【摘要】動(dòng)脈粥樣硬化(AS)是由多種免疫細(xì)胞參與的慢性炎癥性病理過(guò)程,其中血管平滑肌細(xì)胞(VSMC)在其全過(guò)程中起著關(guān)鍵性影響。既往研究顯示VSMC具有很高的可塑性,并可在收縮型與分泌型之間進(jìn)行互相轉(zhuǎn)化。近年來(lái),隨著單細(xì)胞測(cè)序技術(shù)的優(yōu)化和發(fā)展,數(shù)項(xiàng)新的研究揭示了VSMC具有向其他不同類型細(xì)胞轉(zhuǎn)化的能力,且發(fā)揮特定的功能。現(xiàn)圍繞單細(xì)胞測(cè)序技術(shù)運(yùn)用下VSMC的可塑性、調(diào)控因素以及它們?cè)贏S進(jìn)程中的復(fù)雜作用進(jìn)行綜述,以期對(duì)全面認(rèn)識(shí)VSMC功能提供幫助,為臨床治療AS提供新的干預(yù)靶點(diǎn)和途徑。
【關(guān)鍵詞】動(dòng)脈粥樣硬化;血管平滑肌細(xì)胞;可塑性;單細(xì)胞測(cè)序
基金項(xiàng)目:國(guó)家自然科學(xué)基金(82200372);福建省自然科學(xué)基金(2021J05005)
通信作者:楊陽(yáng),E-mail:dr.yangy@xmu.edu.cn
【DOI】10.16806/j.cnki.issn.1004-3934.2024.09.012
Roles of Vascular Smooth Muscle Cell Plasticity in Development of Atherosclerosis as Revealed by Single-Cell Sequencing
ZHANG Haoliang1,LIN Zhengkai1,CHEN Zhijie1,CHEN Lijun1,YANG Yang1,2
(1.School of Medicine,Xiamen University,Xiamen 361100,F(xiàn)ujian,China;2.Department of Cardiology,Xiang’an Hospital of Xiamen University,Xiamen 361100,F(xiàn)ujian,China)
【Abstract】Atherosclerosis (AS) is a chronic inflammatory disorder involving multiple immune cells, with vascular smooth muscle cell (VSMC) being crucial at each phase.Prior research has demonstrated that VSMC has notable phenotypic plasticity and can switch between contractile and synthetic phenotypes.In recent years, with the optimization and development of single-cell sequencing technology, several new studies have uncovered that VSMC possesses the capability to transform into other cell types and perform specific functions.This review focuses on the plasticity, regulatory factors, and intricate functions of VSMC in AS process under single-cell sequencing technology, in order to offer a thorough insight into the roles of VSMC and identify new targets and pathways for treating AS clinically.
【Keywords】Atherosclerosis;Vascular smooth muscle cell;Plasticity;Single-cell sequencing
動(dòng)脈粥樣硬化(atherosclerosis,AS)是一種涉及內(nèi)皮細(xì)胞、淋巴細(xì)胞、平滑肌細(xì)胞、巨噬細(xì)胞等眾多細(xì)胞的關(guān)鍵病理過(guò)程,也是導(dǎo)致心血管疾病的主要病理基礎(chǔ)。隨著對(duì)AS發(fā)病機(jī)制的不斷深入了解,研究者們更進(jìn)一步認(rèn)識(shí)到血管平滑肌細(xì)胞(vascular smooth muscle cell,VSMC)在AS發(fā)生發(fā)展中的核心作用[1]。在傳統(tǒng)觀點(diǎn)中,相比于VSMC,高比例巨噬細(xì)胞促進(jìn)斑塊破裂,而VSMC則被視為具備斑塊穩(wěn)定作用的細(xì)胞類型。然而,隨著單細(xì)胞測(cè)序技術(shù)的快速發(fā)展和應(yīng)用,此前的認(rèn)知可能被證明過(guò)于簡(jiǎn)化。有研究[2]顯示,斑塊中VSMC所占比例實(shí)際上遠(yuǎn)大于先前基于靜態(tài)標(biāo)志物的研究所估計(jì)的。尤其值得注意的是,當(dāng)VSMC失去其固有標(biāo)志物同時(shí)獲得巨噬細(xì)胞等其他細(xì)胞類型的標(biāo)志物時(shí),僅依賴傳統(tǒng)的基于靜態(tài)標(biāo)志物的識(shí)別方法來(lái)研究斑塊組成變得不再可靠。這一發(fā)現(xiàn)指出,應(yīng)基于動(dòng)態(tài)和復(fù)雜的細(xì)胞表型變化理解VSMC在AS斑塊形成中的復(fù)雜和關(guān)鍵作用。因此,在AS相關(guān)研究領(lǐng)域,未來(lái)的研究應(yīng)當(dāng)關(guān)注利用先進(jìn)的單細(xì)胞測(cè)序技術(shù)來(lái)準(zhǔn)確識(shí)別斑塊內(nèi)的細(xì)胞組成,特別是那些表型發(fā)生改變的VSMC。這將為深入理解VSMC在斑塊形成和穩(wěn)定中的具體機(jī)制,以及為開(kāi)發(fā)新的治療策略提供關(guān)鍵的分子層面的見(jiàn)解。
在過(guò)去30多年中,大量實(shí)驗(yàn)研究揭示了VSMC具有高度的可塑性。而近年來(lái),隨著單細(xì)胞測(cè)序技術(shù)的快速發(fā)展,越來(lái)越多的研究證明了VSMC向其他類型細(xì)胞轉(zhuǎn)化的可能性,這重新定義了VSMC在AS發(fā)病過(guò)程中獨(dú)特的功能,也揭示了VSMC在AS斑塊形成過(guò)程中更為復(fù)雜的角色[3]?,F(xiàn)主要綜述單細(xì)胞測(cè)序技術(shù)運(yùn)用下VSMC的可塑性、調(diào)控因素以及它們?cè)贏S進(jìn)程中的復(fù)雜作用,這對(duì)于全面理解VSMC的功能和為臨床治療AS提供新的干預(yù)靶點(diǎn)與途徑具有重要意義。
1" 單細(xì)胞測(cè)序技術(shù)彌補(bǔ)VSMC可塑性研究的不足
作為血管壁的核心構(gòu)成成分,VSMC通過(guò)其收縮特性負(fù)責(zé)維持血管張力和調(diào)節(jié)血壓。在健康的動(dòng)脈中,VSMC通過(guò)表達(dá)一系列必需的收縮蛋白,如平滑肌肌動(dòng)蛋白α2和肌球蛋白重鏈11,來(lái)履行其功能。然而,在應(yīng)用單細(xì)胞測(cè)序技術(shù)之前,僅通過(guò)這些收縮蛋白的檢測(cè)來(lái)識(shí)別VSMC,導(dǎo)致那些缺失這些標(biāo)志物的細(xì)胞未能被準(zhǔn)確鑒定。
單細(xì)胞測(cè)序技術(shù)開(kāi)辟了一條新途徑,使得科研人員能在基因組、轉(zhuǎn)錄組和表觀基因組層面詳細(xì)探究單個(gè)細(xì)胞的可塑性和復(fù)雜性,從而深化了對(duì)組織、器官和生物體內(nèi)不同細(xì)胞類型及其功能組成的理解。自2009年該技術(shù)首次被報(bào)道以來(lái),基于單細(xì)胞測(cè)序技術(shù)的研究在多個(gè)領(lǐng)域內(nèi)提供了跨不同領(lǐng)域的大量信息,極大地豐富了對(duì)于人類、模式動(dòng)物和植物體內(nèi)細(xì)胞構(gòu)成及其相互作用的認(rèn)識(shí)。其在心血管領(lǐng)域的應(yīng)用進(jìn)一步揭示了在AS斑塊中,超過(guò)80%的VSMC失去了傳統(tǒng)收縮蛋白標(biāo)記[4];30%的VSMC開(kāi)始表達(dá)與巨噬細(xì)胞標(biāo)志物重疊的Lgals3/Mac2,且有少數(shù)VSMC表現(xiàn)出干細(xì)胞/肌纖維母細(xì)胞的特征[5]。這表明,在生物刺激的驅(qū)動(dòng)下,VSMC具有向其他細(xì)胞類型轉(zhuǎn)化的能力,繼而參與到AS的病理進(jìn)程中。因此,單細(xì)胞測(cè)序技術(shù)不僅深化了研究者對(duì)于斑塊內(nèi)VSMC起源的理解,還確認(rèn)了這些細(xì)胞轉(zhuǎn)化為不同表型的潛力,進(jìn)一步加深了對(duì)VSMC在AS中的認(rèn)識(shí),為研究VSMC的可塑性提供了前所未有的深度與精確度,為未來(lái)的研究和治療提供了新的視角(圖1)。
2" VSMC是泡沫細(xì)胞的主要來(lái)源
歷史上多數(shù)觀點(diǎn)認(rèn)為泡沫細(xì)胞來(lái)源于骨髓源性巨噬細(xì)胞,但在1968年,Wissler等[6]就提出VSMC至少占據(jù)了AS斑塊中泡沫細(xì)胞的一部分。隨著單細(xì)胞測(cè)序技術(shù)的應(yīng)用,研究發(fā)現(xiàn),VSMC能表達(dá)清道夫受體以及較低水平的膽固醇逆向運(yùn)輸過(guò)程中的關(guān)鍵蛋白ATP結(jié)合盒轉(zhuǎn)運(yùn)蛋白A1。通過(guò)量化人類冠狀動(dòng)脈病變中的泡沫細(xì)胞,首次發(fā)現(xiàn)有一半以上表達(dá)VSMC標(biāo)志物α-平滑肌肌動(dòng)蛋白(α-smooth muscle actin, α-SMA)[7]。不僅如此,一項(xiàng)研究[8]發(fā)現(xiàn),在載脂蛋白E基因敲除小鼠AS斑塊中,大多數(shù)的泡沫細(xì)胞同樣來(lái)自VSMC。在向泡沫細(xì)胞轉(zhuǎn)化的過(guò)程中,由于合成型VSMC膽固醇酯酶和膽固醇逆向運(yùn)輸?shù)鞍椎谋磉_(dá)水平下降,VSMC轉(zhuǎn)化成的泡沫細(xì)胞無(wú)法有效地排出膽固醇,這使得VSMC相較于巨噬細(xì)胞更易形成泡沫樣細(xì)胞狀態(tài)[8]。然而,由于大多數(shù)α-SMA陽(yáng)性泡沫細(xì)胞也表達(dá)巨噬細(xì)胞標(biāo)志物CD68,尚不清楚VSMC是在獲得了巨噬細(xì)胞樣表型后才能轉(zhuǎn)化為泡沫細(xì)胞,還是在成為泡沫細(xì)胞之后才開(kāi)始表達(dá)巨噬細(xì)胞標(biāo)志物。
高血糖、氧化應(yīng)激、炎癥因子、血管活性物質(zhì)等因素均可影響VSMC向泡沫細(xì)胞的轉(zhuǎn)化。高血糖通過(guò)增加氧化型低密度脂蛋白(oxidized low-density lipoprotein,oxLDL)的攝取能力,并降低胞內(nèi)膽固醇流出,進(jìn)一步推動(dòng)VSMC向泡沫細(xì)胞的轉(zhuǎn)化[9]。炎癥因子白細(xì)胞介素(interleukin, IL)-1β則通過(guò)提高低密度脂蛋白(low-density lipoprotein,LDL)受體的表達(dá),促進(jìn)LDL的攝取,以及增加膽固醇酯化過(guò)程,強(qiáng)化VSMC向泡沫細(xì)胞的轉(zhuǎn)化[10]。LDL受體相關(guān)蛋白1(LDL receptor-related protein 1, LRP1)介導(dǎo)VSMC轉(zhuǎn)變?yōu)楹写罅恐|(zhì)的泡沫細(xì)胞。有研究[11]表明,IL-19可下調(diào)LRP1的表達(dá),降低oxLDL的攝取,從而減少VSMC內(nèi)的脂質(zhì)積累。尤其值得一提的是Sendra等[12]的研究,發(fā)現(xiàn)血管緊張素Ⅱ通過(guò)增強(qiáng)LRP1介導(dǎo)的LDL攝取,以及加速細(xì)胞內(nèi)膽固醇酯的積累,可加速AS的進(jìn)展。
3" 巨噬細(xì)胞樣VSMC
巨噬細(xì)胞樣VSMC在AS斑塊的炎癥反應(yīng)中扮演著關(guān)鍵角色,并可能成為導(dǎo)致斑塊不穩(wěn)定性的危險(xiǎn)因素。這些細(xì)胞通過(guò)加速斑塊的破裂和血栓形成,進(jìn)而促進(jìn)AS的進(jìn)展。早期研究[13]指出,在小鼠早期AS病變中,表達(dá)巨噬細(xì)胞標(biāo)志物的細(xì)胞主要源自新招募的循環(huán)單核細(xì)胞。然而,近期的譜系追蹤研究[7]揭示了人類AS斑塊中共表達(dá)α-SMA和CD68的細(xì)胞群,提示VSMC可能是表達(dá)巨噬細(xì)胞標(biāo)志物的另一來(lái)源。
相較于活化的巨噬細(xì)胞,由VSMC衍生的巨噬細(xì)胞樣細(xì)胞顯示出較弱的吞噬能力。作為非專業(yè)吞噬細(xì)胞,巨噬細(xì)胞樣VSMC能吞噬oxLDL和凋亡細(xì)胞,但其排出和處理血漿脂蛋白的能力有限。這一特性導(dǎo)致它們?cè)诟咧Y狀態(tài)下更容易轉(zhuǎn)化為泡沫細(xì)胞,進(jìn)而促進(jìn)AS斑塊的形成。此外,巨噬細(xì)胞樣VSMC通過(guò)產(chǎn)生多種黏附分子和細(xì)胞因子,激活免疫活性細(xì)胞,并吸引循環(huán)中的炎癥細(xì)胞,參與AS斑塊的慢性炎癥過(guò)程;同時(shí),被招募的炎癥細(xì)胞也促使VSMC轉(zhuǎn)化為巨噬細(xì)胞樣VSMC,從而持續(xù)加劇炎癥水平。
在AS早期,伴隨著內(nèi)膜增厚的病理性改變,VSMC標(biāo)志物的丟失是表型轉(zhuǎn)化的顯著特征,尤其是α-SMA的缺失。隨著疾病的發(fā)展,VSMC開(kāi)始克隆擴(kuò)增并轉(zhuǎn)化為以Lgals3表達(dá)為特征的巨噬細(xì)胞樣細(xì)胞,這種細(xì)胞成為晚期AS斑塊的主要組成部分[14]。這些發(fā)現(xiàn)為理解AS的病理機(jī)制提供了重要視角。VSMC轉(zhuǎn)化為巨噬細(xì)胞樣表型的過(guò)程受多種因素調(diào)控。相關(guān)實(shí)驗(yàn)[15]顯示,VSMC可在膽固醇負(fù)荷的情況下,通過(guò)下調(diào)miR-143/145-心肌蛋白軸來(lái)誘導(dǎo)轉(zhuǎn)化為巨噬細(xì)胞樣表型。此外,人同源盒蛋白A1也是調(diào)控VSMC表型轉(zhuǎn)化的關(guān)鍵。在病理?xiàng)l件下,人同源盒蛋白A1轉(zhuǎn)錄激活VSMC中的關(guān)鍵轉(zhuǎn)錄因子核因子κB p65和Krüppel樣因子4,從而驅(qū)動(dòng)VSMC發(fā)生表型轉(zhuǎn)化,并轉(zhuǎn)分化為巨噬細(xì)胞樣細(xì)胞[16]。
4" 成纖維細(xì)胞樣VSMC
在小鼠與人類AS斑塊中,VSMC能轉(zhuǎn)化為具有成纖維細(xì)胞特性的細(xì)胞,這些細(xì)胞對(duì)于斑塊纖維帽的形成起著關(guān)鍵的保護(hù)作用,因此被稱為“纖維肌細(xì)胞”[8]。單細(xì)胞轉(zhuǎn)錄組分析揭示,這些成纖維細(xì)胞樣VSMC主要承擔(dān)著合成細(xì)胞外基質(zhì)(extracellular matrix, ECM)、增強(qiáng)細(xì)胞與基質(zhì)之間的黏附,以及促進(jìn)細(xì)胞增殖等功能。此外,它們還參與動(dòng)脈壁的纖維化及新生內(nèi)膜形成過(guò)程[5]??蓪SMC向成纖維樣表型轉(zhuǎn)化視為由收縮型向合成型轉(zhuǎn)化的正向轉(zhuǎn)化,鑒于合成型VSMC在多種心臟修復(fù)過(guò)程中的參與,這種表型轉(zhuǎn)化被認(rèn)為可能有利于改善心血管疾病的預(yù)后。然而,需注意的是,VSMC的表型轉(zhuǎn)化及其功能表現(xiàn)可能受到其所在位置或周圍微環(huán)境因素的影響,有時(shí)也可能導(dǎo)致動(dòng)脈壁纖維化并帶來(lái)潛在損害。因此,了解VSMC表型轉(zhuǎn)化的具體條件和影響因素,對(duì)于深入理解其在AS中的雙重角色及其潛在的臨床意義至關(guān)重要。
VSMC的成纖維細(xì)胞樣表型的轉(zhuǎn)化主要由斑塊內(nèi)細(xì)胞的生物刺激和ECM微環(huán)境的變化驅(qū)動(dòng)與維持。細(xì)胞外高膽固醇負(fù)荷可引發(fā)VSMC向成纖維細(xì)胞樣表型轉(zhuǎn)化,其主要機(jī)理可能與內(nèi)質(zhì)網(wǎng)應(yīng)激而產(chǎn)生的未折疊蛋白反應(yīng)有關(guān),這種效應(yīng)顯著減弱了VSMC收縮性標(biāo)志物的表達(dá),并增加了成纖維細(xì)胞特征基因的表達(dá)[17]。此外,AS斑塊微環(huán)境中的細(xì)胞因子也有助于調(diào)節(jié)成纖維細(xì)胞樣VSMC的形成[18]。最新的單細(xì)胞RNA測(cè)序研究[19]表明轉(zhuǎn)錄因子21(transcription factor 21, TCF21)能促進(jìn)AS斑塊中VSMC向成纖維細(xì)胞樣表型轉(zhuǎn)化,增強(qiáng)保護(hù)性纖維帽的形成;而在敲除TCF21的載脂蛋白E基因敲除小鼠的AS斑塊中,VSMC向纖維肌細(xì)胞的轉(zhuǎn)化顯著減少,纖維帽變薄,最終使得AS斑塊的穩(wěn)定性下降,斑塊更易發(fā)生破裂。此外,核心生物鐘基因腦和肌肉芳香烴受體核轉(zhuǎn)運(yùn)樣蛋白1在調(diào)節(jié)VSMC向成纖維細(xì)胞樣細(xì)胞的表型轉(zhuǎn)化中也發(fā)揮著重要作用,可通過(guò)上調(diào)Yes相關(guān)蛋白1促進(jìn)VSMC表型向成纖維細(xì)胞樣細(xì)胞的轉(zhuǎn)化,并可抑制VSMC遷移,從而穩(wěn)定斑塊并減輕斑塊負(fù)擔(dān)[20]。
5" 成骨細(xì)胞樣VSMC
冠狀動(dòng)脈鈣化是一種病理性狀態(tài),特征為鈣在動(dòng)脈壁內(nèi)膜中異常沉積[21]。微鈣化(直徑<50 μm)的沉積是易損斑塊的重要特征之一。當(dāng)AS斑塊內(nèi)形成微小鈣化沉積物時(shí),通常引發(fā)炎癥反應(yīng);并且這些微小的鈣化物影響纖維帽的應(yīng)力分布,使得斑塊易損性增加,更容易發(fā)生破裂和血栓形成[22]。相反地,較大的鈣化沉積物(直徑>200 μm)通常積聚在深層內(nèi)膜或壞死核心區(qū),這些沉積物的存在能提供類似于骨骼的結(jié)構(gòu)支撐,有助于增強(qiáng)斑塊穩(wěn)定性[22]。
一項(xiàng)針對(duì)小鼠的譜系追蹤研究[23]指出,在AS斑塊中98%的骨軟骨形成細(xì)胞均由VSMC衍化而來(lái)。在受到多種刺激后,VSMC會(huì)下調(diào)平滑肌特異性標(biāo)志物的表達(dá),轉(zhuǎn)化為成骨細(xì)胞或軟骨細(xì)胞樣表型[24-26]。成骨細(xì)胞或軟骨細(xì)胞樣VSMC會(huì)增強(qiáng)骨軟骨形成關(guān)鍵因子的表達(dá),同時(shí)降低血管鈣化抑制因子的表達(dá),并積累易于鈣化的基質(zhì),如Ⅱ型和Ⅹ型膠原等;而且,這些成骨細(xì)胞或軟骨細(xì)胞樣VSMC可通過(guò)分泌基質(zhì)囊泡促進(jìn)血管鈣化[27]。至今,血管鈣化尚無(wú)有效干預(yù)手段。由于成骨細(xì)胞或軟骨細(xì)胞樣VSMC在ECM礦化和血管鈣化過(guò)程中扮演核心角色,它們已受到越來(lái)越多的關(guān)注,成為AS斑塊治療中具有巨大潛力的“明星靶點(diǎn)”。
VSMC向成骨細(xì)胞或軟骨細(xì)胞樣表型轉(zhuǎn)化,有賴于微環(huán)境中磷酸鹽和鈣離子濃度的調(diào)控。當(dāng)VSMC暴露于高濃度的磷酸鹽或鈣離子時(shí),它們會(huì)通過(guò)上調(diào)Runt相關(guān)轉(zhuǎn)錄因子2的表達(dá),激活骨形態(tài)發(fā)生蛋白和Wnt信號(hào)通路[28-30],推動(dòng)其向成骨細(xì)胞樣表型轉(zhuǎn)化。除了磷酸鹽和鈣離子濃度,還有許多不同的調(diào)節(jié)因素能調(diào)控這一過(guò)程。在長(zhǎng)期單獨(dú)暴露于高糖或與oxLDL共存環(huán)境下,都會(huì)加強(qiáng)VSMC中骨形態(tài)發(fā)生蛋白2和堿性磷酸酶的表達(dá),進(jìn)一步推動(dòng)其向成骨細(xì)胞轉(zhuǎn)分化[31-32]。Lee等[33]的研究發(fā)現(xiàn)破骨細(xì)胞調(diào)節(jié)因子核因子κB受體活化因子配體可刺激VSMC的成骨分化。此外,有研究[24,34-35]表明,硫酸吲哚酚、雌激素和晚期糖基化終末產(chǎn)物等均可能促進(jìn)VSMC向成骨細(xì)胞樣表型轉(zhuǎn)化。
6" 間充質(zhì)樣VSMC
目前,盡管間充質(zhì)樣VSMC的概念尚無(wú)完全明確的定義,但在某種程度上,可將表達(dá)部分間充質(zhì)標(biāo)志物的VSMC視為間充質(zhì)樣VSMC。有些學(xué)者定義間充質(zhì)樣VSMC為表達(dá)干細(xì)胞標(biāo)志物的VSMC,其功能和間充質(zhì)干細(xì)胞相似[36]。有研究[37-38]利用單細(xì)胞測(cè)序技術(shù)描繪VSMC的細(xì)胞圖譜,發(fā)現(xiàn)在人類頸動(dòng)脈和冠狀動(dòng)脈粥樣硬化斑塊中,VSMC可轉(zhuǎn)變?yōu)橹虚g態(tài)細(xì)胞,這種由VSMC衍生后形成的中間細(xì)胞,被稱為“SEM”細(xì)胞,具有多能性,可分化為成骨細(xì)胞樣細(xì)胞、軟骨細(xì)胞樣細(xì)胞、脂肪細(xì)胞樣細(xì)胞和巨噬細(xì)胞樣細(xì)胞,甚至還能向原始的VSMC進(jìn)行再分化。
間充質(zhì)樣VSMC對(duì)AS疾病發(fā)生和進(jìn)展的作用仍不完全明確。早期研究[39]認(rèn)為源自血管外膜的間充質(zhì)樣VSMC可能促進(jìn)AS斑塊的生長(zhǎng)和慢性腎臟病患者的血管鈣化。然而,最近的遺傳譜系追蹤研究[40]顯示,作為VSMC重要來(lái)源的外膜血管干細(xì)胞對(duì)組織修復(fù)和再生有顯著貢獻(xiàn)。關(guān)于間充質(zhì)樣VSMC在AS疾病中具體功能,尚需進(jìn)行更多的研究。
VSMC轉(zhuǎn)變?yōu)椤癝EM”細(xì)胞的過(guò)程中,視黃酸(retinoic acid, RA)信號(hào)被認(rèn)為是一種關(guān)鍵的調(diào)節(jié)因子。在癥狀性AS患者中,這一信號(hào)常處于失調(diào)狀態(tài)。全基因組關(guān)聯(lián)分析研究[38]已發(fā)現(xiàn),冠狀動(dòng)脈疾病的信號(hào)在RA信號(hào)靶基因位點(diǎn)上有明顯的富集,而風(fēng)險(xiǎn)等位基因與這些基因表達(dá)呈現(xiàn)負(fù)相關(guān)。RA可結(jié)合于靶基因中的RA反應(yīng)元件特異性地調(diào)控VSMC的表型轉(zhuǎn)化。而RA受體特異性激動(dòng)劑Am80能抑制轉(zhuǎn)錄因子Krüppel樣因子5的活性,從而抑制VSMC的表型轉(zhuǎn)變[41]。這些研究結(jié)果均反映出RA信號(hào)在VSMC向間充質(zhì)樣細(xì)胞轉(zhuǎn)化過(guò)程中的關(guān)鍵調(diào)控作用。
7" 結(jié)語(yǔ)
近年來(lái),單細(xì)胞測(cè)序技術(shù)的廣泛應(yīng)用極大地拓寬了對(duì)VSMC可塑性以及其在AS中的具體功能的理解。慢性炎癥導(dǎo)致的細(xì)胞外環(huán)境紊亂也會(huì)引發(fā)包括內(nèi)皮細(xì)胞、ECM等在內(nèi)的其他血管成分的改變,這些變化與VSMC的表型轉(zhuǎn)化協(xié)同作用,進(jìn)一步加重AS。一系列利用單細(xì)胞測(cè)序技術(shù)對(duì)斑塊內(nèi)VSMC類型進(jìn)行檢測(cè)的最新研究進(jìn)一步印證了VSMC具有廣泛可塑性的觀點(diǎn)(圖2)。然而,VSMC轉(zhuǎn)化的各種表型及其功能尚未完全明晰,仍需更深入的研究來(lái)闡明。深化對(duì)VSMC可塑性的研究,將為AS疾病治療提供新的突破方向。
注:BMAL1,腦和肌肉芳香烴受體核轉(zhuǎn)運(yùn)樣蛋白1;HOXA1,人同源盒蛋白A1;[PO4]3-,磷酸根離子。
利益沖突" 所有作者均聲明無(wú)利益沖突
參考文獻(xiàn)
[1]Bennett MR,Sinha S,Owens GK.Vascular smooth muscle cells in atherosclerosis[J].Circ Res,2016,118(4):692-702.
[2]Grootaert MOJ,Bennett MR.Vascular smooth muscle cells in atherosclerosis:time for a re-assessment[J].Cardiovasc Res,2021,117(11):2326-2339.
[3]Zhang F,Guo XQ,Xia YP,et al.An update on the phenotypic switching of vascular smooth muscle cells in the pathogenesis of atherosclerosis[J].Cell Mol Life Sci,2021,79(1):6.
[4]Shankman LS,Gomez D,Cherepanova OA,et al.KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis[J].Nat Med,2015,21(6):628-637.
[5]Alencar GF,Owsiany KM,Karnewar S,et al.Stem cell pluripotency genes Klf4 and Oct4 regulate complex SMC phenotypic changes critical in late-stage atherosclerotic lesion pathogenesis[J].Circulation,2020,142(21):2045-2059.
[6]Wissler RW,Vesselinovitch D.Comparative pathogenetic patterns in atherosclerosis[J].Adv Lipid Res,1968,6:181-206.
[7]Allahverdian S,Chehroudi AC,McManus BM,et al.Contribution of intimal smooth muscle cells to cholesterol accumulation and macrophage-like cells in human atherosclerosis[J].Circulation,2014,129(15):1551-1559.
[8]Wang Y,Dubland JA,Allahverdian S,et al.Smooth muscle cells contribute the majority of foam cells in ApoE (apolipoprotein E)-deficient mouse atherosclerosis[J].Arterioscler Thromb Vasc Biol,2019,39(5):876-887.
[9]Xue JH,Yuan ZY,Wu Y,et al.High glucose promotes intracellular lipid accumulation in vascular smooth muscle cells by impairing cholesterol influx and efflux balance[J].Cardiovasc Res,2010,86(1):141-150.
[10]Ruan XZ,Moorhead JF,Tao JL,et al.Mechanisms of dysregulation of low-density lipoprotein receptor expression in vascular smooth muscle cells by inflammatory cytokines[J].Arterioscler Thromb Vasc Biol,2006,26(5):1150-1155.
[11]Gabunia K,Herman AB,Ray M,et al.Induction of MiR133a expression by IL-19 targets LDLRAP1 and reduces oxLDL uptake in VSMC[J].J Mol Cell Cardiol,2017,105:38-48.
[12]Sendra J,Llorente-Cortes V,Costales P,et al.Angiotensin Ⅱ upregulates LDL receptor-related protein (LRP1) expression in the vascular wall:a new pro-atherogenic mechanism of hypertension[J].Cardiovasc Res,2008,78(3):581-589.
[13]Moore KJ,Sheedy FJ,F(xiàn)isher EA.Macrophages in atherosclerosis:a dynamic balance[J].Nat Rev Immunol,2013,13(10):709-721.
[14]Lu S,Weiser-Evans MCM.Lgals3-transitioned inflammatory smooth muscle cells:major regulators of atherosclerosis progression and inflammatory cell recruitment[J].Arterioscler Thromb Vasc Biol,2022,42(8):957-959.
[15]Vengrenyuk Y,Nishi H,Long XC,et al.Cholesterol loading reprograms the microRNA-143/145-myocardin axis to convert aortic smooth muscle cells to a dysfunctional macrophage-like phenotype[J].Arterioscler Thromb Vasc Biol,2015,35(3):535-546.
[16]Han ZY,Hu HD,Yin MZ,et al.HOXA1 participates in VSMC-to-macrophage-like cell transformation via regulation of NF-κB p65 and KLF4:a potential mechanism of atherosclerosis pathogenesis[J].Mol Med,2023,29(1):104.
[17]Chattopadhyay A,Kwartler CS,Kaw K,et al.Cholesterol-induced phenotypic modulation of smooth muscle cells to macrophage/fibroblast-like cells is driven by an unfolded protein response[J].Arterioscler Thromb Vasc Biol,2021,41(1):302-316.
[18]Cao GM,Xuan XZ,Hu J,et al.How vascular smooth muscle cell phenotype switching contributes to vascular disease[J].Cell Commun Signal,2022,20(1):180.
[19]Wirka RC,Wagh D,Paik DT,et al.Atheroprotective roles of smooth muscle cell phenotypic modulation and the TCF21 disease gene as revealed by single-cell analysis[J].Nat Med,2019,25(8):1280-1289.
[20]Shen Y,Xu LR,Yan D,et al.BMAL1 modulates smooth muscle cells phenotypic switch towards fibroblast-like cells and stabilizes atherosclerotic plaques by upregulating YAP1[J].Biochim Biophys Acta Mol Basis Dis,2022,1868(9):166450.
[21]Onnis C,Virmani R,Kawai K,et al.Coronary artery calcification: current concepts and clinical implications[J].Circulation,2024,149(3):251-266.
[22]Nakahara T,Dweck MR,Narula N,et al.Coronary artery calcification: from mechanism to molecular imaging[J].JACC Cardiovasc Imaging,2017,10(5):582-593.
[23]Naik V,Leaf EM,Hu JH,et al.Sources of cells that contribute to atherosclerotic intimal calcification:an in vivo genetic fate mapping study[J].Cardiovasc Res,2012,94(3):545-554.
[24]McRobb LS,McGrath KCY,Tsatralis T,et al.Estrogen receptor control of atherosclerotic calcification and smooth muscle cell osteogenic differentiation[J].Arterioscler Thromb Vasc Biol,2017,37(6):1127-1137.
[25]Seime T,Akbulut AC,Liljeqvist ML,et al.Proteoglycan 4 modulates osteogenic smooth muscle cell differentiation during vascular remodeling and intimal calcification[J].Cells,2021,10(6):1276.
[26]Skenteris NT,Seime T,Witasp A,et al.Osteomodulin attenuates smooth muscle cell osteogenic transition in vascular calcification[J].Clin Transl Med,2022,12(2):e682.
[27]Li TT,Yu HC,Zhang DM,et al.Matrix vesicles as a therapeutic target for vascular calcification[J].Front Cell Dev Biol,2022,10:825622.
[28]Willems BA,F(xiàn)urmanik M,Caron MMJ,et al.Ucma/GRP inhibits phosphate-induced vascular smooth muscle cell calcification via SMAD-dependent BMP signalling[J].Sci Rep,2018,8(1):4961.
[29]Lanzer P,Hannan FM,Lanzer JD,et al.Medial arterial calcification: JACC state-of-the-art review[J].J Am Coll Cardiol,2021,78(11):1145-1165.
[30]Park HJ,Kim MK,Kim Y,et al.Neuromedin B modulates phosphate-induced vascular calcification[J].BMB Rep,2021,54(11):569-574.
[31]Lin X,Li S,Wang YJ,et al.Exosomal Notch3 from high glucose-stimulated endothelial cells regulates vascular smooth muscle cells calcification/aging[J].Life Sci,2019,232:116582.
[32]Xu SN,Zhou X,Zhu CJ,et al.N-carboxymethyl-lysine deteriorates vascular calcification in diabetic atherosclerosis induced by vascular smooth muscle cell-derived foam cells[J].Front Pharmacol,2020,11:626.
[33]Lee GL,Yeh CC,Wu JY,et al.TLR2 promotes vascular smooth muscle cell chondrogenic differentiation and consequent calcification via the concerted actions of osteoprotegerin suppression and IL-6-mediated RANKL induction[J].Arterioscler Thromb Vasc Biol,2019,39(3):432-445.
[34]Yang R,Zhu Y,Wang Y,et al.HIF-1α/PDK4/autophagy pathway protects against advanced glycation end-products induced vascular smooth muscle cell calcification[J].Biochem Biophys Res Commun,2019,517(3):470-476.
[35]Lano G,Burtey S,Sallee M.Indoxyl sulfate,a uremic endotheliotoxin[J].Toxins (Basel),2020,12(4):229.
[36]Yap C,Mieremet A,de Vries CJM,et al.Six shades of vascular smooth muscle cells illuminated by KLF4 (Krüppel-like factor 4) [J].Arterioscler Thromb Vasc Biol,2021,41(11):2693-2707.
[37]Chen PY,Qin L,Li G,et al.Smooth muscle cell reprogramming in aortic aneurysms[J].Cell Stem Cell,2020,26(4):542-557.e11.
[38]Pan HZ,Xue CY,Auerbach BJ,et al.Single-cell genomics reveals a novel cell state during smooth muscle cell phenotypic switching and potential therapeutic targets for atherosclerosis in mouse and human[J].Circulation,2020,142(21):2060-2075.
[39]Kramann R,Goettsch C,Wongboonsin J,et al.Adventitial MSC-like cells are progenitors of vascular smooth muscle cells and drive vascular calcification in chronic kidney disease[J].Cell Stem Cell,2016,19(5):628-642.
[40]Wang HX,Zhao H,Zhu H,et al.Sca1+ cells minimally contribute to smooth muscle cells in atherosclerosis[J].Circ Res,2021,128(1):133-135.
[41]Fujiu K,Manabe I,Ishihara A,et al.Synthetic retinoid Am80 suppresses smooth muscle phenotypic modulation and in-stent neointima formation by inhibiting KLF5[J].Circ Res,2005,97(11):1132-1141.
收稿日期:2024-03-13