摘" " 要:【目的】研究化州柚(Citrus grandis ‘Tomentosa’)正毛、副毛和光青品系的花之間成分差異,為化州柚花在醫(yī)藥和保健領域的開發(fā)應用奠定基礎?!痉椒ā窟x取同一生長期的化州柚正毛、副毛和光青3個品系的花,利用超高效液相色譜-三重四極桿質譜(UPLC-MS/MS)進行次級代謝產物的廣泛靶向代謝組學分析,利用氣相色譜-四級桿飛行時間質譜(GC-TOF/MS)進行初級代謝產物的非靶向代謝組學分析。通過主成分分析(PCA)揭示3個品系花間的整體差異,利用正交偏最小二乘法判別分析(OPLS-DA)將3個品系兩兩對比,篩選出品系間的差異代謝物。【結果】UPLC-MS/MS檢測發(fā)現(xiàn)978種代謝物,其中63種代謝物在不同品系花中表現(xiàn)出顯著差異。地奧司明、山柰酚-3-O-蕓香糖苷、蘆丁、牡荊素-2''-O-葡萄糖苷、木犀草素-7-O-蕓香糖苷、維采寧-2、蕓香柚皮苷、香草酸、佛手苷內酯和橙皮內酯10種化州柚中有效成分在副毛和正毛花中的含量高于光青。GC-TOF/MS檢測發(fā)現(xiàn)236種代謝物,篩選出11種差異代謝物,包括D-(-)果糖、D-纖維二糖、景天酮庚糖、α-槐糖、丙酮酸、檸檬酸、莽草酸、反式-4-羥基肉桂酸、咖啡酸、阿魏酸和柚皮素-7-O-葡萄糖苷。【結論】化州柚正毛、副毛和光青3個品系的花在成分上存在顯著差異,尤其是副毛和正毛花的有效成分含量高于光青。
關鍵詞:化州柚;化橘紅;代謝組學
中圖分類號:S666.3 文獻標志碼:A 文章編號:1009-9980(2024)10-1990-12
Metabolomic analysis of differential metabolites among different cultivars of Citrus grandis ‘Tomentosa’ flowers
CHEN Wanbing1, MAO Genlin1, ZHONG Yujuan2, ZENG Jiwu1*
(1Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences/Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs/Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Guangzhou 510640, Guangdong, China; 2Vegetable Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, Guangdong, China)
Abstract: 【Objective】 Citrus grandis ‘Tomentosa’ (CGT) is an ancient variant of pomelo [C. grandis (L.) Osbeck ] native to Huazhou, Guangdong Province. It is the raw material source for the traditional Chinese medicine Huajuhong (Exocarpium Citri Grandis). Based on the morphology of the fruit trichomes, CGT can be divided into different local strains: Zhengmao (ZM), Fumao (FM), and Guangqing (GQ). ZM fruits have dense and long trichomes on the surface, while FM fruits have relatively short and sparse trichomes, and GQ fruits have a smooth surface without trichomes. The differences in trichome coverage between the ZM, FM, and GQ have significant implications for their medicinal properties and potential applications in traditional Chinese medicine. The effective components in the flowers of CGT are similar to those in its fruits, possessing expectorant and anti-inflammatory effects. Therefore, locals often collect excess flowers and use them to make flower tea. The floral morphology of different strains of CGT is nearly indistinguishable, yet their differences in composition and medicinal value remain largely unexplored. The objective of this study is to explore the variances in composition among the flowers of ZM, FM, and GQ, aiming to establish a basis for the utilization of these CGT flowers in medicine and healthcare. 【Methods】 Flowers from the three varieties of CGT, namely ZM, FM, and GQ, were collected during the same growth period. Metabolites from the flowers were extracted using 25% methanol-water with 2-chlorophenylalanine as the internal standard for widely targeted metabolomics based on UPLC-MS/MS. Mass spectrometry data was collected using the Multiple Reaction Monitoring (MRM) mode of triple quadrupole mass spectrometry. Metabolite annotation was conducted using an in-house database developed by Biotree company. Using adonitol as an internal standard, metabolites from the flowers were extracted with 25% methanol-water, followed by oximation and silylation derivatization, and then subjected to un-targeted metabolomics analysis using gas chromatography-time of flight mass spectrometry (GC-TOF/MS). Principal Component Analysis (PCA) was employed to reveal the overall differences among the three strains. Subsequently, Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA) was utilized to compare the strains pairwise. Differential metabolites were screened based on Variable Importance in Projection (VIP) values in the OPLS-DA model, fold change (FC), and p-values from student's t-test. 【Results】 UPLC-MS/MS detected a total of 978 metabolites. The PCA score plot showed that the contributions of principal components 1 and 2 were 44.4% and 8.5%, respectively. The sample points for the ZM, FM, and GQ groups were clearly separated, indicating significant compositional differences among flowers of the three CGT strains. OPLS-DA analysis revealed 63 differential metabolites, mainly flavonoids, coumarins, terpenoids, and alkaloids. From the ZM vs FM comparison, 34 metabolites were identified as differentially expressed, with 25 upregulated and 9 downregulated. From the ZM vs GQ comparison, 48 metabolites were identified, with 37 upregulated and 11 downregulated. From the FM vs GQ comparison, 58 metabolites were identified, with 34 upregulated and 24 downregulated. Among these differential metabolites, ten effective components of CGT flowers were found in higher concentrations in the FM and ZM strains compared to the GQ strain. These components included bergapten, diosmin, meranzin, kaempferol-3-O-rutinoside, rutin, Vitexin-2\"-O-glucoside, leteolin-7-O-rutinoside, vanillic acid, vicenin-2, and narirutin. GC-TOF/MS detected a total of 236 metabolites, primarily including organic oxides, organic acids, lipids, and benzene derivatives. The PCA score plot showed that the contribution rates of principal components 1 and 2 were 39.8% and 17.1%, respectively, indicating significant differences among the ZM, FM, and GQ strains. OPLS-DA analysis revealed 11 differential metabolites. From the FM vs ZM comparison, 6 metabolites were identified, with upregulation of naringenin-7-O-glucoside and citric acid, and downregulation of caffeic acid, trans-4-hydroxycinnamic acid, ferulic acid, and pyruvic acid. From the GQ vs ZM comparison, 8 metabolites were identified, with upregulation of naringenin-7-O-glucoside, shikimic acid, citric acid, and sedoheptulose, and downregulation of D-cellobiose, caffeic acid, α-sophorose, and D-(-)-fructose. From the GQ vs FM comparison, 7 differential metabolites were identified, with upregulation of naringenin-7-O-glucoside, ferulic acid, pyruvic acid, sedoheptulose, and trans-4-hydroxycinnamic acid, and downregulation of D-cellobiose and D-(-)-fructose. 【Conclusion】 The flowers of the three strains of CGT, ZM, FM, and GQ, exhibit significant differences in their composition. Flavonoids and coumarin compounds are the primary effective components in both the fruits and flowers of CGT. This study revealed that the flowers of the ZM and FM strains contain notably higher concentrations of 7 flavonoids (diosmin, kaempferol-3-O-rutinoside, rutin, vitexin-2\"-O-glucoside, luteolin-7-O-rutinoside, vicenin-2, and narirutin) and 2 coumarins (bergaten and meranzin) compared to those of the GQ strain. Additionally, the identified differential metabolites include phenolic acids such as vanillic acid, caffeic acid, ferulic acid, and trans-4-hydroxycinnamic acid, as well as primary metabolites like citric acid, shikimic acid, fructose, 7-methylguanine, uridine, and eicosapentaenoic acid. These differential metabolites are involved in various metabolic pathways, including the tricarboxylic acid cycle, polyphenol biosynthesis, purine metabolism, and fructose and mannose metabolism.
Key words: Citrus grandis ‘Tomentosa’; Exocarpium Citri Grands; Metabonomics
化州柚(Citrus grandis ‘Tomentosa’)是柚[C. grandis (L.) Osbeck]的一個變種,起源于廣東化州,是中藥化橘紅(Exocarpium Citri Grandis)的源植物?;蓁种饕姓⒏泵?、光青、黃龍和假西洋等地方品系[1],其中正毛、副毛和光青的主要區(qū)別在于果實表面的茸毛形態(tài)不同[2]。正毛果實表面茸毛長而密,副毛果實表面茸毛稀且短,光青果實表面光滑無毛(圖1)[3]。
化州柚花期在3月,開花量大,為保證果實產量和品質,果農一般會進行疏花,疏下的花在化州當?shù)乇恢瞥苫ú琛;蓁只ㄅc果實中的有效成分在種類和含量上都較為接近,化州柚花茶同化橘紅一樣具有理氣化痰的功效[4]。柚皮苷被認為是化橘紅的主要功效成分[5],其通過對氣道炎癥以及氣道上皮、氣道平滑肌的調控發(fā)揮消炎、止咳化痰的作用[6-7]。Duan等[8]研究發(fā)現(xiàn)幼果期化州柚果實中柚皮苷含量(w,后同)可達果實干質量的28%,而化州柚花中柚皮苷含量也達16%,高于葉片及近成熟果實和成熟果實?;蓁只ㄖ袚]發(fā)油含量約為0.7%,含量較高的成分有D-檸檬烯、γ-萜品烯、β-月桂烯、芳樟醇、反-橙花叔醇等[4]。韓寒冰等[9]從化州柚花和果實的揮發(fā)油中分別鑒定出30種和36種成分,其中28種成分相同。
不同品系的化州柚果實在有效成分含量和功效上存在顯著差異。Fan等[10]對化州柚中16種有效成分進行定量分析,發(fā)現(xiàn)正毛品系含有更多的類黃酮,其野漆樹苷的含量明顯高于光青。李宇邦等[11]的研究發(fā)現(xiàn)毛橘紅中柚皮苷、野漆樹苷、柚皮素的含量高于光橘紅。研究還發(fā)現(xiàn)[12-13],由正毛化州柚未成熟果實和近成熟果實外果皮炮制而成的“毛橘紅”抗炎和化痰作用最突出,其效果優(yōu)于由光青化州柚制成的“光橘紅”。然而,目前對不同品系的化州柚花之間的成分差異缺乏深入研究。因此,筆者在本研究中選擇同一生長期的正毛、副毛和光青3個品系的化州柚花作為研究對象,運用代謝組學的方法比較它們之間的成分差異,通過多元統(tǒng)計分析篩選出差異代謝物。旨在明確不同品系化州柚花的化學成分差異,為化州柚花的綜合利用提供理論依據(jù)。
1 材料和方法
1.1 材料與試劑
正毛、副毛和光青3個品系化州柚花,采集自廣東省化州市化橘紅藥材開發(fā)有限公司GMP標準苗圃。內標核糖醇和2-氯苯丙氨酸購自德國Sigma-Aldrich公司;甲氧胺鹽購自上海梯希愛公司;N,O-雙(三甲基硅)三氟乙酰胺(BSTFA)(含1%三甲基氯硅烷TMCS)購自美國REGIS Technologies公司;飽和脂肪酸甲酯(FAMEs)購自德國Dr. Ehrenstorfer公司;氯仿和吡啶(色譜純)及甲醇、乙腈和甲酸(質譜純)購自美國Thermo Fisher Scientific公司。
1.2 儀器與設備
ExionLC AD-trap 6500+UPLC-MS/MS液質聯(lián)用儀,美國Sciex公司生產;7890B GC氣相色譜儀,美國安捷倫公司生產;PEGASUS HT飛行時間質譜儀,美國LECO公司生產;Millipore D23 UV純水儀,美國Merck公司生產;Heraeus Fresco17高速離心機,美國Thermo Fisher Scientific公司生產;LNG-T98真空干燥儀,太倉市華美生化儀器廠生產。
1.3 試驗方法
1.3.1" " UPLC-MS/MS樣本前處理" " 稱取50 mg冷凍干燥研磨后的樣本加入700 μL含0.1% 2-氯苯丙氨酸內標的25%甲醇水溶液,然后冰水浴超聲提取5 min,重復提取3次后在混勻儀上4 ℃過夜,然后將樣本在4 ℃下13 800g離心15 min,取上清液經(jīng)0.22 μm微孔濾膜過濾,用提取液稀釋上清液20倍,渦旋30 s,每個樣本各取50 μL混合成質控(QC)樣本,-80 ℃儲存直到上機檢測。
1.3.2" " GC-QTOF/MS樣本前處理" " 稱取50 mg冷凍干燥研磨后的樣本加入500 μL含核糖醇內標的25%甲醇水溶液,然后冰水浴超聲提取5 min,重復提取3次后在4 ℃下13 800g離心15 min,每個樣本各取100 μL上清液混合成QC樣本。將試驗樣本及QC樣本在真空濃縮器中干燥,然后加入50 μL溶解于吡啶的20 mg·mL-1甲氧胺鹽試劑,混勻后在烘箱中80 ℃孵育30 min,再加入70 μL BSTFA(含1% TMCS)70 ℃孵育1.5 h,冷卻至室溫后向混合的樣本中加入5 μL FAMEs(溶于氯仿),隨機順序上機檢測。
1.3.3" " UPLC-MS/MS數(shù)據(jù)采集" " 液相色譜采用Waters Acquity UPLC HSS T3(2.1 mm×100 mm,1.8 μm)色譜柱,流動相A相為0.1%甲酸水,B相為乙腈,梯度洗脫:0 min,98% A;0.5 min,98% A;10 min,50% A;11 min,5% A;13 min,5% A;13.1 min,98% A;15 min,98% A。流速為0.4 mL·min-1,進樣體積為2 μL,柱溫為40 ℃。質譜采用ESI離子源,以多反應監(jiān)測模式(MRM)進行質譜分析。離子源參數(shù)如下:離子化電壓+5500/?4500 V,氣簾氣35 psi,溫度400 ℃,噴霧氣60 psi,輔助加熱氣60 psi。樣品隨機進樣,每個樣本正離子模式和負離子模式各進1針,在每進3針樣本后,進1針QC樣本和1針空白樣本(25%甲醇),進行質量控制和矯正峰的漂移。所有質譜數(shù)據(jù)采集及目標化合物定量分析工作均通過SCIEX Analyst Work Station Software (Version 1.6.3)來完成。使用MSconventer軟件將質譜原始轉成TXT格式再使用自撰寫R程序包結合自建數(shù)據(jù)庫完成提峰、注釋等工作。
1.3.4" " GC-QTOF/MS數(shù)據(jù)采集" " 氣相色譜采用Agilent DB-5MS毛細管柱(30 m×250 μm×0.25 μm,Jamp;W Scientific,F(xiàn)olsom,CA,USA),以不分流的方式進1 μL樣品。以氦氣為載氣,隔墊吹掃流速為3 mL·min-1,柱流速為1 mL·min-1。程序升溫條件為:初始溫度50 ℃,保持1 min;然后以10 ℃·min-1的速率升至310 ℃,然后在310 ℃下保持8 min。前進樣口溫度為280 ℃,傳輸線溫度為280 ℃,離子源溫度為250 ℃。電離電壓為70 eV。在溶劑延遲6.25 min后,以12.5 scan·s-1的速率,在m/z范圍為50~500的全掃描模式下獲得質譜數(shù)據(jù)。使用ChromaTOF軟件(V 4.3x,LECO)對質譜數(shù)據(jù)進行峰提取、基線矯正、解卷積、峰積分、峰對齊等處理。使用LECO-Fiehn Rtx5數(shù)據(jù)庫通過質譜匹配及保留時間指數(shù)匹配進行化合物的注解。最后,將QC樣本中檢出率50%以下或RSD>30%的峰去除。
1.3.5" " 代謝組學數(shù)據(jù)分析" " 將采集到的UPLC-MS/MS和GC-QTOF/MS數(shù)據(jù)采用SIMCA(V 14.1,Umetrics)進行多元統(tǒng)計分析。數(shù)據(jù)在對數(shù)(Log)轉換和Mean-centered尺度化后,進行3個品系樣本的PCA分析和品系間兩兩對比的OPLS-DA分析。以OPLS-DA模型中的變量投影重要性分析值(VIP)、差異倍數(shù)(Fold change,F(xiàn)C)以及單因素方差分析(student’s t-test)的p值綜合篩選UPLC-MS/MS檢測到的差異代謝物。以OPLS-DA分析得到的S-plot圖篩選GC-TOF/MS檢測到的差異代謝物。用R軟件和Origin(V 9.1,OriginLab)軟件進行數(shù)據(jù)可視化。
2 結果與分析
2.1 UPLC-MS/MS廣泛靶向數(shù)據(jù)主成分分析
通過與自建數(shù)據(jù)庫比對,從正毛、副毛和光青3組共9個樣本中檢測到978種代謝物,其中黃酮類154種,占比15.75%;酚類129種,占比13.19%;生物堿108種,占比11.04%;萜類90種,占比9.20%。此外,還檢測到香豆素、木質素、脂質、植物激素、芳香族化合物、糖和糖醇、有機酸及其衍生物、氨基酸及其衍生物、甾體及其衍生物以及核苷酸及其衍生物等,檢測到的各類代謝物數(shù)量如表1。為描繪正毛、副毛和光青3個品系間代謝物的整體差異,對以上檢測到的代謝物進行主成分分析(PCA)。得分圖(圖2)顯示主成分1和主成分2的貢獻率分別為44.4%和8.5%,且正毛、副毛和光青3組樣本點完全分離,說明3個品系成分差異顯著,并且檢測到的代謝物能夠代表三者之間的差異。
2.2 UPLC-MS/MS廣泛靶向代謝組差異代謝物篩選
采用OPLS-DA模型將正毛、副毛和光青3組樣本進行兩兩對比。以單因素方差分析(student’s t-test)p值小于0.05、差異倍數(shù)(Fold change,F(xiàn)C)大于2或者小于0.5,以及OPLS-DA模型中變量投影重要性分析值(VIP)大于1這3個條件篩選差異代謝物。從ZM vs FM中篩選出34種代謝物,其中25種上調,9種下調;從ZM vs GQ中篩選出48種代謝物,其中37種上調,11種下調;從FM vs GQ中篩選出58種代謝物,其中34種代謝物上調,24種代謝物下調。以差異倍數(shù)(FC)和p值分別為橫縱坐標作火山圖對數(shù)據(jù)進行可視化(圖3)。共有蕓香柚皮苷、野漆樹苷、橙皮內酯、蘆丁、木犀草素-7-O-蕓香糖苷、鄰苯三酚、驢食草酚、9-甲氧基-α-拉帕醌、無梗五加苷B、葒草苷、8-甲基壬烯酸酯、甜茶苷、5-尿嘧啶核苷酸、7-甲基鳥嘌呤和Nemorensine 15種代謝物在兩組比較中同時具有差異。將各組對比中上調及下調前15位的代謝物以火柴桿圖的形式展示,如圖4。將以上火柴桿圖中所示代謝物匯總,共有63種代謝物,以熱圖的形式展示其在3個品系間的相對豐度,并將代謝物和樣品都進行基于歐式距離(Euclidean distance)的聚類分析,結果如圖5。地奧司明、山柰酚-3-O-蕓香糖苷、蘆丁、牡荊素-2''-O-葡萄糖苷、木犀草素-7-O-蕓香糖苷、維采寧-2、蕓香柚皮苷、香草酸、佛手苷內酯和橙皮內酯這10種化州柚中活性物質在正毛、副毛中的含量高于光青,說明副毛和正毛化州柚花可能具有更高的保健和藥用價值。
2.3 GC-TOF/MS非靶向數(shù)據(jù)主成分分析
從正毛、副毛和光青3個品系樣本的GC-TOF/MS原始數(shù)據(jù)中共提取到594個質譜峰,與標準數(shù)據(jù)庫比對后共檢測到236個代謝物,其中有機酸及其衍生物66種,占比27.97%;有機氧化合物60種,占比25.42%;脂質23種,占比9.75%;苯及其衍生物17種,占比7.20%,其他類代謝物的占比如圖6。以上述代謝物歸一化后的相對豐度為變量進行PCA分析,得分圖如圖7。主成分1和主成分2的貢獻度分別為39.8%和17.1%,并且ZM、FM和GQ3組樣本點的分離度良好,說明以上代謝物可以代表正毛、副毛和光青3個品系之間的差異。
2.4 GC-TOF/MS非靶向代謝組差異代謝物篩選
以檢測到的236種代謝物的相對豐度為變量,采用OPLS-DA模型對正毛、副毛和光青3個品系進行兩兩對比,篩選差異代謝物。將OPLS-DA分析的結果以S-plots的形式進行展示,如圖8,橫坐標p[1]為負載向量在主成分1上的協(xié)方差,縱坐標p(corr)[1]為負載向量與主成分1的相關性,以|p(corr)[1]|>0.5,|p[1]|>0.15為條件篩選差異代謝物。從FM vs ZM中篩選出6種差異代謝物,柚皮素-7-O-葡萄糖苷和檸檬酸上調,咖啡酸、反式-4-羥基肉桂酸、阿魏酸和丙酮酸下調。從GQ vs ZM中篩選出8種差異代謝物,柚皮素-7-O-葡萄糖苷、莽草酸、檸檬酸和景天酮庚糖上調,D-纖維二糖、咖啡酸、α-槐糖和D-(-)-果糖下調。從GQ vs FM中篩選出7種差異代謝物,柚皮素-7-O-葡萄糖苷、阿魏酸、丙酮酸、景天酮庚糖和反式-4-羥基肉桂酸上調,D-纖維二糖和D-(-)-果糖下調。上述差異代謝物匯總后共有11種,其中D-(-)-果糖、α-槐糖、丙酮酸、咖啡酸、阿魏酸、柚皮素-7-O-葡萄糖苷在3組對比中都有差異,D-纖維二糖、景天酮庚糖、檸檬酸、莽草酸、反式-4-羥基肉桂酸在兩組對比中有差異。上述差異代謝物在正毛、副毛和光青3組中的相對含量如圖9所示。
3 討 論
評價食用和藥用植物的品質往往需要對其中的氨基酸、糖、有機酸、維生素等初級代謝物和酚酸、黃酮、生物堿、萜類等次級代謝產物的組成和含量進行綜合評估,采用傳統(tǒng)的檢測和定量方法存在成本高、耗時長、過程復雜等問題,越來越多的研究開始采用代謝組學完成食品和藥用植物中代謝物的高通量整體分析[14]。通過液質聯(lián)用(LC-MS)、氣質聯(lián)用(GC-MS)和核磁共振(nuclear magnetic resonance,NMR)平臺,采集植物樣品中成百上千種代謝物的信息,再通過多元統(tǒng)計分析從中篩選出不同品種、品系,不同生長時期以及不同處理方式的植物樣本中差異代謝物或者標志物,是代謝組學在植物學領域的經(jīng)典研究方法,廣泛應用于遺傳育種、資源鑒定和保護以及天然產物開發(fā)與利用等研究領域[15]。
筆者在本研究中利用超高效液相色譜-三重四極桿質譜(UPLC-MS/MS)和氣相色譜-四級桿飛行時間質譜(GC-TOF/MS)分別進行廣泛靶向代謝組學和非靶向代謝組學分析,從化州柚正毛、副毛和光青3個品系的花中分別篩選出63種和11種差異代謝物。野漆樹苷、維采寧-2、蕓香柚皮苷、地奧司明和木犀草素-7-O-蕓香糖苷、山柰酚-3-O-蕓香糖苷、蘆丁等是已經(jīng)報道的化州柚中主要的類黃酮成分[16]。筆者在本研究中發(fā)現(xiàn)地奧司明、山柰酚-3-O-蕓香糖苷、蘆丁、牡荊素-2''-O-葡萄糖苷、木犀草素-7-O-蕓香糖苷、維采寧-2和蕓香柚皮苷這6種類黃酮在正毛和副毛化州柚花中的含量高于光青。這與在化州柚果實中的研究結果相一致[17]。采用正毛和副毛化州柚制成的化橘紅被認為具有更高的藥用價值,也可能與其更高的類黃酮含量有關[18]。地奧司明、維采寧-2、野漆樹苷、蘆丁等黃酮類化合物具有抗炎、抗感染、抗腫瘤、預防心腦血管疾病等功效[19-21]。橙皮內酯、佛手柑內酯、小蕓木素、白蠟樹苷等屬于香豆素。橙皮內酯和佛手柑內酯是化州柚中典型的香豆素成分[22]。而白蠟樹苷也有研究從酸橙和甜橙花中鑒定到[23]。本研究中橙皮內酯和佛手柑內酯在正毛和副毛花中的含量也顯著高于光青。大量研究顯示柑橘香豆素具有抗炎、抗癌、抗病毒以及保護心腦血管、神經(jīng)和消化系統(tǒng)等多種生物學活性[24-26]。
篩選出的差異代謝物中還包含香草酸、咖啡酸、阿魏酸等反式-4-羥基肉桂酸等酚酸化合物,以及檸檬酸、莽草酸、果糖、7-甲基鳥嘌呤、5-尿嘧啶核苷酸、二十碳五烯酸等初級代謝產物。這些差異代謝物涉及三羧酸循環(huán)、多酚生物合成、嘌呤代謝、果糖和甘露糖代謝等代謝途徑。以多酚生物合成為例,酚酸類化合物在植物體內主要由糖酵解及磷酸戊糖途徑生成的中間體經(jīng)莽草酸途徑和苯丙烷類代謝途徑合成[27],而苯丙烷類代謝途徑最終產物對香豆酰輔酶A是類黃酮類化合物合成的重要前體[28]。
柑橘屬植物花量過大會導致坐果率低,對花朵進行稀疏處理是必不可少的管理措施。柑橘花香味馥郁清爽,將疏下的花制作成精油和花茶可以提高柑橘的經(jīng)濟價值。沙田柚[29]、溫州蜜柑[30]、甜橙和酸橙花[23]都已被開發(fā)為精油或花茶產品?;蓁只ㄔ诨莓?shù)匾脖挥脕碇谱骰ú?,但目前對化州柚花的成分分析、加工工藝和功能活性的研究較少,化州柚花茶并沒有得到廣泛應用和推廣。本研究對3個不同品系化州柚花的成分進行了鑒定,并篩選出不同品系間的差異代謝物,為未來的品種改良、藥物開發(fā)和保健產品設計提供研究基礎。
4 結 論
通過代謝組學比較化州柚正毛、副毛和光青3個品系花中的代謝物差異。利用UPLC-MS/MS進行廣泛靶向代謝組學分析,篩選出63種差異代謝物。其中,地奧司明、山柰酚-3-O-蕓香糖苷、蘆丁、牡荊素-2''-O-葡萄糖苷、木犀草素-7-O-蕓香糖苷、維采寧-2、蕓香柚皮苷、香草酸、佛手苷內酯和橙皮內酯這10種化州柚中活性物質含量在正毛和副毛花中高于光青中。此外,基于GC-TOF/MS進行非靶向代謝組學分析,共篩選出11種差異代謝物,分別為D-(-)果糖、D-纖維二糖、景天酮庚糖、α-槐糖、丙酮酸、檸檬酸、莽草酸、反式-4-羥基肉桂酸、咖啡酸、阿魏酸和柚皮素-7-O-葡萄糖苷。筆者在本研究中探討不同品系化州柚花的成分差異,發(fā)現(xiàn)正毛和副毛化州柚花的有效成分含量顯著高于光青花,說明正毛和副毛化州柚花可能具有更高的藥用和保健價值,為化州柚花精油或花茶產品的開發(fā)提供了理論依據(jù),有望促進化橘紅的綜合利用與產業(yè)發(fā)展。
參考文獻 References:
[1] 李潤唐,李映志,汪永保,余慶,李映暉. 中藥“化橘紅” 原料植物化州柚種質資源初步研究[J]. 中國南方果樹,2012,41(4):53-55.
LI Runtang,LI Yingzhi,WANG Yongbao,YU Qing,LI Yinghui.Preliminary study on germplasm resources of Huazhou Pomelo,the raw material plant of “Hua Ju Hong”[J]. South China Fruits,2012,41(4):53-55.
[2] 田靜,龐一波,陳嘉景,袁子彧,曾繼吾,徐娟. 化州柚種質資源的SSR分析及其果實不同發(fā)育期柚皮苷含量變化[J]. 華中農業(yè)大學學報,2019,38(5):64-70.
TIAN Jing,PANG Yibo,CHEN Jiajing,YUAN Ziyu,ZENG Jiwu,XU Juan. SSR analyses of germplasm resources and changes of naringin content at different developmental stages of Citrus grandis ‘Tomentosa’ fruit[J]. Journal of Huazhong Agricultural University,2019,38(5):64-70.
[3] 莊潔旋,陳浪,張丹華,龔麗珍,詹若挺,陳立凱. 不同化州柚品系新橘皮糖苷合成關鍵酶基因的差異表達分析[J]. 中藥材,2023,46(8):1850-1857.
ZHUANG Jiexuan,CHEN Lang,ZHANG Danhua,GONG Lizhen,ZHAN Ruoting,CHEN Likai. Differential expression analysis of neohesperidin synthesis key enzyme genes of Citrus grandis Tomentosa’ from different strains[J]. Journal of Chinese Medicinal Materials,2023,46(8):1850-1857.
[4] 李武國,蘇喬,魏潔書,朱燁妍,劉翠婷,李雯雯,趙廣銀,黃浩機,詹若挺. 化州柚花揮發(fā)油的GC-MS分析及其對肺癌細胞A549增殖、遷移的影響研究[J]. 中國藥房,2018,29(22):3093-3097.
LI Wuguo,SU Qiao,WEI Jieshu,ZHU Yeyan,LIU Cuiting,LI Wenwen,ZHAO Guangyin,HUANG Haoji,ZHAN Ruoting. GC-MS analysis of volatile oil from the flowers of Citrus grandis and study on effects of it on the proliferation and migration of lung cancer A549 cells[J]. China Pharmacy,2018,29(22):3093-3097.
[5] CHEN Z,CHEN P,WU H,SHI R,SU W W,WANG Y G,LI P B. Evaluation of naringenin as a promising treatment option for COPD based on literature review and network pharmacology[J]. Biomolecules,2020,10(12):1644.
[6] ZHOU C Y,LAI Y L,HUANG P,XIE L P,LIN H Y,ZHOU Z T,MO C,DENG G H,YAN W X,GAO Z W,HUANG S H,CHEN Y Y,SUN X G,LV Z P,GAO L. Naringin attenuates alcoholic liver injury by reducing lipid accumulation and oxidative stress[J]. Life Sciences,2019,216:305-312.
[7] ZENG X,SU W W,LIU B M,CHAI L,SHI R,YAO H L. A review on the pharmacokinetic properties of naringin and its therapeutic efficacies in respiratory diseases[J]. Mini Reviews in Medicinal Chemistry,2020,20(4):286-293.
[8] DUAN L,GUO L,DOU L L,YU K Y,LIU E H,LI P. Comparison of chemical profiling and antioxidant activities of fruits,leaves,branches,and flowers of Citrus grandis ‘Tomentosa’[J]. Journal of Agricultural and Food Chemistry,2014,62(46):11122-11129.
[9] 韓寒冰,張啟,魏國程,劉杰鳳,馬超. 南藥化橘紅花果葉中揮發(fā)油成分比較分析[J]. 中醫(yī)藥導報,2018,24(7):33-36.
HAN Hanbing,ZHANG Qi,WEI Guocheng,LIU Jiefeng,MA Chao. Composition analysis of volatile components extracted from flowers,fruitlets and leaves of exocarpium Citrus grandis[J]. Guiding Journal of Traditional Chinese Medicine and Pharmacy,2018,24(7):33-36.
[10] FAN R Y,ZHU C Y,QIU D Y,MAO G L,MUELLER-ROEBER B,ZENG J W. Integrated transcriptomic and metabolomic analyses reveal key genes controlling flavonoid biosynthesis in Citrus grandis ‘Tomentosa’ fruits[J]. Plant Physiology and Biochemistry,2023,196:210-221.
[11] 李宇邦,肖鳳霞,宋小欣,陳周華,林勵,李海波,羅立瑩. 一測多評法比較毛橘紅與光橘紅5種黃酮類成分含量[J]. 中草藥,2018,49(2):444-449.
LI Yubang,XIAO Fengxia,SONG Xiaoxin,CHEN Zhouhua,LIN Li,LI Haibo,LUO Liying. Comparison of content of five flavones in Citrus grandis “Tomentosa” and Citrus grandis with quantitative analysis of muli-components by single marker[J]. Chinese Traditional and Herbal Drugs,2018,49(2):444-449.
[12] 張秀明,陳志霞,林勵. 毛橘紅與光橘紅的化痰及抗炎作用比較研究[J]. 中藥材,2004,27(2):122-123.
ZHANG Xiuming,CHEN Zhixia,LIN Li. Comparison on dissolving sputum and anti-inflammation of “Mao ju hong” and “Guang ju Hong”[J]. Journal of Chinese Medicinal Materials,2004,27(2):122-123.
[13] 陳巖,胡燕琴. 橘紅與化橘紅臨床藥用不同[J]. 北京中醫(yī),2001,20(2):43.
CHEN Yan,HU Yanqin. Clinical medicinal differences between Citrus grandis ‘Tomentosa’ and Citrus grandis[J]. Beijing Journal of Traditional Chinese Medicine,2001,20(2):43.
[14] 曹小漢,毛惠敏,任莉萍. 代謝組學技術在植物次生代謝產物研究中的應用[J]. 農業(yè)與技術,2022,42(11):1-3.
CAO Xiaohan,MAO Huimin,REN Liping. Application of metabolomics in the study of plant secondary metabolites[J]. Agriculture and Technology,2022,42(11):1-3.
[15] 淡墨,高先富,謝國祥,劉忠,趙愛華,賈偉. 代謝組學在植物代謝研究中的應用[J]. 中國中藥雜志,2007,32(22):2337-2341.
DAN Mo,GAO Xianfu,XIE Guoxiang,LIU Zhong,ZHAO Aihua,JIA Wei. Application of metabolomics in research of plant metabolites[J]. China Journal of Chinese Materia Medica,2007,32(22):2337-2341.
[16] XIAN L,SAHU S K,HUANG L Y,F(xiàn)AN Y N,LIN J H,SU J M,BAI M,CHEN Y W,WANG S J,YE P,WANG F,LUO Q,BAI H Y,LIN X J,YUAN C H,GENG X D,LIU H,WU H. The draft genome and multi-omics analyses reveal new insights into geo-herbalism properties of Citrus grandis ‘Tomentosa’[J]. Plant Science,2022,325:111489.
[17] FAN R Y,ZHU C Y,QIU D Y,ZENG J W. Comparison of the bioactive chemical components and antioxidant activities in three tissues of six varieties of Citrus grandis ‘Tomentosa’ fruits[J]. International Journal of Food Properties,2019,22(1):1848-1862.
[18] 廖弈秋,李泮霖,廖文波,蘇薇薇. 南藥化橘紅基原考證[J]. 中藥材,2015,38(2):401-404.
LIAO Yiqiu,LI Panlin,LIAO Wenbo,SU Weiwei. Investigation on the origin of Citrus grandis ‘Tomentosa’[J]. Journal of Chinese Medicinal Materials,2015,38(2):401-404.
[19] ANMOL R J,MARIUM S,HIEW F T,HAN W C,KWAN L K,WONG A K Y,KHAN F,SARKER M M R,CHAN S Y,KIFLI N,MING L C. Phytochemical and therapeutic potential of Citrus grandis (L.) Osbeck:A review[J]. Journal of Evidence-Based Integrative Medicine,2021,26:2515690X211043741.
[20] ZHANG Y F,SUN J,DONG Y,SHEN X R,ZHANG Z Y. Vicenin-2 inhibits the Helicobacterium pylori infection associated gastric carcinogenic events through modulation of PI3K/AKT and Nrf2 signaling in GES-1 cells[J]. Journal of Biochemical and Molecular Toxicology,2021,35(3):e22680.
[21] ADEM ?,EYUPOGLU V,IBRAHIM I M,SARFRAZ I,RASUL A,ALI M,ELFIKY A A. Multidimensional in silico strategy for identification of natural polyphenols-based SARS-CoV-2 main protease (Mpro) inhibitors to unveil a hope against COVID-19[J]. Computers in Biology and Medicine,2022,145:105452.
[22] 牛艷,王磊,黃曉君,張曉琦,殷志琦,葉文才. 化橘紅香豆素類的化學成分[J]. 暨南大學學報(自然科學與醫(yī)學版),2012,33(5):501-505.
NIU Yan,WANG Lei,HUANG Xiaojun,ZHANG Xiaoqi,YIN Zhiqi,YE Wencai. Chemical constituents of Citrus grandis ‘Tomentosa’[J]. Journal of Jinan University (Natural Science amp; Medicine Edition),2012,33(5):501-505.
[23] 張忠立,李淑琪,左月明. 酸橙花和甜橙花的UPLC-Q-TOF-MS/MS定性分析及HPLC含量測定[J]. 中南藥學,2022,20(11):2480-2489.
ZHANG Zhongli,LI Shuqi,ZUO Yueming. Qualitative and quantitative analysis of flower of Citrus aurantium L. and Citrus sinensis (L.) Osbeck by UPLC-Q-TOF-MS/MS and content determination by HPLC[J]. Central South Pharmacy,2022,20(11):2480-2489.
[24] KAUR M,KOHLI S,SANDHU S,BANSAL Y,BANSAL G. Coumarin:A promising scaffold for anticancer agents[J]. Anti-Cancer Agents in Medicinal Chemistry,2015,15(8):1032-1048.
[25] MEDINA F G,MARRERO J G,MACíAS-ALONSO M,GONZáLEZ M C,CóRDOVA-GUERRERO I,TEISSIER GARCíA A G,OSEGUEDA-ROBLES S. Coumarin heterocyclic derivatives:chemical synthesis and biological activity[J]. Natural Product Reports,2015,32(10):1472-1507.
[26] PATIL S B. Medicinal significance of novel coumarin analogs:Recent studies[J]. Results in Chemistry,2022,4:100313.
[27] KO?TON A,D?UGOSZ-GROCHOWSKA O,WOJCIECHOWSKA R,CZAJA M. Biosynthesis regulation of folates and phenols in plants[J]. Scientia Horticulturae,2022,291:110561.
[28] ZHENG W K,ZHANG W,LIU D H,YIN M Q,WANG X,WANG S C,SHEN S Q,LIU S J,HUANG Y,LI X X,ZHAO Q,YAN L,XU Y T,YU S Q,HU B,YUAN T,MEI Z N,GUO L P,LUO J,DENG X X,XU Q,HUANG L Q,MA Z C. Evolution-guided multiomics provide insights into the strengthening of bioactive flavone biosynthesis in medicinal pummelo[J]. Plant Biotechnology Journal,2023,21(8):1577-1589.
[29] 廖遠東,夏紅玲,劉容飛,李志威,王潔,黃海英,周夢珍,曾浩. 不同茶坯窨制柚花茶中化學成分變化及感官品質差異[J]. 廣東茶業(yè),2023(6):9-12.
LIAO Yuandong,XIA Hongling,LIU Rongfei,LI Zhiwei,WANG Jie,HUANG Haiying,ZHOU Mengzhen,ZENG Hao. Chemical composition changes and sensory quality differences in jasmine-scented grapefruit flower tea made from different tea bases[J]. Guangdong Tea Industry,2023(6):9-12.
[30] 楊慧,李玉壬,吳神群,陳春鳳,楊曉萍. 不同殺青方式對柑橘花茶品質的影響[J]. 食品科學,2023,44(3):105-111.
YANG Hui,LI Yuren,WU Shenqun,CHEN Chunfeng,YANG Xiaoping. Effect of different fixation methods on the quality of Citrus flower tea[J]. Food Science,2023,44(3):105-111.