摘要:目的 為了解不同來源的人類條件病原體的特征和耐藥機(jī)制,預(yù)防環(huán)境病原體和醫(yī)院病原體交叉感染,對桑樹中分離的克雷伯菌進(jìn)行耐藥性、毒力基因、分子分型特點(diǎn)的探究。方法 從廣東和廣西兩地采集桑樹和桑樹根際土壤樣本,其中共分離得到12株克雷伯菌,對其采用紙片擴(kuò)散法(K-B法)檢測菌株耐藥性表征;采用PCR技術(shù)對6類9個(gè)抗生素相關(guān)耐藥基因和毒力基因進(jìn)行檢測;采用多位點(diǎn)序列分型(multilocus sequence typing,MLST)技術(shù)進(jìn)行遺傳分析。結(jié)果 12株桑源克雷伯菌檢測到blaSHV、tet(D)、tet(A)和aadA1 4種耐藥基因,其中攜帶氨基糖苷類相關(guān)基因aadA1的有5株(41.67%);12株桑源克雷伯菌均對氨基糖苷類抗生素紅霉素和鏈霉素表現(xiàn)出耐藥,對6種以上抗生素耐藥的菌株有6株(50%),對7種抗生素耐藥的菌株有2株(16.67%);8株(66.67%)攜帶脂多糖相關(guān)的wabG毒力基因;MLST分析顯示12株桑源克雷伯菌劃分為3大類,包括產(chǎn)酸克雷伯菌復(fù)合體(Klebsiella oxytoca species complex,KoSC)、肺炎克雷伯菌復(fù)合體(K. pneumoniae species complex,KpSC)以及產(chǎn)氣克雷伯菌(K. aerogenes);可分成7個(gè)序列型(sequence typing, ST),ST260為優(yōu)勢序列型,有5株(41.67%)。結(jié)論 12株桑源克雷伯菌對氨基糖苷類抗生素耐藥情況嚴(yán)峻,氨基糖苷類aadA1耐藥基因檢出率最高;ST260是主要的序列型,菌株之間存在遺傳多樣性,為環(huán)境中桑樹來源的克雷伯菌病原體致病機(jī)制提供理論依據(jù)。
關(guān)鍵詞:克雷伯菌屬;條件致病菌;耐藥性;毒力基因;ST分型
中圖分類號:R378.99+6 文獻(xiàn)標(biāo)志碼:A
Analysis of drug resistance, virulence genes and molecular typing
of 12 strains of Klebsiella spp. of mulberry
Zhang Xueyin1,2, Luo Longhui1,3, and Liu Jiping1
(1 College of Animal Science, South China Agricultural University; Guangdong Provincial Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, Guangzhou 510642; 2 College of Food Science, South China Agricultural University, Guangzhou 510642; 3 Population Microbiology Center, South China Agricultural University, Guangzhou 510642)
Abstract Objective To understand the characteristics and resistance mechanisms of human conditioned pathogens from different sources, and to prevent cross-infection between environmental pathogens and nosocomial pathogens, the characteristics of drug resistance, virulence genes and molecular typing of Klebsiella isolated from mulberry trees were explored. Methods A total of 12 strains of Klebsiella were isolated from mulberry and mulberry rhizosphere soil samples from Guangdong and Guangxi, and the strain resistance was characterized by the K-B method. PCR was used for the detection of 6 classes of nine antibiotic-associated resistance genes and virulence genes, and genetic analysis was performed by multilocus sequence typing (MLST). Results Four resistance genes, blaSHV, tet(D), tet(A) and aadA1, were detected in 12 strains of Klebsiella mulberryensis, of which 5 strains (41.67%) carried the aminoglycoside-related gene aadA1. The 12 strains of Klebsiella from mulberry were resistant to aminoglycoside antibiotics, erythromycin and streptomycin, and 6 strains (50%) were resistant to 6 or more antibiotics and 6 strains (50%) were resistant to 7 or more antibiotics, and 2 strains (16.67%) resistant to 7 antibiotics; 8 strains (66.67%) carried lipopolysaccharide-associated wabG virulence genes; MLST analysis showed that the 12 strains of mulberry-derived Klebsiella were classified into 3 major groups, including acid-producing Klebsiella oxytoca species complex (KoSC), K. pneumoniae species complex (KpSC), and K. aerogenes; they could be classified into seven sequence typing (ST), and ST260 was the dominant sequence typing, with five strains (41.67%). Conclusion The 12 strains of Klebsiella spp. of mulberry were severely resistant to aminoglycoside antibiotics, and the aminoglycoside aadA1 resistance gene was detected at the highest rate; ST260 was the predominant sequence type, and there was genetic diversity among the strains, which provided theoretical basis for the mechanism of pathogenicity of Klebsiella spp. pathogens originating from mulberry trees in the environment.
Key words Klebsiella spp.; Opportunistic Pathogens; Drug resistance; Virulence genes; ST typing
克雷伯菌屬細(xì)菌普遍存在于自然界并定植于人體呼吸道及腸道黏膜中,主要感染長期住院患者或者免疫力功能低下的人群,可引起支氣管炎、肺炎、尿路感染、敗血癥或腦膜炎等疾病[1-2]。自1882年Carl Friedlander首次報(bào)道肺炎克雷伯菌以來,至今依然是醫(yī)院感染最為嚴(yán)重的條件致病菌之一[3-4]。此外,克雷伯菌是天然的抗生素抗性基因庫,可將自身的耐藥基因傳播到其他革蘭陰性細(xì)菌上,增大了細(xì)菌耐藥傳播的風(fēng)險(xiǎn)[5-6]。歐洲疾病預(yù)防和控制中心報(bào)告的肺炎克雷伯菌分離株通常對氟喹諾酮類、第三代頭孢菌素和氨基糖苷類藥物耐藥[1]。不僅如此,克雷伯菌還具有跨物種傳播的風(fēng)險(xiǎn),越來越多的克雷伯菌屬細(xì)菌被確定為人類病原菌,且具有相同的致病力[4,7-8]。本課題組從桑樹中分離鑒定了擬肺炎克雷伯菌YDKL-002與密歇根克雷伯菌AKKL-001,并在2022年報(bào)道了AKKL-001全基因組信息[9]?;谄骄塑账嵯嗨贫龋╝verage nucleotide identity,ANI)分析發(fā)現(xiàn),菌株AKKL-001與人源K. quasipneumoniae CAV13741的ANI值達(dá)99.09%,菌株YDKL-002與人源K. michiganensis KP18-31的ANI值達(dá)97.19%[10],從桑樹分離的克雷伯菌與人源致病菌克雷伯菌具有較高的核苷酸相似度,可能存在對人致病力威脅。
環(huán)境中桑樹來源的病原菌可通過環(huán)境媒介或直接接觸傳播給人類,造成環(huán)境病原菌和醫(yī)院病原菌交叉感染,引發(fā)基因水平轉(zhuǎn)移等,這可能導(dǎo)致嚴(yán)重的醫(yī)療健康問題,但是目前國內(nèi)外尚未報(bào)道桑樹分離的克雷伯菌相關(guān)耐藥和毒力分析研究,因此本研究對桑源克雷伯菌進(jìn)行耐藥性和毒力基因檢測以及遺傳分析,為克雷伯菌病原菌的預(yù)防與治療提供依據(jù)。
1 材料與方法
1.1 菌株樣本
從廣西和廣東兩省各地桑園采集桑樹和桑樹根際土壤的樣本,共分離到40株分離株,其中有12株屬于克雷伯菌屬細(xì)菌(表1)。密歇根克雷伯菌AKKL-001(GDMCC 1.1603)和擬肺炎克雷伯菌YDKL-002(GDMCC 61288),兩株菌均保藏于廣東省微生物菌種保藏中心。其余菌株均保藏于廣州亞太地區(qū)蠶桑培訓(xùn)中心。
1.2 主要試劑
LB(Luria-Bertani)肉湯培養(yǎng)基和MH(Mueller-Hinton)瓊脂培養(yǎng)基購于廣東環(huán)凱微生物科技有限公司;Ezup柱式細(xì)菌基因組DNA抽提試劑盒購于上海生工生物工程股份有限公司;PCR反應(yīng)的相關(guān)試劑購于北京擎科生物工程科技有限公司;藥敏紙片和紅霉素(50 mg/mL)購于廣州凱閣生物科技有限公司;DNA凝膠回收試劑盒購于北京金沙生物科技有限公司。
1.3 藥敏試驗(yàn)
根據(jù)美國臨床和實(shí)驗(yàn)室標(biāo)準(zhǔn)委員會(huì)(CLSI) 2016年檢驗(yàn)標(biāo)準(zhǔn)[11],分別對四環(huán)素類,喹諾酮類,頭霉素類,氨基糖苷類和碳青霉烯類14種抗生素進(jìn)行抑菌圈測定,每種藥劑紙片設(shè)置4組平行實(shí)驗(yàn),用游標(biāo)卡尺測量抑菌圈直徑(mm),取其平均值。將判定結(jié)果分為敏感(S)、中介(I)和耐藥(R)。
紅霉素(50 mg/mL)用無菌水梯度稀釋100、1000和10000倍,配置呈濃度為500、50和5 μg/mL的藥液。用打孔器在MH平板上打成若干直徑為8 mm小孔,在孔中注射50 μL液體,以無菌水為陰性對照,紅霉素稀釋液為陽性對照,平板放置在
28 ℃細(xì)菌培養(yǎng)箱培養(yǎng)1 d。
1.4 引物設(shè)計(jì)與合成
根據(jù)文獻(xiàn)報(bào)道設(shè)計(jì)耐藥基因引物[12-15] ,毒力基因引物[16-20] ,及在國家生物技術(shù)信息中心(National Center for Biotechnology Information,NCBI)下載gapA、infB、pgi、rpoB、phoE、tonB和mgh序列設(shè)計(jì)管家基因引物。上海生工生物工程股份有限公司合成引物,存放至4 ℃冰箱,備用。
1.5 耐藥基因和毒力基因檢測
用合成的耐藥基因和毒力基因引物對12株克雷伯菌菌株進(jìn)行PCR檢測。設(shè)置PCR反應(yīng)體系25 μL,包括2 μL模板DNA、上下游引物各1 μL、2×Taq PCR Master Mix 8.5 μL,ddH2O加至25 μL。PCR產(chǎn)物進(jìn)行1.2%瓊脂糖凝膠電泳后凝膠成像。
1.6 管家基因檢測
采用PCR進(jìn)行擴(kuò)增gapA、infB、pgi、rpoB、phoE、tonB和mgh等7個(gè)管家基因,PCR反應(yīng)體系同“1.5”項(xiàng),PCR反應(yīng)程序?yàn)椋?4 ℃預(yù)變性2 min,94 ℃
變性30 s,50 ℃退火1 min,72 ℃延伸30 s,共35個(gè)循環(huán),72 ℃延伸5 min,4 ℃保存。PCR產(chǎn)物進(jìn)行1.2% 瓊脂糖凝膠電泳。將含有目的條帶的凝膠塊切下,應(yīng)用膠回收試劑盒進(jìn)行回收純化,將膠回收產(chǎn)物送至上海生工生物工程股份有限公司進(jìn)行雙向測序。
1.7 多位點(diǎn)序列分型
為對12株桑源克雷伯菌進(jìn)行多位點(diǎn)序列分型(multilocus sequence typing,MLST),將每一個(gè)菌株按照gapA、infB、pgi、rpoB、phoE、tonB和mgh的順序,將堿基序列串聯(lián)排列,各生成一個(gè)文本,使用克雷伯菌PubMLST(https://bigsdb.pasteur.fr/)數(shù)據(jù)庫指定等位基因、序列類型。應(yīng)用MEGA11軟件按照鄰接法(neighbor-joining algorithm,NJ)構(gòu)建系統(tǒng)進(jìn)化樹分析桑源克雷伯菌的種群結(jié)構(gòu)。
2 結(jié)果與分析
2.1 耐藥性分析
K-B藥敏試驗(yàn)結(jié)果表明(圖1和表2),12株桑源克雷伯菌對多種抗生素耐藥。桑源克雷伯菌對紅霉素和鏈霉素抗生素具有耐藥性,透明抑菌圈直徑均低于10 mm,其中紅霉素(每片15 μL)無透明抑菌圈。桑源克雷伯菌均對環(huán)丙沙星抗生素中敏,對多西環(huán)素抗生素敏感。桑源克雷伯菌對14種抗生素的耐藥率占比顯示,對阿奇霉素耐藥率為83.33%,對慶大霉素和亞胺培南耐藥率為75%,對頭孢西丁耐藥率為50%。對多種抗生素耐藥的菌株數(shù)量占比結(jié)果顯示,對6種以上抗生素耐藥的菌株有6株,其中對7種抗生素耐藥的菌株有2株。為進(jìn)一步探究紅霉素對桑源克雷伯菌的抑菌效果,進(jìn)行了紅霉素藥液抑菌試驗(yàn)。抑菌結(jié)果顯示,12株桑源克雷伯菌均在紅霉素藥液濃度為500 μg/mL時(shí)有透明抑菌圈,直徑平均值為15.88 mm,當(dāng)紅霉素藥液濃度低于500 μg/mL時(shí)無透明抑菌圈。
2.2 耐藥基因與毒力基因檢測結(jié)果
耐藥基因PCR擴(kuò)增(表3,圖3~4)結(jié)果顯示,12株桑源克雷伯菌攜帶blaSHV、tet(D)、tet(A)和aadA1 4種耐藥基因。2株(16.67%)攜帶碳青霉烯類blaSHV基因,攜帶四環(huán)素類tet(A)和tet(D)基因的各有1株(8.33%),有5株(41.67%)攜帶氨基糖苷類aadA1基因,檢出率最高。12株桑源克雷伯菌均未檢測出喹諾酮類qnrA和qnrB基因、磺胺類sul基因、大環(huán)內(nèi)酯類ermF基因以及碳青霉烯類blaKPC基因。
毒力基因PCR擴(kuò)增(表4)結(jié)果顯示,12株桑源克雷伯菌攜帶uge、kfu、wabG和fimH 4種毒力基因。8株克雷伯菌(66.67%)攜帶與脂多糖相關(guān)的wabG基因,攜帶與黏附素相關(guān)的kfu和fimH基因各3株(25%),2株(16.67%)攜帶與脂多糖相關(guān)的uge基因,12株克雷伯菌均未攜帶莢膜多糖相關(guān)的rmpA和magA基因。
2.3 MLST分型
12株桑源克雷伯菌均擴(kuò)增出7個(gè)管家基因, MLST分析顯示(表5),菌株鑒定出7個(gè)ST型,分別為ST260(41.67%,5/12),ST52(16.67%,2/12),ST47(8.33%,1/12)、ST198(8.33%,1/12)、ST212(8.33%,1/12)、ST70(8.33%,1/12)和ST2(8.33%,1/12)。7個(gè)管家基因中tonB基因變異最大。根據(jù)NJ構(gòu)建系統(tǒng)發(fā)育樹(圖4)顯示,12株桑源克雷伯菌分為3類,分別為產(chǎn)酸克雷伯菌復(fù)合體(K. oxytoca species complex, KoSC)、肺炎克雷伯菌復(fù)合體(K. pneumoniae species complex,KpSC)以及產(chǎn)氣克雷伯菌。
3 討論
本研究前期在廣東省和廣西壯族自治區(qū)兩地的不同桑園中采集桑樹和桑樹根際土壤樣本,共分離出40株分離株,其中有12株分離株屬于克雷伯菌,在桑樹根際土壤中未分離得到克雷伯菌,這一現(xiàn)象與Yuan等[21]預(yù)計(jì)基本一致。本研究對12株桑源克雷伯菌進(jìn)行耐藥表征實(shí)驗(yàn),實(shí)驗(yàn)結(jié)果顯示其耐藥形勢嚴(yán)峻,對臨床常用抗生素呈現(xiàn)耐藥,對6種以上抗生素耐藥的菌株有6株(50%),對7種抗生素耐藥的菌株有2株(16.67%)。12株桑源克雷伯菌對大環(huán)內(nèi)酯類抗生素的耐藥率最高,其中當(dāng)紅霉素藥液濃度為500 μg/mL時(shí)有明顯的透明抑菌圈,直徑平均值為15.88 mm,紅霉素藥液濃度低于500 μg/mL時(shí),則沒有透明抑菌圈,這些結(jié)果表明桑源克雷伯菌對大環(huán)內(nèi)酯類抗生素耐藥性顯著??死撞轻t(yī)院中嚴(yán)重的獲得性條件致病菌之一,因其多重耐藥和高毒力,成為治療困難的影響因素之一[22],不同的醫(yī)院來源的克雷伯菌通常對青霉素,喹諾酮類,氨基糖苷類和磺胺類等抗生素廣泛耐藥(XDR)[23-24],這些結(jié)果說明氨基糖苷類抗生素耐藥基因在環(huán)境中循環(huán)轉(zhuǎn)移,而本研究結(jié)果顯示,桑源克雷伯菌氨基糖苷類aadA1耐藥基因的檢出率最高,占41.67%。桑園環(huán)境復(fù)雜,預(yù)防與治療桑樹病蟲害需要使用不同的化學(xué)與生物農(nóng)藥,農(nóng)用鏈霉素,慶大霉素,卡那霉素和N-糖苷類抗生素中生菌素等是主要的常用農(nóng)藥[25],克雷伯菌具有獲得新的遺傳信息且不斷進(jìn)化的能力[26],氨基糖苷類抗生素耐藥機(jī)制普遍是氨基糖苷類AAC(6')-I乙酰轉(zhuǎn)移酶引起的[27],這些抗生素在桑園中普遍使用,最終可能由水,土壤等環(huán)境因素通過食物鏈或直接接觸傳播給人類,造成環(huán)境病原體與醫(yī)院病原體的交叉感染,病原菌耐藥情況加劇,引發(fā)嚴(yán)重的醫(yī)療健康問題。
分子分型是構(gòu)建細(xì)菌病原體物種內(nèi)不同的進(jìn)化譜系,是疫情調(diào)查和常規(guī)傳染病監(jiān)測的基本要素[28]。
根據(jù)克雷伯菌基因組學(xué)[29],本研究結(jié)果顯示12株桑源克雷伯菌劃分為3類,分別為KoSC、KpSC以及產(chǎn)氣克雷伯菌,其中KpSC是全球重要的抗微生物藥物耐藥性(anti-microbial resistance,AMR)的相關(guān)病原體[30]。有8株桑源克雷伯菌帶脂多糖相關(guān)的wabG毒力基因,脂多糖相關(guān)毒力基因與病原菌的高黏性有關(guān),可增強(qiáng)病原菌的毒力和感染的能力,是病原菌在環(huán)境中迅速擴(kuò)散和持續(xù)存在的原
因[31-32]??死撞鷮λ幬锬退幣c耐藥基因及毒力相關(guān)基因協(xié)同作用息息相關(guān),有報(bào)道稱與胞外多糖的產(chǎn)生、外排或與膜通透性相關(guān)的毒力基因發(fā)生突變會(huì)增加肺炎克雷伯菌在臨床上耐藥性[33],例如當(dāng)外膜孔蛋白OmpK36產(chǎn)生特定突變時(shí),則有助于肺炎克雷伯菌對碳青霉烯類抗生素產(chǎn)生耐藥[34]。MLST分型揭示了桑源克雷伯菌序列遺傳的高度多樣性。序列分型結(jié)果顯示12株桑源克雷伯菌主要的ST型是ST260,其次是ST52。ST260菌株對紅霉素、阿奇霉素、鏈霉素和亞胺培南的耐藥率較高,ST52菌株對頭孢西丁、紅霉素、鏈霉素和亞胺培南的耐藥率較高,本研究中ST2菌株存在四環(huán)素和氨基糖苷類以及脂多糖和黏附素等抗性基因,對氨基糖苷類抗生素具有耐藥性,這與Pérez-Vazquez等[35]研究結(jié)果一致,這些結(jié)果說明菌株的ST型與耐藥性和致病性緊密相關(guān)[36] ,且不同的ST型對抗生素的敏感度不同,因此在治療時(shí)應(yīng)選擇合適抗生素藥物。
菌株間存在遺傳多樣性,和醫(yī)院來源的克雷伯菌耐藥性相似,對氨基糖苷類抗生素耐藥顯著,并攜帶blaSHV、tet(D)、tet(A)和aadA1耐藥基因以及脂多糖和黏附素相關(guān)毒力基因,因此合理使用合適的抗生素以及檢測公共衛(wèi)生安全隱患的病原體特征是必要的,以達(dá)到減少耐藥細(xì)菌的流行和更有效的防治。當(dāng)然桑園雖屬于人畜活動(dòng)較少的封閉區(qū)域,但并非絕對,本研究存在采樣的局限性,應(yīng)加強(qiáng)對相對獨(dú)立桑園的采樣,同時(shí)對桑園內(nèi)部,周邊環(huán)境,護(hù)林人員等可能存在的傳播因素調(diào)查研究,擴(kuò)大研究范圍,為克雷伯菌潛在的跨物種傳播侵染,耐藥及致病機(jī)制的探究作更深入的實(shí)驗(yàn)支持。
參 考 文 獻(xiàn)
Bengoechea J A, Sa Pessoa J. Klebsiella pneumoniae infection biology: Living to counteract host defences[J]. FEMS Microbiol Rev, 2019, 43(2): 123-144.
Podschun R, Ullmann U. Klebsiella spp. as nosocomial pathogens: Epidemiology, taxonomy, typing methods, and pathogenicity factors[J]. Clin Microbiol Rev, 1998, 11(4): 589-603.
Huang M, He P, He P, et al. Novel virulence factors deciphering Klebsiella pneumoniae KpC4 infect maize as a crossing-kingdom pathogen: An emerging environmental threat[J]. Int J Mol Sci, 2022, 23(24): 16005.
Huang M, Li L, Wu Y X, et al. Pathogenicity of Klebsiella pneumonia (KpC4) infecting maize and mice[J]. J Integr Agric, 2016, 15(7): 1510-1520.
Derakhshan S, Najar Peerayeh S, Bakhshi B. Association between presence of virulence genes and antibiotic resistance in clinical Klebsiella pneumoniae isolates[J]. Lab Med, 2016, 47(4): 306-311.
M Campos J C, Antunes L C, Ferreira R B. Global priority pathogens: Virulence, antimicrobial resistance and prospective treatment options[J]. Future Microbiol, 2020, 15: 649-677.
Rodríguez-Medina N, Barrios-Camacho H, Duran-Bedolla J, et al. Klebsiella variicola: An emerging pathogen in humans[J]. Emerg Microbes Infect, 2019, 8(1): 973-988.
Fuga B, Cerdeira L, Andrade F, et al. Genome sequences of clinical isolates of ndm-1-producing Klebsiella quasipneumoniae subsp. similipneumoniae and KPC-2-Producing Klebsiella quasipneumoniae subsp. quasipneumoniae from Brazil[J]. Microbiol Resour Announc, 2020, 9(10): e00089-20.
Luo L H, Huang Y X, Liu J P. Genome sequence resources of Klebsiella michiganensis AKKL-001, which causes bacterial blight of mulberry[J]. Mol Plant Microbe Interact, 2022, 35(4): 349-351.
羅龍輝. 桑源克雷伯氏菌屬的分離鑒定及分子生物學(xué)研究[D]. 廣州: 華南農(nóng)業(yè)大學(xué), 2021.
Wayne P A: Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing [S]. (26th ed). USA, 2016: CLSI supplement M100.
任雨龍, 李暢洋, 孫愉, 等. 牛源嗜麥芽寡養(yǎng)單胞菌的分離鑒定、毒力、耐藥基因及生物學(xué)特性分析[J]. 中國獸醫(yī)學(xué)報(bào), 2022, 42(8): 1632-1639.
Poirel L, Walsh T R, Cuvillier V, et al. Multiplex PCR for detection of acquired carbapenemase genes[J]. Diagn Microbiol Infect Dis, 2011, 70(1): 119-123.
Cattoir V, Poirel L, Rotimi V, et al. Multiplex PCR for detection of plasmid-mediated quinolone resistance qnr genes in ESBL-producing enterobacterial isolates[J]. J Antimicrob Chemother, 2007, 60(2): 394-397.
武瑞兵, 高玉敏, 王鵬翔, 等. 牛肉源大腸桿菌的耐藥性檢測及相關(guān)耐藥基因分布[J]. 中國畜牧獸醫(yī), "2015, 42(2): 452-458.
Fang C T, Chuang Y P, Shun C T, et al. A novel virulence gene in Klebsiella pneumoniae strains causing primary liver abscess and septic metastatic complications[J]. J Exp Med, 2004, 199(5): 697-705.
Yu W L, Ko W C, Cheng K C, et al. Association between rmpA and magA genes and clinical syndromes caused by Klebsiella pneumoniae in Taiwan, China[J]. Clin Infect Dis, 2006, 42(10): 1351-1358.
Izquierdo L, Coderch N, Piqué N, et al. The Klebsiella pneumoniae wabG gene: Role in biosynthesis of the core lipopolysaccharide and virulence[J]. J Bacteriol, 2003, 185(24): 7213-7221.
Regué M, Hita B, Piqué N,et al. A gene, uge, is essential for Klebsiella pneumoniae virulence[J]. Infect Immun, 2004, 72(1): 54-61.
和晉渝. 肺炎克雷伯菌的血清分型及毒力基因分布的研究[D]. 重慶: 重慶醫(yī)科大學(xué), 2012.
Yuan T, Qazi IH, Li J, et al. Analysis of changes in bacterial diversity in healthy and bacterial wilt mulberry samples using metagenomic sequencing and culture-dependent approaches[J]. Front Plant Sci, 2023; 14: 1206691.
Dey H, Vasudevan K, Dasegowda K R, et al. An integrated gene network analysis to decode the multi-drug resistance mechanism in Klebsiella pneumoniae[J]. Microb Pathog, 2022, 173(Pt A): 105878.
Mirzaie A, Ranjbar R. Antibiotic resistance, virulence-associated genes analysis and molecular typing of Klebsiella pneumoniae strains recovered from clinical samples[J]. AMB Express, 2021, 11(1): 122.
Gebremeskel L, Teklu T, Kasahun G G, et al. Antimicrobial resistance pattern of Klebsiella isolated from various clinical samples in Ethiopia: A systematic review and meta-analysis[J]. BMC Infect Dis, 2023, 23(1): 643.
蒙姣榮, 蒙月月, 朱麗玲, 等. 廣西桑樹細(xì)菌性枯萎病菌生物學(xué)特性及防治藥劑篩選[J]. 廣西植保, 2015, 28(3): 1-7.
Russo T A, Marr C M. Hypervirulent Klebsiella pneumoniae[J]. Clin Microbiol Rev, 2019, 32(3): e00001-19.
Chiem K, Fuentes B A, Lin D L, et al. Inhibition of aminoglycoside 6'-N-acetyltransferase type Ib-mediated amikacin resistance in Klebsiella pneumoniae by zinc and copper pyrithione[J]. Antimicrob Agents Chemother, 2015, 59(9): 5851-5853.
Espitia-Navarro H F, Chande A T, Nagar S D, et al. STing: Accurate and ultrafast genomic profiling with exact sequence matches[J]. Nucleic Acids Res, 2020, 48(14): 7681-7689.
Wyres K L, Lam M M C, Holt K E. Population genomics of Klebsiella pneumoniae[J]. Nat Rev Microbiol, "2020, 18(6): 344-359.
Lewis J M, Mphasa M, Banda R, et al. Genomic and antigenic diversity of colonizing Klebsiella pneumoniae isolates mirrors that of invasive isolates in Blantyre, Malawi[J]. Microb Genom, 2022, 8(3): 000778.
Garza-Ramos U, Moreno-Dominguez S, Hernández-Castro R, et al. Identification and characterization of imipenem-resistant Klebsiella pneumoniae and susceptible Klebsiella variicola Isolates obtained from the same patient[J]. Microb Drug Resist, 2016, 22(3): 179-184.
Araújo B F, Ferreira M L, Campos P A, et al. Hypervirulence and biofilm production in KPC-2-producing Klebsiella pneumoniae CG258 isolated in Brazil[J]. J Med Microbiol, 2018, 67(4): 523-528.
Jana B, Cain A K, Doerrler W T, et al. The secondary resistome of multidrug-resistant Klebsiella pneumoniae[J]. Sci Rep, 2017, 7: 42483.
Wong J L C, Romano M, Kerry L E, et al. OmpK36-mediated carbapenem resistance attenuates ST258 Klebsiella pneumoniae in vivo[J]. Nat Commun, 2019, 10(1): 3957.
Pérez-Vazquez M, Oteo-Iglesias J, Sola-Campoy P J, et al. Characterization of carbapenemase-producing Klebsiella oxytoca in Spain, 2016-2017[J]. Antimicrob Agents Chemother, 2019, 63(6): e02529-18.
Morgado S, Fonseca E, Vicente A C. Genomics of Klebsiella pneumoniae species complex reveals the circulation of high-risk multidrug-resistant pandemic clones in human, animal, and environmental sources[J]. Microorganisms, 2022, 10(11): 2281.