• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schr¨odinger equation

    2022-06-29 09:24:18LiJunChang常莉君YiFanMo莫一凡LiMingLing凌黎明andDeLuZeng曾德爐
    Chinese Physics B 2022年6期
    關(guān)鍵詞:黎明

    Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德爐)

    School of Mathematics,South China University of Technology,Guangzhou 510640,China

    Keywords: nonlinear Schr¨odinger equation,vector rogue waves,deep learning,numerical simulations

    1. Introduction

    Nonlinear Schr¨odinger(NLS)equations generally can be used to describe the nonlinear wave phenomena in diverse physics fields and have attracted more and more attention especially in hydrodynamics, nonlinear optical fibers, planar wave guides, and Bose–Einstein condensates theory.[1–5]For the integrable NLS systems,there exist lots of exact solutions including solitons, breathers, and rogue waves (RWs). They are all nonlinear waves with localized structure both in time and space. Note that, on the one hand, some solitons will produce breathers when they are disturbed periodically. And the RWs are the limit form of the breathers. On the other hand, solitons are stable waves and invariant of shape in the evolution under vanishing background, while RWs are unstable waves and the variation of shape in the evolution under non-vanishing background due to modulation instability. Especially,the amplitudes of RWs are usually two times or even higher than those of its surrounding waves, hence they frequently cause sea accidents and pose a great threat to people’s navigation safety for years. RWs were firstly constructed analytically by Peregrine,[4]expressed by the first-order functions.But these solutions did not get much attention until Solliet al.observed optical RWs in an optical fiber experiment.[6]Zakharovet al.[7]found the physical mechanism of usual RW generation was frequently related with modulation instability.Afterwards, RWs of different physical systems were one after another derived by related Darboux transformation.[8–16]Furthermore, recent studies have shown that the vector RWs ofn-component NLS equations are thePTsymmetry under the constraints of some parameters and classified intontypes in terms of the degree of polynomials.[17–19]In this paper, our research concentrates on data-drivenPT-symmetric vector RW solutions for the focusing multi-component NLS equation with nonzero boundary conditions:

    In the last decades,deep learning has achieved great success in a wide variety of areas because of strong data representation ability, such as image processing, speech recognition, natural language processing, and many more.[20–24]Since neural networks (NNs) are universal approximation of functions,[25]as we know, it is natural to solve differential equations using NNs. Lagariset al.[26]presented a method to solve ordinary differential equations(ODEs)and partial differential equations(PDEs)by artificial neural networks(ANNs)for a given form of trainable solution. Sirignsnoet al.[27]introduced deep Galerkin method (DGM) to solve high dimensional PDE by Monte Carlo method for fast computation of second derivatives and an integral along its respective domain under proper measurement. Raissiet al.[28]put forward physics-informed neural networks (PINNs) method to solve PDEs and inverse problems through automatic differentiation technique(AD)[29]by random sampling points in the space domain. After that the variations of PINNs[30–46]have widely applied to solve distinct kinds of PDEs over years. Linet al.[35]utilized the two-stage PINN to simulate abundant localized wave solutions of integrable equations by introducing the measurement of conserved quantities into mean squared error loss method. Puet al.[36–38]proposed the improved PINN with neuron-wise locally adaptive activation function to simulate vector localized waves of Manakov system such as one-rational soliton solutions, RWs solution,breathers,and their interaction solutions. Wanget al.[39]combined the classical spectral method with PINN algorithm to correct the error perturbation caused by modulation instability on boundary problem and further simulate more accurate RW or breather solutions of NLS equation with a smaller numerical error for long time. However,mainly due to the difficulties of the computational complexity and the algorithmic instability in solvingn-component coupled nonlinear equations,previous studies of data-driven RWs mostly focused on one-component systems. The dynamical behaviors and relevant patterns of data-driven RWs of multi-component systems such as two- and three-component are less studied with deep learning method. Recently, in this respect, Moet al.[42]proposed the MS-PINN algorithm which picks the pre-fixed points for training the network again to simulate the datadriven degenerate/non-degenerate vector solitons for coupled NLS equation with the zero boundary theory. The MS-PINN algorithm combines the multiple thoughts of time-adaptive,adaptive sampling of collocation points, error measurement,and adaptive-weight[34,43–45]and obtains good numerical results on 2-NLS systems in the rectangle shape domain. Penget al.[46]used the Riemann–Hilbert method and PINN algorithm to solveN-double poles solutions for the non-local Hirota equation with nonzero boundary conditions. Inspired by above some papers,one of our goals of this work is to extend the zero boundary theory to the non-zero ones for the vector NLS equation with the MS-PINN algorithm.[42]In addition,we use the elliptic andX-shape spatio-temporal boundary conditions to simulate thePTsymmetric RWs of 2-NLS and 3-NLS systems.To the best of our knowledge,these results have never been reported before.

    The structure of this paper is assigned as follows. In Section 2, we introduce briefly the PINN algorithm and give detailed descriptions about MS-PINN training method. In Section 3, we use the MS-PINN to simulate data-driven vector RW solutions of the 2-NLS system(1)in elliptic and X-shapes domains. Meanwhile, data-drivenPT-symmetric two-vector RW solutions of the 3-NLS system are also studied. In Section 4,some conclusions and discussions are given.

    2. Multi-stage physics informed neural networks

    In general,if we want to solve Eq.(1)by using deep learning,the most common neural networks are PINNs.The PINNs set up a deep neural network with the inputx,t,and the outputq(x,t), such that the output values can well approximate the solution of Eq. (1). PINNs take physical informationf(x,t)defined by Eq.(2)into consideration and use it as a part of the total loss functions on the spatio-temporal domain beside satisfying the initial and boundary conditions.And then we minimize the loss function through the optimization algorithm such as Adam[47]or L-BFGS[48]in order to obtain the optimal parameters. Define the residual functionf(x,t)ofn-component NLS system Eq.(1)below

    In the multi-stage physics informed neural network(MSPINN) algorithm, as shown in Fig. 1, we do not sample data points in the boundary region and the initial region respectively according to the traditional classical sampling method, but choose the adaptive spatio-temporal boundary points in manner of surrounding sampling on time and space together. Take the elliptic domain as an example,as displayed in Fig. 1(a), we first treat the boundary points of the elliptic domain in the direction of time and space as the spatiotemporal boundary points(yellow point)and then decompose the whole domain intoNparts which are kept apart from the spatio-temporal boundary points, forming one-to-one correspondence stages. Each stage we collect some collocation

    Fig.1. Adaptive sampling collocation points in space-time. (a)and(b)The pre-fixed points from the one stage next stage the in elliptic domain and X shape domain,respectively.

    Fig.2. The MS-PINNs architecture. The first stage: the input X1f ∪Xi. By PINN algorithm the pre-fixed points X1P are obtained. The second stage: the input are X2f ∪Xi ∪X1P. By PINN algorithm,we obtain pre-fixed points X2P. The last stage: the input is XNf ∪Xi ∪XN-1P . By PINN algorithm,the output is q(x,t).

    To more clearly represent the algorithm flowing-chart,we give the model architecture, as shown in Fig. 2. In the 1-st stage the inputs are the collocation pointsX1fand spatiotemporal boundary pointsXi, then we train the parameters by using PINN algorithm. When the loss function less than the given threshold value or the training iteration reaches our setM,we manually select theX1Ppre-fixed points which contribute to the smallest loss value of Lossf. Similarly,in the 2-nd stage the inputs areX2f,Xi,andX1P,we still train the model using PINN algorithm and when the loss function less than

    3. Data-driven PT symmetric rogue waves of n-NLS equation

    RWs,as a special type of nonlinear waves,have attracted more and more attentions in optical systems and other scientific disciplines. Recently, many studies onPT-symmetric vector RW solutions in anyn-component NLS models have also been proposed. However, due to modulation instability mechanism and the difficulty of observational conditions for RWs, we do not have a complete understanding of RW phenomena. Thus in this section,we would like to precisely simulate thePTsymmetric vector RW solutions of 2-NLS and 3-NLS systems with the non-zero spatio-temporal boundary conditions by MS-PINN algorithm.

    3.1. The PT symmetric fundamental vector RW solution of 2-NLS system

    Specifically,the fundamental vector RW solutions forj=1,...,n,where

    aj=ζcscωj,bj=ζcotωj,aj,bj,α0,ζ,ωj ∈R are the parameters which nontrivially contribute to the profile of the vector RWs. ThePT-symmetric structure of a vector RW isqj(x,t)=PT qj(x,t)=Pq*j(x,-t).Tis the conventional bosonic the time-reversal operator:t →-t, i→-i, where*denotes the complex conjugation.

    For a 2-NLS system, we can obtain explicitly the vector RW solutionq(x,t)=(q1(x,t),q2(x,t)) with the parametersω1=π/3,ω2=2π/3,ζ=1,α0=-1/2,t ∈[-1,1],x ∈[-4,4]by Eq.(9).We simulate the data-driven vector RWs by deep neural network with 3 hidden layers and 50 neurons per hidden layer.The activation function is the hyperbolic tangent (tanh) function. By dividing the whole domain into 4 parts and following 4 stages,we set the numbers of total collocation pointsNf=2×104,spatio-temporal boundary pointsN0=200 and pre-fixed pointsNk=(0.6k/4)Nf=3×103k,(k=1,...,4) which means 60% of collocation points are selected as pre-fixed points. In each stage the number of iterations of is 5000 and the learning rateεis 1e-4 for training with optimizer L-BFGS.

    We know RWs usually admit one peak and two valleys,one valley and two peaks and two peaks and two valleys. For the RW of scalar NLS equation,RW usually has one peak and two valleys and the maximum amplitude is twice height of the background field. For the RWs of multi-component NLS equation,there exist the bright,dark and four-petal type RWs,which are the generalization of classic RWs. For more information about the classification of fundamental RW types,please refer to these articles.[18,50,51]Each componentqjof the 2-NLS system is a kind of the fundamental RW and the types of the structures are controlled byωj. As shown in Fig.3,q1andq2are eye-shaped RWs with one hump and two valleys in top panel. Then we take relative L2(RL2)error as evaluation metrics in order to validate the method with simulated data.At the same time,considering the effect of noise in real-world observations, we add 5%white noise data and 10%white noise data to the spatio-temporal boundary condition. As shown in Fig.4, the absolute error|q1|+|q2|of the MS-PINN method is nearly 30 times less than that of the PINN method. The absolute errors of the MS-PINN method with 5%and 10%white noise data still nearly 20 times and 6 times less than PINN algorithm.

    Fig.3. The intensity of PT symmetric vector RW solutions of the 2-NLS system simulated by the MS-PINN algorithm in elliptic area and the comparison between the intensity of the predicted solutions and accurate solutions of two components system at times t =-0.5 and t =0 corresponding to the two temporal snapshots depicted by the blue vertical lines in the top panel.

    Fig.4. The absolute error|q1|+|q2|of PINN method,MS-PINN algorithm with clean data,MS-PINN algorithm with 5%white noise data and with 10%white noise data.

    Fig. 5. The intensity of PT symmetric vector RWs of the 2-NLS equation simulated by the MS-PINN method in X-shape domain and the comparison between the intensity of the predicted solutions and accurate solutions of two components system at times t =-0.5 and t =0 corresponding to the two temporal snapshots depicted by the blue vertical lines in the top panel.

    In order to explain the applicability of the algorithm in complex geometry domain for 2-NLS equation,we replace the oval region with the X-shape domain,as shown in Fig.5. By the comparison between the predicted solutions and exact solutions of 2-NLS equation,we find the MS-PINN algorithm also well approximate the exact solution. Figure 6 shows the absolute error of the PINN method is about much 100 times,30 times,and 10 times larger than those of the MS-PINN method with clean training data, 5% white noise data and 10% white noise data, respectively. It can be seen that the data-driven solutions of nonlinear coupled system can be still kept relatively stable against the small perturbation.

    Fig.6. The absolute error|q1|+|q2|of PINN method,MS-PINN algorithm with clean data,MS-PINN algorithm with 5%white noise data and with 10%white noise data.

    Table 1. The comparison of the PINN method and MS-PINN method base on 5 independent repeated experiments for 2-NLSE in elliptic-and X-shape regions.

    Because the neural network may get different solutions from different initial data, we train the neural network from random initialization for 5 times. More detailed information aboutRL2error and time cost with PINN method and MS-PINN algorithm in elliptic-and X-shape domains are displayed in Table 1. “-E,-X”denote the abbreviations of ellipse and X shape. PINN-E and MS-PINN-X represent the uses of the PINN and MS-PINN algorithm in ellipse and X-shape region,respectively.

    3.2. The PT symmetric vector two-RW solutions of 3-NLS system

    In the above subsection,we have simulated thePTsymmetric fundamental vector RW solutions of the relative 2-NLS equations and analyzed theRL2error of MS-PINN algorithm with 5%white noise data and 10%white noise data.To our knowledge, simulating asymptotic behaviors of thePTsymmetric vector RW solutions of 3-NLS system with deep learning has not been evaluated at present. For 3-NLS equation, we choose an exact vector two-RW solutionsq(x,t)=(q1(x,t),q2(x,t),q3(x,t))given by setting the special parameters[18]

    We simulate the data-drivenPT-symmetric vector RW solutions by deep neural networks with 3 hidden layers neural network and 200 neurons per hidden layer. By dividing the whole domain into 4 parts, we have naturally 4 stages. The datadriven vector RW solutions of system resulted from the MS-PINN algorithm with the randomly chosen spatio-temporal boundary pointsN0=400,total number of collocation pointsNf=4×104and the number of pre-fixed pointsNk=(0.6k/4)Nf=6×103k,(k=1,2,3,4). In other words, we consider 60% of collocation points as pre-fixed points in trained domain for each stage. In each stage the maximum iterationMis 2×104and the learning rate thresholdεis 10-3with optimizer L-BFGS.

    Figure 7 shows the intensity plots of 3-NLS equation onx ∈[-20,20],t ∈[-0.5,0.5].Top panel shows the density evolutions of 3-NLS system. Bottom panel shows the intensity of three components att=-0.25 andt= 0.25 corresponding to the two temporal snapshots depicted by the white horizontal lines in the top panel. Based on the classification of fundamental RW types,[18]the density plots ofq1andq3for the 3-NLS system are both four-petaled RWs sinceω1,ω3∈(π/6,π/3)∪(2π/3,5π/6),while the intensity plot ofq2is the bright RW due toω2∈[π/3,2π/3]. The simulation shows that the data-driven predicted solutions are very close to the exact solutions given before,which further demonstrates the observability of RWs in the physical experiments.

    Fig.7. The intensity plots of the PT symmetric vector RW solutions of 3-NLS system simulated by MS-PINN method and the six plots of the comparison between the of the predicted solutions and accurate solutions of three components system at times t=-0.25 and t=0.25.

    Fig.8. The absolute error|q1|+|q2|+|q3|of PINN method,MS-PINN algorithm with clean data,MS-PINN algorithm with 5%white noise data and with 10%white noise data,respectively.

    The absolute error|q1|+|q2|+|q3| of the PINN method and that of the MS-PINN method (with clean data, 5% white noise data and 10% white noise data) are displayed in Fig. 8. Obviously, the MS-PINN method obtains much 50 times better experimental effect than that of the PINN algorithm on 3-NLS equation.Though we add some white noise data to spatio-temporal boundary condition, the absolute errors are still much less than that of the PINN algorithm. For 3-NLS system, more specificRL2errors and time costs with PINN method and MS-PINN algorithm with white noise data are shown in Table 2.

    Table 2.The comparison of the PINN method and MS-PINN method base on 5 independent repeated experiments for 3-NLSE.

    4. Conclusion

    In this work,we utilize a multi-stage deep learning training algorithm to simulate data-drivenPT-symmetric vector RW solutions of 2-NLS systems and two-vector RWs of 3-NLS systems with spatio-temporal boundary condition (nonzero boundary condition). In fact, the spatio-temporal conditions do not conform to the traditional numerical methods of solving the equation in manner of time evolution,but comply with physics dynamics in the way of simultaneous evolution of time and space. Numerical simulations show that the MSPINN algorithm can well recover different dynamical behaviors of RW solutions in the 2-NLS and 3-NLS equations. In the future, we would like to explore whether the MS-PINN algorithm is applied to the discovery problems of other integrable NLS and non-integrable nonlinear wave system by adding more prior knowledge about the geometry and physical properties of system.

    Acknowledgments

    Project supported by National Natural Science Foundation of China (Grant Nos. 11771151, 61571005, and 61901160), the Science and Technology Program of Guangzhou (Grant No. 201904010362), and the Fundamental Research Program of Guangdong Province, China (Grant No.2020B1515310023).

    猜你喜歡
    黎明
    風云三號E星——黎明星
    黎明之光
    黎明之子
    趣味(語文)(2020年5期)2020-11-16 01:34:56
    美若黎明
    青年歌聲(2019年9期)2019-09-17 09:02:54
    黎明被一群鳥兒啄出
    誰家的可可④ 這里的黎明靜悄悄
    幽默大師(2018年4期)2018-11-02 05:38:54
    黎明
    讀者(2017年8期)2017-03-29 20:11:49
    黎明的軍號
    灶神星上的“黎明”
    太空探索(2015年4期)2015-07-12 14:16:21
    谷神星迎來新“黎明”
    太空探索(2015年4期)2015-07-12 14:16:08
    国模一区二区三区四区视频| 亚洲欧洲国产日韩| 久久久久性生活片| 亚洲综合精品二区| 久久久久久大精品| 我要看日韩黄色一级片| 久久久久久伊人网av| www日本黄色视频网| 黄片wwwwww| 亚洲乱码一区二区免费版| 日韩精品青青久久久久久| 日本黄大片高清| 99久久九九国产精品国产免费| 久久久久久久久久久免费av| 亚洲,欧美,日韩| 欧美+日韩+精品| 精品久久久噜噜| 精品久久久久久久久久久久久| 直男gayav资源| 久久久久久久久久久丰满| 亚洲av电影不卡..在线观看| 日韩高清综合在线| 欧美一区二区亚洲| 97超视频在线观看视频| 国产一区二区三区av在线| 午夜a级毛片| 久久久成人免费电影| 成人毛片a级毛片在线播放| 久久精品91蜜桃| 亚洲av日韩在线播放| 成人毛片a级毛片在线播放| 看片在线看免费视频| 夜夜爽夜夜爽视频| 又黄又爽又刺激的免费视频.| 国产高清三级在线| 亚洲av中文字字幕乱码综合| 一级毛片aaaaaa免费看小| 18+在线观看网站| 内射极品少妇av片p| 亚洲精品亚洲一区二区| 国语自产精品视频在线第100页| 久久久欧美国产精品| 女的被弄到高潮叫床怎么办| 日本一本二区三区精品| a级毛色黄片| 国产真实乱freesex| 校园人妻丝袜中文字幕| 久久精品久久精品一区二区三区| av在线播放精品| 2021少妇久久久久久久久久久| 大香蕉97超碰在线| 成年女人永久免费观看视频| 久久久久久伊人网av| 国产成人91sexporn| 在线免费观看的www视频| 菩萨蛮人人尽说江南好唐韦庄 | 久久99蜜桃精品久久| av播播在线观看一区| 国产午夜精品久久久久久一区二区三区| 中文天堂在线官网| 一个人看视频在线观看www免费| 国产精品99久久久久久久久| 欧美+日韩+精品| 国产伦理片在线播放av一区| 免费看光身美女| 亚洲性久久影院| 亚洲欧美日韩东京热| 91精品一卡2卡3卡4卡| 搞女人的毛片| 夫妻性生交免费视频一级片| 国产精品1区2区在线观看.| 最近中文字幕2019免费版| 伦理电影大哥的女人| 夫妻性生交免费视频一级片| 免费av不卡在线播放| 一级黄色大片毛片| 国产成人freesex在线| 国产熟女欧美一区二区| 人体艺术视频欧美日本| 边亲边吃奶的免费视频| 亚洲精品aⅴ在线观看| 精品久久久久久久久亚洲| 亚洲成人精品中文字幕电影| av免费观看日本| 国内揄拍国产精品人妻在线| 变态另类丝袜制服| 听说在线观看完整版免费高清| 七月丁香在线播放| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 级片在线观看| 日本欧美国产在线视频| 国内精品宾馆在线| 日本黄色片子视频| 欧美极品一区二区三区四区| 亚洲精品国产成人久久av| 亚洲乱码一区二区免费版| 婷婷色麻豆天堂久久 | 国产亚洲av嫩草精品影院| 日韩一区二区三区影片| 免费黄网站久久成人精品| 成人欧美大片| 三级国产精品片| 狂野欧美激情性xxxx在线观看| 性插视频无遮挡在线免费观看| 国产淫片久久久久久久久| 一卡2卡三卡四卡精品乱码亚洲| 丝袜喷水一区| 久久久久久久久久久丰满| 日韩一区二区视频免费看| 国产成人freesex在线| 1000部很黄的大片| 美女大奶头视频| 亚洲熟妇中文字幕五十中出| 长腿黑丝高跟| 日日摸夜夜添夜夜爱| 成人漫画全彩无遮挡| 一二三四中文在线观看免费高清| 麻豆成人午夜福利视频| 免费黄网站久久成人精品| 久99久视频精品免费| 青春草国产在线视频| 亚洲欧美精品综合久久99| 青春草视频在线免费观看| 中文资源天堂在线| 国产黄片美女视频| 亚洲精品久久久久久婷婷小说 | 午夜亚洲福利在线播放| 女人十人毛片免费观看3o分钟| 最后的刺客免费高清国语| 男人的好看免费观看在线视频| 午夜福利视频1000在线观看| 国产精品伦人一区二区| 国产日韩欧美在线精品| 欧美+日韩+精品| 在线观看66精品国产| 日本五十路高清| 日日撸夜夜添| 亚洲av一区综合| 国产老妇伦熟女老妇高清| 中文字幕亚洲精品专区| 欧美潮喷喷水| 国产成人freesex在线| 国产精品综合久久久久久久免费| 午夜a级毛片| 丰满乱子伦码专区| 最近手机中文字幕大全| 91精品国产九色| 国产精品野战在线观看| 精品国产一区二区三区久久久樱花 | 国产精品一区二区在线观看99 | 亚洲国产精品国产精品| 国产在视频线在精品| 国产又色又爽无遮挡免| 岛国毛片在线播放| 午夜福利高清视频| 久久久久久伊人网av| 精品免费久久久久久久清纯| 熟女人妻精品中文字幕| 亚洲国产成人一精品久久久| 高清在线视频一区二区三区 | 久久精品夜色国产| 22中文网久久字幕| 又粗又爽又猛毛片免费看| 少妇人妻一区二区三区视频| 亚洲伊人久久精品综合 | 久久久久九九精品影院| 精品无人区乱码1区二区| 亚洲人成网站在线播| 99久久人妻综合| 黄色配什么色好看| 久久欧美精品欧美久久欧美| 五月玫瑰六月丁香| 一二三四中文在线观看免费高清| 国产在视频线精品| 国产精品蜜桃在线观看| 男人狂女人下面高潮的视频| 国产亚洲一区二区精品| 99久久精品一区二区三区| 国产精品乱码一区二三区的特点| 国产三级中文精品| 久久婷婷人人爽人人干人人爱| 精品久久久久久久久av| 99国产精品一区二区蜜桃av| 国产美女午夜福利| 国产精品久久电影中文字幕| 久久久欧美国产精品| 精品一区二区三区人妻视频| 黄片wwwwww| 免费观看性生交大片5| 狂野欧美白嫩少妇大欣赏| 国产又黄又爽又无遮挡在线| 伊人久久精品亚洲午夜| 蜜臀久久99精品久久宅男| 欧美性猛交黑人性爽| 亚洲人与动物交配视频| 亚洲av中文字字幕乱码综合| 我的老师免费观看完整版| 国产精品,欧美在线| 亚洲aⅴ乱码一区二区在线播放| 老司机福利观看| 99热这里只有是精品50| 亚洲av日韩在线播放| 亚洲国产欧美在线一区| 日本免费a在线| 99热这里只有是精品在线观看| 精品久久久久久久人妻蜜臀av| 日本免费一区二区三区高清不卡| 最近最新中文字幕免费大全7| 美女内射精品一级片tv| 干丝袜人妻中文字幕| 成人午夜精彩视频在线观看| 欧美人与善性xxx| 22中文网久久字幕| or卡值多少钱| 国产乱来视频区| 97超碰精品成人国产| ponron亚洲| 欧美精品国产亚洲| 国内精品宾馆在线| 国产日韩欧美在线精品| 国产av码专区亚洲av| 26uuu在线亚洲综合色| 最近中文字幕高清免费大全6| 日韩一区二区三区影片| 国产精品人妻久久久久久| 波多野结衣高清无吗| 久久人人爽人人片av| 小蜜桃在线观看免费完整版高清| 免费观看在线日韩| 精品一区二区免费观看| 久久韩国三级中文字幕| av线在线观看网站| .国产精品久久| 男人舔女人下体高潮全视频| 嫩草影院新地址| 如何舔出高潮| 日本熟妇午夜| 亚洲欧美精品专区久久| 黄片wwwwww| 亚洲欧美清纯卡通| 又黄又爽又刺激的免费视频.| 久久精品91蜜桃| 亚洲精品色激情综合| 国产精品熟女久久久久浪| 亚洲天堂国产精品一区在线| 日本免费在线观看一区| 七月丁香在线播放| videossex国产| 国产日韩欧美在线精品| 精品人妻偷拍中文字幕| 在线免费观看的www视频| 在线免费十八禁| 成人一区二区视频在线观看| 在线天堂最新版资源| 久久久成人免费电影| 国产亚洲午夜精品一区二区久久 | 亚洲欧美精品专区久久| 国产精品精品国产色婷婷| 成年免费大片在线观看| 久久久久久久久久成人| av在线观看视频网站免费| 日韩强制内射视频| 国产亚洲一区二区精品| 熟妇人妻久久中文字幕3abv| www日本黄色视频网| 狠狠狠狠99中文字幕| 欧美成人精品欧美一级黄| 国产成人freesex在线| 波多野结衣高清无吗| 最近视频中文字幕2019在线8| 亚洲国产色片| 夜夜爽夜夜爽视频| 亚洲精品自拍成人| 久久久精品94久久精品| 久久人人爽人人片av| 亚洲在久久综合| 亚洲av成人精品一二三区| av卡一久久| 国产一区有黄有色的免费视频 | 久久精品熟女亚洲av麻豆精品 | 久久亚洲国产成人精品v| 午夜福利在线在线| 国产黄片视频在线免费观看| 久久草成人影院| 岛国毛片在线播放| 亚洲国产精品专区欧美| 最后的刺客免费高清国语| av黄色大香蕉| 大话2 男鬼变身卡| 国产一区二区亚洲精品在线观看| 人妻系列 视频| 黄色配什么色好看| 亚洲伊人久久精品综合 | 中文在线观看免费www的网站| 欧美日韩一区二区视频在线观看视频在线 | 夜夜爽夜夜爽视频| 身体一侧抽搐| 国产黄a三级三级三级人| 国产69精品久久久久777片| 搞女人的毛片| 91av网一区二区| videossex国产| 国产在线男女| 婷婷色综合大香蕉| av国产久精品久网站免费入址| 国产色爽女视频免费观看| 中文字幕av成人在线电影| 天美传媒精品一区二区| 蜜桃久久精品国产亚洲av| av在线蜜桃| 亚洲内射少妇av| 国产视频内射| 人人妻人人澡人人爽人人夜夜 | 日日啪夜夜撸| 少妇猛男粗大的猛烈进出视频 | 在线观看美女被高潮喷水网站| 国产91av在线免费观看| 夫妻性生交免费视频一级片| 一边亲一边摸免费视频| 热99re8久久精品国产| 国产伦一二天堂av在线观看| av国产免费在线观看| 好男人视频免费观看在线| 国产免费又黄又爽又色| 神马国产精品三级电影在线观看| 亚洲av一区综合| 老司机福利观看| 你懂的网址亚洲精品在线观看 | 亚洲人成网站高清观看| 国产免费一级a男人的天堂| 欧美性感艳星| 日韩欧美国产在线观看| 日韩av在线免费看完整版不卡| 日本av手机在线免费观看| av黄色大香蕉| 中文天堂在线官网| 免费观看性生交大片5| 最近最新中文字幕大全电影3| 22中文网久久字幕| 狠狠狠狠99中文字幕| 欧美三级亚洲精品| 日韩av在线免费看完整版不卡| 精品午夜福利在线看| 亚洲人与动物交配视频| 日韩国内少妇激情av| 国产成人精品久久久久久| 国产亚洲午夜精品一区二区久久 | 国产伦精品一区二区三区视频9| 日韩亚洲欧美综合| 国产精品不卡视频一区二区| www日本黄色视频网| 老司机影院成人| 中文字幕av在线有码专区| 3wmmmm亚洲av在线观看| 国产精品久久久久久精品电影小说 | 最近的中文字幕免费完整| 亚洲欧美日韩东京热| 99久久中文字幕三级久久日本| 最近的中文字幕免费完整| 高清视频免费观看一区二区 | 国产男人的电影天堂91| 如何舔出高潮| 国产免费一级a男人的天堂| 成人午夜高清在线视频| 国产成人精品一,二区| 日本色播在线视频| 精品一区二区三区视频在线| 91狼人影院| 亚州av有码| 三级毛片av免费| 欧美最新免费一区二区三区| 一级毛片电影观看 | 看免费成人av毛片| 亚洲国产欧洲综合997久久,| 特大巨黑吊av在线直播| 美女脱内裤让男人舔精品视频| 听说在线观看完整版免费高清| 亚洲图色成人| 日韩人妻高清精品专区| 亚洲国产精品成人综合色| 亚洲av成人精品一区久久| 久久99蜜桃精品久久| 久久久久九九精品影院| 国产伦一二天堂av在线观看| 国产亚洲5aaaaa淫片| 乱人视频在线观看| 一个人免费在线观看电影| 丝袜喷水一区| av卡一久久| 亚洲精品国产成人久久av| .国产精品久久| 久久精品人妻少妇| www.色视频.com| 国内精品宾馆在线| 黄色欧美视频在线观看| 欧美日本亚洲视频在线播放| 18禁裸乳无遮挡免费网站照片| 久久久久久久久久成人| 色吧在线观看| 国产单亲对白刺激| 成人毛片a级毛片在线播放| 国产高清有码在线观看视频| 国产精品电影一区二区三区| 少妇被粗大猛烈的视频| 成人性生交大片免费视频hd| 18+在线观看网站| 亚洲av免费在线观看| 晚上一个人看的免费电影| 在线观看av片永久免费下载| 天天躁日日操中文字幕| 中国美白少妇内射xxxbb| 爱豆传媒免费全集在线观看| 成年免费大片在线观看| 大话2 男鬼变身卡| 色播亚洲综合网| 亚洲国产日韩欧美精品在线观看| 免费电影在线观看免费观看| 又爽又黄无遮挡网站| 精品一区二区三区人妻视频| 日韩av在线大香蕉| 赤兔流量卡办理| 七月丁香在线播放| 女人被狂操c到高潮| 国产精品一区二区性色av| 欧美zozozo另类| 久久久久久久久中文| 美女黄网站色视频| 极品教师在线视频| 天天躁夜夜躁狠狠久久av| 六月丁香七月| 亚洲国产日韩欧美精品在线观看| 爱豆传媒免费全集在线观看| 国产v大片淫在线免费观看| 久久久久久九九精品二区国产| 国产精品久久久久久av不卡| 97超碰精品成人国产| 国产国拍精品亚洲av在线观看| 国产av一区在线观看免费| 亚洲乱码一区二区免费版| 成人av在线播放网站| 欧美日韩综合久久久久久| 一个人免费在线观看电影| 97超碰精品成人国产| АⅤ资源中文在线天堂| 亚洲图色成人| 国产午夜精品久久久久久一区二区三区| 99在线视频只有这里精品首页| 黄色日韩在线| 日本免费a在线| 免费一级毛片在线播放高清视频| 亚洲av.av天堂| 中文字幕亚洲精品专区| 自拍偷自拍亚洲精品老妇| 国产成人aa在线观看| 亚洲欧美精品自产自拍| 一二三四中文在线观看免费高清| 中文资源天堂在线| 久久久精品94久久精品| 天堂网av新在线| 国产成人免费观看mmmm| 九九爱精品视频在线观看| 国产成人一区二区在线| 黄片wwwwww| a级毛色黄片| 少妇熟女aⅴ在线视频| 又粗又硬又长又爽又黄的视频| 欧美成人午夜免费资源| 亚洲成人中文字幕在线播放| 三级毛片av免费| 日本-黄色视频高清免费观看| 久久韩国三级中文字幕| 麻豆成人av视频| 精品久久国产蜜桃| 欧美一级a爱片免费观看看| 婷婷六月久久综合丁香| 午夜福利成人在线免费观看| 国产精品福利在线免费观看| 国产美女午夜福利| av在线蜜桃| 日本一二三区视频观看| 人人妻人人澡人人爽人人夜夜 | 成人三级黄色视频| 韩国av在线不卡| 亚洲精品亚洲一区二区| 精品一区二区三区视频在线| 全区人妻精品视频| 亚洲高清免费不卡视频| 久久久久国产网址| 综合色丁香网| 高清视频免费观看一区二区 | 嫩草影院新地址| 欧美日本视频| 亚洲国产欧美人成| 免费观看精品视频网站| 在线免费观看的www视频| 国产综合懂色| 婷婷六月久久综合丁香| 国产精品蜜桃在线观看| 久久99蜜桃精品久久| 麻豆乱淫一区二区| 久久热精品热| 国产精品一区www在线观看| 在线a可以看的网站| 少妇猛男粗大的猛烈进出视频 | 亚洲av免费高清在线观看| 欧美三级亚洲精品| 最后的刺客免费高清国语| 成人亚洲欧美一区二区av| 91精品伊人久久大香线蕉| 国产精品一区二区三区四区免费观看| 我要搜黄色片| 国产精品人妻久久久久久| 久久久精品94久久精品| 精品国内亚洲2022精品成人| 亚洲av免费在线观看| 男女那种视频在线观看| 最近最新中文字幕免费大全7| 色尼玛亚洲综合影院| 久久婷婷人人爽人人干人人爱| 99热这里只有精品一区| 成人国产麻豆网| 中文字幕免费在线视频6| 国产 一区精品| 91精品国产九色| 日本色播在线视频| 婷婷色av中文字幕| 久久99精品国语久久久| 成年免费大片在线观看| 久久欧美精品欧美久久欧美| 日韩 亚洲 欧美在线| 久久久午夜欧美精品| 日韩一区二区三区影片| 人人妻人人澡欧美一区二区| 国产视频内射| 深夜a级毛片| 一级av片app| 欧美日韩精品成人综合77777| 亚洲精品456在线播放app| 久久国产乱子免费精品| 国产一级毛片在线| 少妇丰满av| 蜜桃久久精品国产亚洲av| 欧美日本亚洲视频在线播放| 韩国av在线不卡| 中文欧美无线码| 欧美丝袜亚洲另类| 91午夜精品亚洲一区二区三区| 国产成人aa在线观看| 久久久午夜欧美精品| 美女高潮的动态| 亚洲自拍偷在线| 女人被狂操c到高潮| av免费观看日本| 欧美高清性xxxxhd video| 精品一区二区免费观看| 国产色爽女视频免费观看| 亚洲av成人av| 成人午夜精彩视频在线观看| 我要看日韩黄色一级片| 欧美人与善性xxx| 女人十人毛片免费观看3o分钟| 日本熟妇午夜| 91久久精品国产一区二区成人| 黄色配什么色好看| 午夜福利在线观看吧| 亚洲中文字幕日韩| 禁无遮挡网站| 身体一侧抽搐| 最近2019中文字幕mv第一页| 日本五十路高清| 极品教师在线视频| 亚洲伊人久久精品综合 | 国产精品久久久久久久电影| 亚洲欧美日韩高清专用| 亚洲精品aⅴ在线观看| 亚洲成人久久爱视频| 天天躁夜夜躁狠狠久久av| 秋霞在线观看毛片| 国产真实伦视频高清在线观看| 久久草成人影院| 男人舔女人下体高潮全视频| 亚洲精品一区蜜桃| 爱豆传媒免费全集在线观看| 大又大粗又爽又黄少妇毛片口| a级毛片免费高清观看在线播放| 国产伦理片在线播放av一区| 国产高清有码在线观看视频| 一个人看的www免费观看视频| 亚洲最大成人手机在线| 国产女主播在线喷水免费视频网站 | 两个人的视频大全免费| 人妻少妇偷人精品九色| 中文欧美无线码| 国产乱人偷精品视频| 91狼人影院| 视频中文字幕在线观看| 国产精品国产高清国产av| 性插视频无遮挡在线免费观看| 99视频精品全部免费 在线| 国产老妇伦熟女老妇高清| 在线观看av片永久免费下载| 欧美丝袜亚洲另类| 日本午夜av视频| 又爽又黄a免费视频| 一边亲一边摸免费视频| 91精品一卡2卡3卡4卡| 一区二区三区四区激情视频| 欧美区成人在线视频| 亚洲欧美清纯卡通| 一区二区三区高清视频在线| 青春草国产在线视频| 国产一区二区在线观看日韩| 欧美高清性xxxxhd video| 国产精品,欧美在线| 国产探花在线观看一区二区|