免费女性裸体啪啪无遮挡网站| 成人手机av| 一级片'在线观看视频| 久久国产亚洲av麻豆专区| 亚洲欧美激情在线| av在线老鸭窝| 亚洲精品美女久久av网站| a级毛片在线看网站| www.自偷自拍.com| 国产深夜福利视频在线观看| 国产欧美日韩一区二区三 | 久9热在线精品视频| 亚洲国产欧美在线一区| 国产成人精品久久二区二区免费| 亚洲熟女毛片儿| 一区二区日韩欧美中文字幕| 国内毛片毛片毛片毛片毛片| 99香蕉大伊视频| 91大片在线观看| 一本大道久久a久久精品| 飞空精品影院首页| 悠悠久久av| 91麻豆精品激情在线观看国产 | 97在线人人人人妻| 一区二区日韩欧美中文字幕| 大陆偷拍与自拍| 在线观看免费日韩欧美大片| 成人影院久久| 男人爽女人下面视频在线观看| 丝瓜视频免费看黄片| 黑人操中国人逼视频| 色老头精品视频在线观看| 丁香六月欧美| 啦啦啦啦在线视频资源| 一区二区日韩欧美中文字幕| 亚洲欧美一区二区三区黑人| 在线av久久热| 啦啦啦在线免费观看视频4| 亚洲国产精品成人久久小说| 精品亚洲成国产av| 国产在线视频一区二区| 亚洲精品日韩在线中文字幕| 欧美另类亚洲清纯唯美| 国产老妇伦熟女老妇高清| videos熟女内射| 在线天堂中文资源库| 18在线观看网站| 国产精品免费大片| 岛国在线观看网站| 日本91视频免费播放| 天天添夜夜摸| 视频区图区小说| 久久综合国产亚洲精品| 国产精品一区二区精品视频观看| 国产成人系列免费观看| 国产精品av久久久久免费| 日韩制服骚丝袜av| 久久人人爽av亚洲精品天堂| 麻豆乱淫一区二区| kizo精华| 国产精品一区二区在线观看99| 成年人黄色毛片网站| 国产一区二区 视频在线| 久久人人爽人人片av| 一区福利在线观看| av有码第一页| 香蕉国产在线看| 91大片在线观看| 亚洲精品成人av观看孕妇| 国产主播在线观看一区二区| 欧美在线一区亚洲| 精品欧美一区二区三区在线| 免费在线观看视频国产中文字幕亚洲 | 婷婷成人精品国产| 欧美激情 高清一区二区三区| 亚洲精华国产精华精| 国产成人啪精品午夜网站| 人妻人人澡人人爽人人| 亚洲精品一区蜜桃| videosex国产| 亚洲人成电影免费在线| 亚洲精品国产色婷婷电影| 国产亚洲av高清不卡| 成年动漫av网址| 交换朋友夫妻互换小说| 一级毛片电影观看| 一二三四在线观看免费中文在| 久久久欧美国产精品| 99国产精品一区二区蜜桃av | 国产成人系列免费观看| 欧美激情高清一区二区三区| 亚洲精品乱久久久久久| 不卡av一区二区三区| 日本欧美视频一区| 母亲3免费完整高清在线观看| 亚洲国产欧美在线一区| 777久久人妻少妇嫩草av网站| 欧美黑人欧美精品刺激| 亚洲精华国产精华精| 777米奇影视久久| 一区二区三区乱码不卡18| 精品国产一区二区三区四区第35| 免费观看av网站的网址| 国产精品免费大片| 国产视频一区二区在线看| 亚洲国产精品999| 两性夫妻黄色片| 亚洲 欧美一区二区三区| 激情视频va一区二区三区| 精品人妻熟女毛片av久久网站| 欧美人与性动交α欧美精品济南到| 9色porny在线观看| 亚洲专区国产一区二区| 在线永久观看黄色视频| 国产黄频视频在线观看| 亚洲色图综合在线观看| 99国产极品粉嫩在线观看| 亚洲黑人精品在线| 自拍欧美九色日韩亚洲蝌蚪91| 免费日韩欧美在线观看| 精品人妻在线不人妻| 成年人黄色毛片网站| 国产1区2区3区精品| 新久久久久国产一级毛片| 黄频高清免费视频| 中文精品一卡2卡3卡4更新| 手机成人av网站| 久久天堂一区二区三区四区| 国产色视频综合| 国产av国产精品国产| 午夜免费成人在线视频| 黄色视频,在线免费观看| 两人在一起打扑克的视频| 超碰成人久久| 国产91精品成人一区二区三区 | 国产精品久久久久久人妻精品电影 | 国产伦人伦偷精品视频| 国产男女内射视频| 丰满饥渴人妻一区二区三| 国产精品国产av在线观看| 操出白浆在线播放| 免费不卡黄色视频| 99久久99久久久精品蜜桃| 欧美精品高潮呻吟av久久| 久久久久久久久久久久大奶| 男女国产视频网站| 午夜视频精品福利| 免费女性裸体啪啪无遮挡网站| 大片电影免费在线观看免费| 精品少妇一区二区三区视频日本电影| 人人妻人人爽人人添夜夜欢视频| 亚洲人成电影免费在线| 搡老熟女国产l中国老女人| 80岁老熟妇乱子伦牲交| 亚洲人成电影观看| 99久久综合免费| 亚洲国产毛片av蜜桃av| 国产精品 国内视频| 国产高清videossex| 动漫黄色视频在线观看| 精品久久久久久久毛片微露脸 | 亚洲精品av麻豆狂野| 国产精品影院久久| 国产免费福利视频在线观看| 国产精品一区二区在线不卡| 久久久久久人人人人人| 国产av精品麻豆| 欧美大码av| 在线亚洲精品国产二区图片欧美| 久久精品人人爽人人爽视色| 熟女少妇亚洲综合色aaa.| 999久久久精品免费观看国产| 国产男女超爽视频在线观看| av又黄又爽大尺度在线免费看| 国产亚洲av高清不卡| 久久中文看片网| 亚洲伊人久久精品综合| 精品福利观看| 久久av网站| 女人精品久久久久毛片| av免费在线观看网站| 精品人妻熟女毛片av久久网站| 成人国产av品久久久| 黑人欧美特级aaaaaa片| 成年av动漫网址| 久久久久久久久久久久大奶| 亚洲 欧美一区二区三区| 欧美97在线视频| 成人手机av| av电影中文网址| 人人妻人人爽人人添夜夜欢视频| 桃花免费在线播放| 精品少妇一区二区三区视频日本电影| 岛国毛片在线播放| 久久久久国产一级毛片高清牌| 欧美精品亚洲一区二区| 美女高潮到喷水免费观看| 婷婷丁香在线五月| 建设人人有责人人尽责人人享有的| 成年人免费黄色播放视频| 各种免费的搞黄视频| 国产精品国产三级国产专区5o| 免费高清在线观看日韩| 多毛熟女@视频| 老司机靠b影院| 叶爱在线成人免费视频播放| 欧美另类一区| 999久久久精品免费观看国产| 国内毛片毛片毛片毛片毛片| 黑人欧美特级aaaaaa片| 免费黄频网站在线观看国产| 十八禁人妻一区二区| 一本综合久久免费| 国产伦理片在线播放av一区| 亚洲成国产人片在线观看| 丝袜在线中文字幕| 母亲3免费完整高清在线观看| 国产亚洲一区二区精品| 美女午夜性视频免费| 国产精品熟女久久久久浪| 久久精品国产亚洲av香蕉五月 | 亚洲国产精品成人久久小说| 国产在线视频一区二区| 久久久久国产一级毛片高清牌| 不卡一级毛片| 满18在线观看网站| 国精品久久久久久国模美| 亚洲欧美色中文字幕在线| 香蕉国产在线看| 午夜激情av网站| videosex国产| 久久国产精品人妻蜜桃| 一个人免费看片子| 成人黄色视频免费在线看| 男人爽女人下面视频在线观看| 亚洲中文av在线| 国产一区二区 视频在线| 极品少妇高潮喷水抽搐| 日韩大码丰满熟妇| 老司机亚洲免费影院| 性高湖久久久久久久久免费观看| 欧美中文综合在线视频| 亚洲专区中文字幕在线| 国产成人影院久久av| 在线十欧美十亚洲十日本专区| 啦啦啦 在线观看视频| 美女扒开内裤让男人捅视频| 亚洲av成人不卡在线观看播放网 | 国产精品久久久久久精品电影小说| 人妻一区二区av| 美女扒开内裤让男人捅视频| 精品亚洲乱码少妇综合久久| 欧美成狂野欧美在线观看| 水蜜桃什么品种好| 一个人免费在线观看的高清视频 | 午夜激情久久久久久久| 老熟妇仑乱视频hdxx| 色94色欧美一区二区| 中文精品一卡2卡3卡4更新| 在线亚洲精品国产二区图片欧美| a在线观看视频网站| 国产老妇伦熟女老妇高清| 亚洲av电影在线进入| 丰满迷人的少妇在线观看| av视频免费观看在线观看| 成人黄色视频免费在线看| 欧美精品人与动牲交sv欧美| 久久精品国产综合久久久| 国产伦理片在线播放av一区| 爱豆传媒免费全集在线观看| 亚洲三区欧美一区| 在线天堂中文资源库| 免费女性裸体啪啪无遮挡网站| 天天操日日干夜夜撸| 黄色视频,在线免费观看| 国产精品久久久久久人妻精品电影 | 久久国产精品人妻蜜桃| 在线观看人妻少妇| 成人手机av| 国产精品一区二区精品视频观看| 黄频高清免费视频| 搡老熟女国产l中国老女人| 日韩熟女老妇一区二区性免费视频| 黑人欧美特级aaaaaa片| 在线永久观看黄色视频| 18禁裸乳无遮挡动漫免费视频| 久久精品国产a三级三级三级| 久久久国产成人免费| 久久久精品区二区三区| 国产黄色免费在线视频| 久久久久网色| 国产av精品麻豆| 99久久综合免费| 国产亚洲欧美在线一区二区| 精品第一国产精品| 人妻 亚洲 视频| 国产男女内射视频| 少妇精品久久久久久久| 久久这里只有精品19| 飞空精品影院首页| 国产欧美日韩一区二区精品| 国产日韩欧美视频二区| 高清黄色对白视频在线免费看| 王馨瑶露胸无遮挡在线观看| 啦啦啦 在线观看视频| 成人18禁高潮啪啪吃奶动态图| 一区福利在线观看| 91麻豆av在线| 亚洲国产毛片av蜜桃av| 一本—道久久a久久精品蜜桃钙片| 国产高清视频在线播放一区 | 国产精品国产三级国产专区5o| 电影成人av| 美女国产高潮福利片在线看| 久久人妻熟女aⅴ| 亚洲欧美清纯卡通| 99精国产麻豆久久婷婷| 真人做人爱边吃奶动态| 国产精品九九99| 国产1区2区3区精品| 亚洲精品粉嫩美女一区| 久久99热这里只频精品6学生| 一二三四社区在线视频社区8| 高潮久久久久久久久久久不卡| 宅男免费午夜| 国产一区二区 视频在线| 国产一卡二卡三卡精品| 久久ye,这里只有精品| 少妇被粗大的猛进出69影院| 久久久久精品国产欧美久久久 | 亚洲黑人精品在线| 成年人午夜在线观看视频| 满18在线观看网站| 一本大道久久a久久精品| 肉色欧美久久久久久久蜜桃| 中文字幕精品免费在线观看视频| 天天添夜夜摸| 亚洲国产欧美网| 国产男女超爽视频在线观看| netflix在线观看网站| 大香蕉久久网| 黄色毛片三级朝国网站| 亚洲精品国产精品久久久不卡| 中文字幕av电影在线播放| 啦啦啦 在线观看视频| 国精品久久久久久国模美| 19禁男女啪啪无遮挡网站| xxxhd国产人妻xxx| 99re6热这里在线精品视频| 精品国产乱子伦一区二区三区 | 亚洲欧洲精品一区二区精品久久久| 国产av一区二区精品久久| 国产人伦9x9x在线观看| 国产91精品成人一区二区三区 | 两个人看的免费小视频| a级片在线免费高清观看视频| 国产精品 欧美亚洲| 亚洲精品一二三| 美国免费a级毛片| 狠狠狠狠99中文字幕| 免费日韩欧美在线观看| 性色av乱码一区二区三区2| 日韩免费高清中文字幕av| 99国产综合亚洲精品| 国产精品久久久久成人av| 天堂中文最新版在线下载| 在线 av 中文字幕| 麻豆av在线久日| 麻豆乱淫一区二区| 欧美精品一区二区免费开放| 18禁观看日本| 免费不卡黄色视频| 国产成人系列免费观看| 免费久久久久久久精品成人欧美视频| avwww免费| 黑人猛操日本美女一级片| 他把我摸到了高潮在线观看 | 熟女少妇亚洲综合色aaa.| avwww免费| 国产成人啪精品午夜网站| 国产免费av片在线观看野外av| 久久影院123| 啦啦啦 在线观看视频| 热re99久久国产66热| 久久人妻福利社区极品人妻图片| 老司机深夜福利视频在线观看 | 天天躁日日躁夜夜躁夜夜| 免费观看av网站的网址| 欧美日韩av久久| av超薄肉色丝袜交足视频| 亚洲三区欧美一区| 中文字幕人妻熟女乱码| 女人高潮潮喷娇喘18禁视频|