• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of electrical stress on the characteristics and defect behaviors in GaN-based near-ultraviolet light emitting diodes

    2022-06-29 09:23:50YingZheWang王穎哲MaoSenWang王茂森NingHua化寧KaiChen陳凱ZhiMinHe何志敏XueFengZheng鄭雪峰PeiXianLi李培咸XiaoHuaMa馬曉華LiXinGuo郭立新andYueHao郝躍
    Chinese Physics B 2022年6期
    關(guān)鍵詞:陳凱雪峰

    Ying-Zhe Wang(王穎哲) Mao-Sen Wang(王茂森) Ning Hua(化寧) Kai Chen(陳凱)Zhi-Min He(何志敏) Xue-Feng Zheng(鄭雪峰) Pei-Xian Li(李培咸) Xiao-Hua Ma(馬曉華)Li-Xin Guo(郭立新) and Yue Hao(郝躍)

    1Key Laboratory of Wide Bandgap Semiconductor Materials and Devices,School of Microelectronics,Xidian University,Xi’an 710071,China

    2Shanghai Aerospace Electronic Technology Institute,Shanghai 201109,China

    3School of Advanced Materials and Nanotechnology,Xidian University,Xi’an 710071,China

    4School of Physics and Optoelectronic Engineering,Xidian University,Xi’an 710071,China

    Keywords: light emitting diodes,GaN,electrical stress,defect

    1. Introduction

    GaN-based near-ultraviolet (NUV, 320–400 nm) light emitting diodes (LEDs) have received extensive attention in practical applications such as curing,short-distance fiber communications, biosensors, and materials processing.[1–4]Due to the advantages of small dimensions, low power consumption, and environmental protection, the market for NUV LEDs is continuously expanding. However, during operation, some reliability problems, such as optical power (OP)decay,have been the bottleneck for the further development of devices.[5–7]Therefore,it is essential to study the degradation mechanisms of GaN-based NUV LEDs under electrical stress.

    For GaN-based LEDs, it is suggested that electrical stress-induced degradation can be attributed to the generation or the propagation of point defects activated by carrier transport, such as vacancies or anti-site defects.[8–12]In addition,effects of dislocations on device degradation cannot be ignored for NUV LEDs[13–15]due to the lack of In-rich clusters that separate carriers from dislocations.[16]However,the behavior of defects that cause device degradation has yet to be confirmed. The process of defect generation/propagation under electrical stress should be further demonstrated.

    In this work,we investigate the degradation mechanisms of NUV LEDs under electrical stress from the aspect of defects. Under different stress time, the optical and electrical characteristics in NUV LEDs are evaluated by electroluminescence (EL) and current–voltage (I–V) measurement. Meanwhile,the deep level transient spectroscopy(DLTS)measurement is applied to characterize the defect behavior, including defect concentration,energy level,and cross section.From the DLTS results under different filling pulse widths, the defect spatial distribution is analyzed in detail. In addition,photoluminescence (PL) measurement is also introduced to assist in judging the origin of the defect leading to degradation.

    2. Device and experiments

    The experimental analysis was performed simultaneously on five NUV LEDs with a peak emission wavelength of 385 nm from the same wafer.As shown in Fig.1,from bottom to top, the structure consists of a sapphire substrate, an undoped GaN buffer layer,a 900-nm-thick Si-doped n-type GaN layer, a 30-nm-thick n-Al0.05Ga0.95N layer, a 400-nm-thick lightly Si-doped GaN layer, an active region, a 30-nm-thick Mg-doped p-Al0.15Ga0.85N electron blocking layer(EBL),and a 240-nm-thick p-GaN layer. The active region consists of eight-period Si-doped multiple quantum wells (MQWs) using 10-nm-thick GaN barriers and 1-nm-thick In0.07Ga0.93N wells. The chip size is 1143 μm×1143 μm. NUV LEDs were stressed with a constant current of 600 mA,which was twice the nominal operation current (300 mA) and can cause great degradation. In order to be closer to the actual application,the electrical stress was applied under room temperature without any heat dissipation. After electrical stress, the device characteristics and defect behaviors were characterized when the junction temperature returned to room temperature.

    3. Results and discussion

    The kinetics of the optical power decrease in NUV LEDs were investigated during electrical stress using electroluminescence (EL) measurement. As shown in Fig. 2(a), the optical power decreases evidently with the increasing stress time. In GaN-based photoelectric devices, it can be attributed to the increase of non-radiative recombination centers.[17]The electrical characteristics were also characterized usingI–Vmeasurement at room temperature from-10 V to 3 V.It is shown in Fig. 2(b) that the reverse leakage current (Ir) increases by several orders of magnitude after stress. Previous studies demonstrated thatIris associated with the parasitic leakage path.[18]In addition, the current under low forward bias also increases after stress,which can be ascribed to the increase of trap-assisted tunneling (TAT) current.[19]Both non-radiative recombination centers,parasitic leakage paths,and TAT mechanisms are all tightly correlated with defects within or around the active region.[20,21]Therefore,the variation of the defects in NUV LEDs during electrical stress should be pressingly studied.

    Firstly, photoluminescence (PL) measurement was carried out using a He–Cd laser emitting at 325 nm at room temperature to detect and identify the defects in NUV LEDs macroscopically. Different from EL measurement,the results in PL measurement are not related to injection efficiency,making it possible to characterize the defect luminescence characteristics more intuitively.[22]As shown in Fig. 3, the appearance of the band-to-band peak at 3.2 eV indicates that the region detected in PL measurement includes the active region.With the increasing stress time, a yellow luminescence (YL)band centered around 2.2–2.3 eV increases,indicating that the concentration of some defects increases under the stimulation of electrical stress. In the GaN material system, many previous studies demonstrated that the YL band could be attributed to Ga vacancy(VGa)related defects.[23,24]However,the origin of the defects should be further confirmed, and the evolution mechanism of the defects should be studied deeply.

    DLTS measurement,which can quantitatively extract the defect physical parameters,[25]has been applied to investigate the defect behaviors deeply.Figure 4(a)shows the DLTS spectra scanned from 490 K to 60 K with a quiescent bias of-7 V,a filling pulse bias of 2 V,and a filling pulse width of 10 ms.These bias and temperature values were chosen to explore the defects in the n-type active region comprehensively. In our measurement system, the positive and negative peaks are associated with majority-carriers (electron) traps and minoritycarriers (hole) traps, respectively. With the increase of stress time,a positive peak A at~70 K almost has no change. Such a narrow peak at low temperature may not be associated with the defects but with the emission from QW to the conduction band.[26]The activation energy of peak e1 is 0.08 eV,which may be related to the conduction band offset of the In-GaN/GaN quantum well.[27]The slight decrease of peak e1 after stress can reflect the decline of QW quality.

    In this work,more attention should be paid to peaks corresponding to defects in the DLTS spectrum(Fig.4(a)).Under the stimulation of electrical stress,a positive peak e2 at~310 K increases. The activation energy and cross section of defect e2 are extracted from the Arrhenius plot in Fig.4(b),which are 0.47–0.56 eV and 3.2×10-17–2.7×10-16cm2, respectively.In addition,compared with the PL results,the increased peak e2 may correspond to the increased YL peak in the PL spectrum. Combing the YL-related feature with the activation energy,defect e2 can be attributed to VGarelated complex,possibly involving oxygen, e.g., VGa–ON.[10,28,29]Interestingly,during increasing of concentration of defect e2,the concentration of intrinsic defect e3(a positive peak at~460 K)with the activation energy 0.72–0.84 eV and cross section 1.8×10-17–9.8×10-16cm2decreases. The linear relationship in the inset of Fig.4(a)suggests a direct correlation between the defects e2 and e3. In other words,the increase of concentration of defect e2 after stress may result from the decreasing concentration of defect e3.

    Moreover,in the GaN system,besides the non-interacting point defects, linearly arranged defects such as point defects along dislocations also need to be focused on. The noninteracting and linear arranged point defects will exhibit completely different behaviors. It is difficult to identify defects accurately merely through the activation energy. Therefore,it is significant to analyze the defect spatial configuration using DLTS measurement under different filling pulse widths.[30]For the non-interacting point defects, the concentration of occupied defect states (nT) corresponding to the DLTS signal will be exponentially correlated to the filling pulse width(tp):[31]

    whereτis the characteristic time. As shown in Fig. 5, both the DLTS signals of defects e2 and e3 are logarithmically correlated to the filling pulse width, indicating that these two defects are point defects along dislocations. The evolution of defects develops around dislocations, possibly due to the relatively concentrated current flow path.[32,33]The characteristic of the electron trap and its contribution to the yellow band peak further demonstrate that defect e2 is likely related to VGaand oxygen related complex(e.g.,VGa–ON)along dislocation.[34–36]This defect may act as the non-radiative recombination center and parasitic leakage path and then degrade NUV LEDs.

    So far, there is still a question about the origin of the intrinsic defect e3 and the evolution process between these two defects. For the defect e3 with the activation energy of 0.72–0.84 eV, there are some possible origins such as VGa–ON–H,[37]VN–H,[38]VGa–VN.[23]Among them, the formation energies of VN–H and VGa–VNare very high in the n-type region,[23,39]which leads to the little possibility of formation during growth. It is more likely to attribute the intrinsic defect e3 to VGa–ON–H, mainly for three reasons. Firstly, it is now well accepted that oxygen and hydrogen can often be the background contaminants during growth,[40]and VGais likely to form a complex with impurities like O and H during growth due to the low formation energy.[24,41]Secondly,the defect luminescence will decrease when the defects are passivated with H.[42]This phenomenon corresponds to the low YL peak in the PL spectrum of the fresh device. The YL intensity in the fresh device is nonzero because not all defects were passivated by H during growth. Thirdly,the dehydrogenation process has been observed in other nitride-based devices, and electrical stress will enhance this process.[43–45]Under high injection current,the junction temperature rises evidently,resulting in sufficient energy for carriers to transfer to the lattice, and the dehydrogenation process is prone to occur.[45,46]Therefore, the dehydrogenation of the previously passivated VGaand oxygen related complex defects after stress is likely to result in the activation of the VGarelated defects(e.g.,VGa–ON)and then induce the device degradation.

    4. Conclusions

    In summary,we have investigated the degradation mechanism of GaN-based NUV LEDs under electrical stress from the defect point of view. The optical power decreases,and the leakage current increases evidently after stress, which results from the increase in the concentration of defects with the energy level of 0.47–0.56 eV accompanied by the decrease of defects with the energy level of 0.72–0.84 eV.Combining the activation energy,the logarithmic relationship between DLTS signal and filling pulse width,with the increase of YL peak in PL spectrum during stress,the defects with increasing concentration can be attributed to VGaand oxygen related complex along dislocation. This defect may act as the non-radiative recombination center and parasitic leakage path, leading to device degradation.The defects with decreased concentration after stress can be ascribed to VGarelated defects that were passivated by H inherent during growth. During electrical stress,the dehydrogenation process around dislocations is likely to be the main origin for the degradation of GaN-based NUV LEDs.Therefore,more attention should be paid to the dislocation and the unintentionally induced hydrogen during growth in NUV LEDs.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China(Grant Nos.62104180,61974115,11690042,61634005,61974111,12035019,and 61904142),and the Fundamental Research Funds for the Central Universities (Grant No.XJS221106),and the Key Research and Development Program of Shaanxi,China(Grant No.2020ZDLGY03-05).

    猜你喜歡
    陳凱雪峰
    要退休了
    雜文月刊(2019年19期)2019-12-04 07:48:34
    種七彩顏色的太陽
    這就是我
    清朝花瓶
    離婚,婚姻的一次“手術(shù)”
    女子世界(2017年6期)2017-06-08 20:16:15
    陳凱……
    看山是山?看山非山?
    雪峰下的草場
    中國三峽(2016年5期)2017-01-15 13:58:43
    王雪峰國畫
    歌海(2016年1期)2016-03-28 10:08:55
    開創(chuàng)新工藝 服務(wù)新標準——專訪同元祥總經(jīng)理陳凱
    專用汽車(2016年9期)2016-03-01 04:17:01
    久久久久久久久久久丰满| 亚洲精品视频女| 日日爽夜夜爽网站| 爱豆传媒免费全集在线观看| 免费高清在线观看视频在线观看| 婷婷色麻豆天堂久久| 日本黄大片高清| 免费看光身美女| 中文天堂在线官网| 国产成人精品婷婷| 久久久久网色| 黄色欧美视频在线观看| 国产女主播在线喷水免费视频网站| 国产伦精品一区二区三区视频9| 人人妻人人添人人爽欧美一区卜| 大香蕉97超碰在线| 欧美激情国产日韩精品一区| 丝瓜视频免费看黄片| 国产中年淑女户外野战色| 色婷婷久久久亚洲欧美| 国国产精品蜜臀av免费| 国产亚洲午夜精品一区二区久久| 中文精品一卡2卡3卡4更新| av又黄又爽大尺度在线免费看| av一本久久久久| 亚洲av福利一区| 亚洲美女视频黄频| 亚洲真实伦在线观看| 久久国产乱子免费精品| 亚洲精品亚洲一区二区| 国产免费一级a男人的天堂| av.在线天堂| 制服丝袜香蕉在线| 国产在线视频一区二区| 伊人久久国产一区二区| 亚洲av不卡在线观看| 国产乱人偷精品视频| 久久婷婷青草| 三级国产精品欧美在线观看| 欧美精品一区二区免费开放| 欧美xxⅹ黑人| 精品酒店卫生间| 日韩,欧美,国产一区二区三区| 人妻 亚洲 视频| 欧美成人午夜免费资源| 国产精品麻豆人妻色哟哟久久| 高清视频免费观看一区二区| av视频免费观看在线观看| h视频一区二区三区| 18禁动态无遮挡网站| 国产69精品久久久久777片| 国产综合精华液| 国产日韩一区二区三区精品不卡 | 男人爽女人下面视频在线观看| 日本欧美国产在线视频| 国产高清三级在线| 天堂中文最新版在线下载| 少妇人妻 视频| 日韩成人av中文字幕在线观看| 嫩草影院新地址| 99九九线精品视频在线观看视频| 欧美精品国产亚洲| 少妇的逼好多水| 偷拍熟女少妇极品色| 美女内射精品一级片tv| 亚洲欧美中文字幕日韩二区| 亚洲精品456在线播放app| 丝袜喷水一区| 少妇被粗大的猛进出69影院 | 99九九线精品视频在线观看视频| 国产日韩欧美视频二区| 丝瓜视频免费看黄片| 在线亚洲精品国产二区图片欧美 | 国产 精品1| 老司机影院成人| 热99国产精品久久久久久7| 国产精品99久久99久久久不卡 | 国产黄片美女视频| a级片在线免费高清观看视频| 高清视频免费观看一区二区| 国产av精品麻豆| 黄片无遮挡物在线观看| 啦啦啦在线观看免费高清www| 一二三四中文在线观看免费高清| 亚洲欧美一区二区三区国产| 成年av动漫网址| 老熟女久久久| 欧美97在线视频| 中文资源天堂在线| 伊人久久精品亚洲午夜| 久久久国产精品麻豆| 日本黄大片高清| 欧美bdsm另类| 久久久精品94久久精品| 一区二区三区乱码不卡18| 嘟嘟电影网在线观看| 免费看av在线观看网站| 久久久久久久大尺度免费视频| 国产欧美亚洲国产| 男人舔奶头视频| 欧美日韩在线观看h| 汤姆久久久久久久影院中文字幕| 亚洲精品自拍成人| 男的添女的下面高潮视频| 国产一区二区三区av在线| 极品人妻少妇av视频| 女人精品久久久久毛片| 美女主播在线视频| 十分钟在线观看高清视频www | 国产黄片视频在线免费观看| 成年av动漫网址| 亚洲国产精品国产精品| 久久久久久人妻| 欧美成人精品欧美一级黄| 性色av一级| 国产高清有码在线观看视频| 中文字幕精品免费在线观看视频 | kizo精华| 国产高清三级在线| 亚洲国产毛片av蜜桃av| 欧美一级a爱片免费观看看| 伦精品一区二区三区| 夫妻性生交免费视频一级片| a级毛片在线看网站| 亚洲av国产av综合av卡| 国产精品福利在线免费观看| 精品久久久久久电影网| 亚洲av男天堂| xxx大片免费视频| 噜噜噜噜噜久久久久久91| 日韩成人av中文字幕在线观看| 国产精品熟女久久久久浪| 久久久久精品性色| 熟女人妻精品中文字幕| 在线亚洲精品国产二区图片欧美 | 青春草国产在线视频| 久久久a久久爽久久v久久| 国产精品.久久久| 亚洲精品亚洲一区二区| 久久久久久伊人网av| av国产精品久久久久影院| 热99国产精品久久久久久7| 精品人妻熟女av久视频| 99热这里只有精品一区| 十八禁高潮呻吟视频 | 天天躁夜夜躁狠狠久久av| 亚洲真实伦在线观看| 99久久精品热视频| 国产国拍精品亚洲av在线观看| 人人澡人人妻人| 六月丁香七月| 国产乱来视频区| 一级爰片在线观看| 国产伦在线观看视频一区| 人人妻人人澡人人爽人人夜夜| 高清黄色对白视频在线免费看 | 9色porny在线观看| 国产精品熟女久久久久浪| 亚洲av不卡在线观看| 久久婷婷青草| 成人亚洲欧美一区二区av| 九草在线视频观看| 久久精品国产鲁丝片午夜精品| 伊人久久国产一区二区| 久久久久久久亚洲中文字幕| 人妻 亚洲 视频| 大陆偷拍与自拍| av免费观看日本| 综合色丁香网| 国产中年淑女户外野战色| videos熟女内射| 国产伦精品一区二区三区四那| 九九在线视频观看精品| 看非洲黑人一级黄片| 成人漫画全彩无遮挡| 国产老妇伦熟女老妇高清| 国产乱人偷精品视频| 久久精品熟女亚洲av麻豆精品| 黄色一级大片看看| 伊人亚洲综合成人网| 久久人人爽av亚洲精品天堂| 欧美 日韩 精品 国产| 亚洲欧美日韩东京热| 国产白丝娇喘喷水9色精品| 天堂中文最新版在线下载| 少妇人妻一区二区三区视频| xxx大片免费视频| 日本爱情动作片www.在线观看| 嘟嘟电影网在线观看| 久久人妻熟女aⅴ| 我要看日韩黄色一级片| 又黄又爽又刺激的免费视频.| 最新的欧美精品一区二区| 嫩草影院入口| 99国产精品免费福利视频| 一本色道久久久久久精品综合| 狂野欧美白嫩少妇大欣赏| 精品少妇黑人巨大在线播放| 色哟哟·www| 特大巨黑吊av在线直播| 边亲边吃奶的免费视频| 亚洲国产最新在线播放| 亚洲国产精品999| 自拍偷自拍亚洲精品老妇| 色吧在线观看| 久久久久人妻精品一区果冻| 97精品久久久久久久久久精品| 成年av动漫网址| 久久久欧美国产精品| 欧美激情极品国产一区二区三区 | av免费在线看不卡| av国产精品久久久久影院| 人妻少妇偷人精品九色| 自线自在国产av| 国产在线免费精品| 噜噜噜噜噜久久久久久91| 97在线人人人人妻| 人妻夜夜爽99麻豆av| 亚洲一级一片aⅴ在线观看| 在线观看国产h片| 我要看黄色一级片免费的| 女的被弄到高潮叫床怎么办| 国产亚洲91精品色在线| 亚洲精品国产av成人精品| 99久久精品一区二区三区| 少妇被粗大猛烈的视频| 下体分泌物呈黄色| 一级毛片黄色毛片免费观看视频| 99九九线精品视频在线观看视频| 国产一区有黄有色的免费视频| 男的添女的下面高潮视频| 大码成人一级视频| 久久国产亚洲av麻豆专区| 精品人妻熟女av久视频| 在线观看人妻少妇| 国产熟女欧美一区二区| 久久97久久精品| 99久久精品一区二区三区| 亚洲国产av新网站| 成人无遮挡网站| 亚洲国产成人一精品久久久| 免费看不卡的av| 插逼视频在线观看| 久久久久久久久大av| 高清不卡的av网站| 国产视频首页在线观看| 简卡轻食公司| 在线亚洲精品国产二区图片欧美 | 人妻一区二区av| 国产极品粉嫩免费观看在线 | 日韩制服骚丝袜av| 91精品伊人久久大香线蕉| 一级av片app| 国产成人午夜福利电影在线观看| 人体艺术视频欧美日本| 国产精品秋霞免费鲁丝片| 91在线精品国自产拍蜜月| 国产精品伦人一区二区| 另类亚洲欧美激情| 在线精品无人区一区二区三| 日本-黄色视频高清免费观看| 久久久久久久久大av| 激情五月婷婷亚洲| 国产精品久久久久久精品电影小说| 狠狠精品人妻久久久久久综合| 免费看光身美女| 91aial.com中文字幕在线观看| 大码成人一级视频| 国产免费一区二区三区四区乱码| 国产精品蜜桃在线观看| 亚洲第一区二区三区不卡| 国产成人免费无遮挡视频| 午夜免费男女啪啪视频观看| 少妇的逼好多水| av黄色大香蕉| 草草在线视频免费看| 欧美3d第一页| 国产精品成人在线| 久久精品国产亚洲网站| 男人舔奶头视频| 一本一本综合久久| 精品熟女少妇av免费看| 日韩免费高清中文字幕av| 国产在线视频一区二区| 我要看日韩黄色一级片| 人人妻人人看人人澡| 欧美精品国产亚洲| 午夜影院在线不卡| 七月丁香在线播放| 18禁动态无遮挡网站| 国产亚洲5aaaaa淫片| 日韩亚洲欧美综合| 亚洲第一区二区三区不卡| 精品少妇内射三级| 少妇高潮的动态图| 在线观看美女被高潮喷水网站| 人妻 亚洲 视频| 亚州av有码| 亚洲精品乱码久久久v下载方式| 国产精品无大码| 少妇 在线观看| 午夜福利网站1000一区二区三区| 国产亚洲精品久久久com| 黄色日韩在线| 亚洲成人手机| 成人亚洲精品一区在线观看| 91精品伊人久久大香线蕉| 精品一品国产午夜福利视频| 日本色播在线视频| 日本av手机在线免费观看| 亚洲国产欧美日韩在线播放 | 观看av在线不卡| 中国国产av一级| 最近2019中文字幕mv第一页| 国产欧美日韩精品一区二区| 欧美精品人与动牲交sv欧美| 免费久久久久久久精品成人欧美视频 | 日韩制服骚丝袜av| 婷婷色av中文字幕| 国产午夜精品久久久久久一区二区三区| a 毛片基地| 欧美三级亚洲精品| 一本一本综合久久| 熟女电影av网| 国产精品久久久久成人av| 成人亚洲欧美一区二区av| 91久久精品国产一区二区成人| 欧美人与善性xxx| 噜噜噜噜噜久久久久久91| 在线观看免费视频网站a站| 十分钟在线观看高清视频www | 一级,二级,三级黄色视频| 日韩亚洲欧美综合| 天天操日日干夜夜撸| 亚洲四区av| 久久国产精品大桥未久av | 人人妻人人爽人人添夜夜欢视频 | 国产男女内射视频| 曰老女人黄片| 在线播放无遮挡| 精华霜和精华液先用哪个| 嫩草影院入口| 美女中出高潮动态图| 国产黄频视频在线观看| 黄色怎么调成土黄色| 如何舔出高潮| 精品国产一区二区三区久久久樱花| 亚洲精品乱久久久久久| 亚洲精品国产av成人精品| 国产91av在线免费观看| 大陆偷拍与自拍| 大码成人一级视频| 国产深夜福利视频在线观看| 日日撸夜夜添| 久久久久久久亚洲中文字幕| 国产国拍精品亚洲av在线观看| 夜夜爽夜夜爽视频| √禁漫天堂资源中文www| 免费人成在线观看视频色| 自拍欧美九色日韩亚洲蝌蚪91 | 成人影院久久| 日韩成人伦理影院| 黄色怎么调成土黄色| 99re6热这里在线精品视频| 一级毛片久久久久久久久女| 人妻制服诱惑在线中文字幕| 男男h啪啪无遮挡| 国产黄片美女视频| 久久精品国产鲁丝片午夜精品| 少妇丰满av| 成年av动漫网址| 日韩不卡一区二区三区视频在线| 丝瓜视频免费看黄片| 国产伦精品一区二区三区视频9| 亚洲精品乱码久久久v下载方式| 亚洲欧美成人综合另类久久久| 中文字幕亚洲精品专区| 又大又黄又爽视频免费| 国产欧美日韩一区二区三区在线 | 亚洲,一卡二卡三卡| 日韩,欧美,国产一区二区三区| 一区二区三区四区激情视频| h日本视频在线播放| 在线观看免费高清a一片| 精品酒店卫生间| 国产成人a∨麻豆精品| 女性生殖器流出的白浆| 人妻人人澡人人爽人人| 久久99一区二区三区| 18禁在线无遮挡免费观看视频| 夫妻性生交免费视频一级片| 国产亚洲精品久久久com| 九九在线视频观看精品| 人人妻人人添人人爽欧美一区卜| 久久国产精品男人的天堂亚洲 | 国产精品熟女久久久久浪| 日日啪夜夜爽| 91久久精品电影网| 久久国产亚洲av麻豆专区| 亚洲精华国产精华液的使用体验| 天堂8中文在线网| 国产探花极品一区二区| 亚洲高清免费不卡视频| 精品熟女少妇av免费看| 国产美女午夜福利| 日本av免费视频播放| 国产一级毛片在线| 日韩不卡一区二区三区视频在线| 丝袜喷水一区| 多毛熟女@视频| 少妇被粗大的猛进出69影院 | 国产精品国产三级专区第一集| 国产视频内射| 26uuu在线亚洲综合色| 老熟女久久久| 国产亚洲91精品色在线| 亚洲欧美成人精品一区二区| 校园人妻丝袜中文字幕| 老司机影院毛片| 欧美 亚洲 国产 日韩一| 天堂中文最新版在线下载| 我要看黄色一级片免费的| 国产精品一区二区在线观看99| 国产高清国产精品国产三级| 中文字幕制服av| 亚洲精品久久久久久婷婷小说| 精品人妻熟女av久视频| 亚洲av日韩在线播放| 99久国产av精品国产电影| 精品国产露脸久久av麻豆| 最近中文字幕高清免费大全6| 国产日韩欧美亚洲二区| 亚洲精品自拍成人| 午夜老司机福利剧场| 蜜桃在线观看..| 777米奇影视久久| 高清在线视频一区二区三区| 3wmmmm亚洲av在线观看| 日本黄色片子视频| 男人舔奶头视频| 亚洲精品日本国产第一区| 熟女电影av网| 18禁在线无遮挡免费观看视频| 欧美激情国产日韩精品一区| 精品一区在线观看国产| 国产深夜福利视频在线观看| 欧美精品一区二区大全| 久久6这里有精品| 国产伦精品一区二区三区四那| 亚洲内射少妇av| 国产欧美另类精品又又久久亚洲欧美| 婷婷色综合www| 日韩成人伦理影院| 国产亚洲91精品色在线| 又黄又爽又刺激的免费视频.| 91aial.com中文字幕在线观看| a 毛片基地| 亚洲成人av在线免费| 国产黄片视频在线免费观看| 国产伦理片在线播放av一区| 国产精品人妻久久久影院| 老熟女久久久| 成人国产麻豆网| 免费看日本二区| 日韩av在线免费看完整版不卡| 欧美 亚洲 国产 日韩一| 亚洲成色77777| 能在线免费看毛片的网站| 看免费成人av毛片| 午夜久久久在线观看| 精品人妻一区二区三区麻豆| 美女国产视频在线观看| 久久精品久久久久久久性| 亚洲精品aⅴ在线观看| 日日摸夜夜添夜夜爱| 人人妻人人澡人人爽人人夜夜| 观看美女的网站| 人妻一区二区av| 中国国产av一级| 久久国产精品男人的天堂亚洲 | 老熟女久久久| 国产永久视频网站| 99热6这里只有精品| 亚洲精品aⅴ在线观看| 简卡轻食公司| 日本黄大片高清| 最近手机中文字幕大全| 亚洲av二区三区四区| 久久影院123| 夜夜爽夜夜爽视频| 视频区图区小说| 色婷婷久久久亚洲欧美| 久久精品国产亚洲av涩爱| 亚洲av福利一区| 高清在线视频一区二区三区| 精华霜和精华液先用哪个| 性色av一级| 一区在线观看完整版| 香蕉精品网在线| 国产真实伦视频高清在线观看| 啦啦啦啦在线视频资源| 少妇人妻一区二区三区视频| 欧美日韩亚洲高清精品| 亚洲怡红院男人天堂| 亚洲精品乱码久久久v下载方式| 亚洲av成人精品一二三区| 九九爱精品视频在线观看| 91aial.com中文字幕在线观看| 久久精品久久久久久久性| 国产极品天堂在线| 大香蕉97超碰在线| 最近中文字幕2019免费版| 热re99久久国产66热| 一个人看视频在线观看www免费| 毛片一级片免费看久久久久| 内射极品少妇av片p| 色视频在线一区二区三区| 亚洲国产精品999| 综合色丁香网| 免费大片黄手机在线观看| 少妇裸体淫交视频免费看高清| 特大巨黑吊av在线直播| 日本黄色日本黄色录像| 亚洲av.av天堂| 午夜影院在线不卡| 欧美精品国产亚洲| 美女中出高潮动态图| 中文精品一卡2卡3卡4更新| av专区在线播放| 99九九线精品视频在线观看视频| a级片在线免费高清观看视频| 最近中文字幕高清免费大全6| 国产精品一区二区在线观看99| videossex国产| 日韩,欧美,国产一区二区三区| 精品少妇久久久久久888优播| 成年人免费黄色播放视频 | 亚洲成人手机| 国产精品一区二区三区四区免费观看| 99九九线精品视频在线观看视频| 成年女人在线观看亚洲视频| 一级毛片 在线播放| 成人美女网站在线观看视频| 草草在线视频免费看| 国产爽快片一区二区三区| 2022亚洲国产成人精品| 大片免费播放器 马上看| 午夜免费观看性视频| 亚洲av成人精品一二三区| 韩国av在线不卡| 亚洲欧美日韩东京热| 黑人猛操日本美女一级片| 国产色婷婷99| 各种免费的搞黄视频| 亚洲精品一区蜜桃| 国产欧美日韩综合在线一区二区 | 国产av一区二区精品久久| 亚洲国产欧美在线一区| 免费黄频网站在线观看国产| 久久精品久久久久久噜噜老黄| 国产精品伦人一区二区| 少妇被粗大猛烈的视频| 亚洲成人一二三区av| 免费人妻精品一区二区三区视频| 免费黄色在线免费观看| 免费人妻精品一区二区三区视频| 熟妇人妻不卡中文字幕| av又黄又爽大尺度在线免费看| 18+在线观看网站| 一区二区三区四区激情视频| 一级毛片黄色毛片免费观看视频| 欧美少妇被猛烈插入视频| 人人妻人人爽人人添夜夜欢视频 | 啦啦啦啦在线视频资源| 少妇人妻一区二区三区视频| 高清在线视频一区二区三区| 欧美三级亚洲精品| 少妇人妻精品综合一区二区| 五月伊人婷婷丁香| 日本91视频免费播放| 国产精品欧美亚洲77777| 中国美白少妇内射xxxbb| 少妇猛男粗大的猛烈进出视频| 日日摸夜夜添夜夜添av毛片| 亚洲av电影在线观看一区二区三区| 在线精品无人区一区二区三| 成人漫画全彩无遮挡| 国产精品.久久久| 一区二区三区乱码不卡18| 亚洲精品aⅴ在线观看| 麻豆乱淫一区二区| 少妇被粗大猛烈的视频| 少妇精品久久久久久久| 夫妻午夜视频| 99re6热这里在线精品视频| 亚洲情色 制服丝袜| 欧美激情极品国产一区二区三区 | 亚洲激情五月婷婷啪啪| 国产视频内射| 观看av在线不卡| 欧美成人午夜免费资源| 自拍欧美九色日韩亚洲蝌蚪91 | 男女国产视频网站| 大香蕉久久网| 国产老妇伦熟女老妇高清| 免费人妻精品一区二区三区视频| 久久久久久久大尺度免费视频| 丰满人妻一区二区三区视频av| 亚洲丝袜综合中文字幕| 国产亚洲最大av| 人妻制服诱惑在线中文字幕| 午夜老司机福利剧场| 亚洲精品aⅴ在线观看| 99热全是精品| 欧美日韩精品成人综合77777|