• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    鐵死亡在射血分?jǐn)?shù)保留的心力衰竭中的研究進(jìn)展

    2024-12-31 00:00:00王一華蔣玉嬌門(mén)冰欣胡娜娜張亞蘋(píng)張錦
    心血管病學(xué)進(jìn)展 2024年9期
    關(guān)鍵詞:過(guò)氧化脂質(zhì)內(nèi)皮細(xì)胞

    【摘要】鐵死亡是近年來(lái)提出的一種新型細(xì)胞死亡方式,是一種鐵依賴的、以脂質(zhì)過(guò)氧化物積累為特征的細(xì)胞死亡過(guò)程,涉及鐵代謝、脂質(zhì)代謝和氨基酸代謝三個(gè)過(guò)程。細(xì)胞內(nèi)鐵超載可通過(guò)脂質(zhì)過(guò)氧化、氧化應(yīng)激、炎癥反應(yīng)等途徑對(duì)內(nèi)皮細(xì)胞和心肌細(xì)胞造成損傷,在射血分?jǐn)?shù)保留的心力衰竭(HFpEF)的病理生理過(guò)程中發(fā)揮重要作用?,F(xiàn)就HFpEF與鐵死亡之間可能存在的相關(guān)性進(jìn)行概述,為進(jìn)一步研究HFpEF發(fā)病機(jī)制提供可靠的理論依據(jù),以期為其治療提供新思路。

    【關(guān)鍵詞】鐵死亡;鐵超載;氧化應(yīng)激;射血分?jǐn)?shù)保留的心力衰竭;鈉-葡萄糖共轉(zhuǎn)運(yùn)蛋白2抑制劑

    基金項(xiàng)目:甘肅省自然科學(xué)基金(22JR11RA018)

    通信作者:張錦,E-mail:chzhangjin@163.com

    【DOI】10.16806/j.cnki.issn.1004-3934.2024.09.011

    Ferroptosis in Heart Failure with Preserved Ejection Fraction

    WANG Yihua1,JIANG Yujiao1,MEN Bingxin1,HU Nana1,ZHANG Yaping1,ZHANG Jin1,2

    (1.The First Clinical College of Medicine,Lanzhou University,Lanzhou 730000,Gansu,China;2.Department of Cardiology,The First Hospital of Lanzhou University/Key Laboratory of Cardiovascular Diseases of Gansu Province,Lanzhou 730000,Gansu,China)

    【Abstract】Ferroptosis is a new cell death method proposed in recent years.It is an iron-dependent cell death process characterized by lipid peroxide accumulation,involving iron metabolism,lipid metabolism and amino acid metabolism.Intracellular iron overload can cause damage to endothelial cells and cardiomyocytes through lipid peroxidation,oxidative stress,inflammation and other pathways,and play an important role in the pathological process of heart failure with preserved ejection fraction (HFpEF).In this paper,the possible correlation between HFpEF and ferroptosis was summarized,so as to provide a reliable theoretical basis for further research on the pathogenesis of HFpEF and provide new ideas for its treatment.

    【Keywords】Ferroptosis;Iron overload; Oxidative stress; Heart failure with preserved ejection fraction; Sodium-glucose cotransporter 2 inhibitor

    心力衰竭(heart failure,HF)是心臟結(jié)構(gòu)或功能受損而導(dǎo)致的一種嚴(yán)重臨床綜合征,為多種心臟疾病發(fā)展的終末階段。由于人口不斷增長(zhǎng)和老齡化,以及導(dǎo)致射血分?jǐn)?shù)保留的心力衰竭(heart failure with preserved ejection fraction,HFpEF)病理生理學(xué)的疾病(如肥胖、高血壓和糖尿?。┑幕疾÷什粩嘣黾樱琀FpEF患者總數(shù)持續(xù)上升,正在成為最主要的HF亞型。HFpEF患者生活質(zhì)量差、住院率和死亡率高,由于其發(fā)病機(jī)制復(fù)雜,目前臨床上尚缺乏有效的治療方案[1]。鐵死亡是一種不同于壞死和凋亡的細(xì)胞死亡方式[2],在鐵超載的情況下,會(huì)導(dǎo)致機(jī)體產(chǎn)生大量活性氧(reactive oxygen species,ROS),ROS水平的升高攻擊細(xì)胞基因組,導(dǎo)致脂質(zhì)過(guò)氧化(lipid peroxidation,LPO)產(chǎn)物的增加和內(nèi)源性抗氧化機(jī)制的破壞以及谷胱甘肽水平的降低[3]。這種全身性促炎狀態(tài)可損害心肌細(xì)胞和心臟功能[4]。這意味著炎癥、鐵死亡相關(guān)的氧化應(yīng)激與HFpEF之間存在聯(lián)系?,F(xiàn)進(jìn)一步探討鐵死亡與HFpEF及其危險(xiǎn)因素的可能相關(guān)性,并展示靶向鐵死亡治療HFpEF的研究進(jìn)展,為HFpEF的治療提供新的思路與靶點(diǎn)。

    1" 鐵死亡概念

    鐵死亡是一種鐵依賴性的調(diào)節(jié)性細(xì)胞死亡方式,具有不同于凋亡、自噬等其他細(xì)胞死亡方式的特征。鐵死亡的發(fā)生是一個(gè)高度調(diào)節(jié)的過(guò)程,其調(diào)控機(jī)制主要涉及鐵代謝、脂質(zhì)代謝和氨基酸代謝三個(gè)方面。

    1.1" 鐵代謝

    鐵是脂質(zhì)過(guò)氧化物堆積和鐵死亡過(guò)程中的主要原料。腸道吸收或紅細(xì)胞降解形成的Fe2+可被銅藍(lán)蛋白氧化為Fe3+,F(xiàn)e3+與轉(zhuǎn)鐵蛋白(transferrin,TF)結(jié)合后在細(xì)胞膜上形成TF-Fe3+,后者通過(guò)轉(zhuǎn)鐵蛋白受體1泵入細(xì)胞,隨后被還原為Fe2+,然后將Fe2+儲(chǔ)存在不穩(wěn)定鐵池和鐵蛋白中,這種內(nèi)部鐵的再循環(huán)嚴(yán)格控制著細(xì)胞中的鐵穩(wěn)態(tài)。當(dāng)Fe2+產(chǎn)生過(guò)多的時(shí)候,細(xì)胞內(nèi)游離的Fe2+在芬頓反應(yīng)的作用下可產(chǎn)生大量毒性自由基,通過(guò)酶或非酶途徑,誘導(dǎo)細(xì)胞發(fā)生鐵死亡[5],見(jiàn)圖1。

    注: System Xc-,胱氨酸/谷氨酸轉(zhuǎn)運(yùn)受體;GPX4,谷胱甘肽過(guò)氧化物酶4;PUFA,不飽和脂肪酸; TFR,轉(zhuǎn)鐵蛋白受體。

    1.2" 脂質(zhì)代謝

    在脂質(zhì)代謝方面,ROS攻擊細(xì)胞膜多不飽和脂肪酸而引發(fā)的LPO是引起細(xì)胞鐵死亡的直接原因。LPO產(chǎn)物會(huì)破壞磷脂雙分子層的穩(wěn)定性,最終導(dǎo)致細(xì)胞膜的解體[6]。ROS羥基自由基是一種具有特別化學(xué)活性的ROS,其可通過(guò)誘導(dǎo)LPO,細(xì)胞內(nèi)游離Fe2+通過(guò)芬頓反應(yīng)形成的OH-可與膜磷脂中的多不飽和脂肪酸產(chǎn)生脂質(zhì)過(guò)氧化物而最終引起細(xì)胞鐵死亡[7],見(jiàn)圖1。脂質(zhì)過(guò)氧化作用由脂氧合酶或細(xì)胞色素P450氧化還原酶介導(dǎo)[8-9],與之相關(guān)的信號(hào)通路均可調(diào)節(jié)鐵死亡過(guò)程中相關(guān)的脂質(zhì)過(guò)氧化,從而決定細(xì)胞對(duì)鐵死亡的敏感性。

    1.3" 氨基酸代謝

    氨基酸代謝與鐵死亡調(diào)節(jié)密切相關(guān),谷胱甘肽過(guò)氧化物酶4(glutathione peroxidase 4,GPX4)在鐵死亡的調(diào)節(jié)中起著不可或缺的作用,它以谷胱甘肽為底物,清除脂質(zhì)過(guò)氧化,減輕氧化應(yīng)激。向細(xì)胞補(bǔ)充GPX4的直接抑制劑可通過(guò)使GPX4失活來(lái)誘導(dǎo)細(xì)胞鐵死亡。胱氨酸和谷氨酸都是調(diào)節(jié)細(xì)胞鐵死亡的重要分子[10]。胱氨酸進(jìn)入細(xì)胞后被還原為半胱氨酸,參與谷胱甘肽的合成。半胱氨酸攝取障礙則導(dǎo)致脂質(zhì)過(guò)氧化產(chǎn)物蓄積[11]。除此之外,谷氨酰胺合成也與鐵死亡調(diào)控有關(guān)。谷氨酰胺可通過(guò)谷氨酰胺酶轉(zhuǎn)化為谷氨酸,有研究[12]表明阻斷谷氨酸產(chǎn)生的谷氨酰胺酶抑制劑也可防止細(xì)胞發(fā)生鐵死亡。見(jiàn)圖1。

    2" HFpEF發(fā)病機(jī)制概述

    2.1" 心臟功能異常在HFpEF中的作用

    左心室舒張功能障礙導(dǎo)致靜息或運(yùn)動(dòng)時(shí)充盈壓升高,在HFpEF發(fā)展中起著核心作用[13]。心肌舒張功能異常和/或室壁僵硬度增加引起心室充盈量減少以及心輸出量減少,從而導(dǎo)致左心室舒張功能障礙。左心室舒張功能障礙被認(rèn)為是HFpEF發(fā)生的主要病理生理機(jī)制[14]。有研究[15]表明HFpEF患者相較于健康志愿者左心舒張功能受損更加嚴(yán)重。來(lái)自一項(xiàng)研究的結(jié)果[16]顯示超過(guò)一半的HFpEF患者的縱向應(yīng)變異常,且其發(fā)生與HF住院風(fēng)險(xiǎn)升高相關(guān)。此外,還有研究[17]表明,左心室收縮功能異常與HFpEF患者不良結(jié)局相關(guān),收縮功能異常也會(huì)誘發(fā)和惡化HFpEF患者舒張儲(chǔ)備不足的情況。

    由于舒張功能障礙導(dǎo)致左心房和肺動(dòng)脈壓增加,約70%的HFpEF患者出現(xiàn)肺動(dòng)脈高壓。在晚期HFpEF患者中,肺血管的結(jié)構(gòu)和功能也可能發(fā)生改變并出現(xiàn)使肺血管阻力增加的“前毛細(xì)血管”組分[18]。有研究[19]表明,在HFpEF患者中,肺動(dòng)脈壓增加10%,患者3年死亡率就會(huì)增加28%,并且肺動(dòng)脈高壓與患者的不良預(yù)后相關(guān)。HFpEF患者長(zhǎng)期肺動(dòng)脈高壓最終會(huì)導(dǎo)致右心室功能障礙[20]。右心功能不全會(huì)導(dǎo)致三尖瓣反流、心輸出量減少,從而引起HF癥狀。并且右心室功能障礙是HFpEF住院率與死亡率升高的重要標(biāo)志[21]。所以,右心室功能障礙對(duì)HFpEF患者預(yù)后也有著重要的警示作用。

    左心房作為左心室和肺循環(huán)之間的重要屏障,通過(guò)增壓功能促進(jìn)左心室充盈。由于左心室舒張充盈壓逐漸升高,HFpEF患者的左心房會(huì)出現(xiàn)繼發(fā)性重構(gòu)以及功能障礙。在健康的心臟中,約80%的左心室充盈發(fā)生在舒張?jiān)缙?,其?0%主要取決于左心房收縮。HFpEF患者中,左心房功能障礙與HF住院風(fēng)險(xiǎn)獨(dú)立相關(guān)[22]。除此之外,心房顫動(dòng)可在2/3的HFpEF患者中出現(xiàn),它的存在與心房運(yùn)動(dòng)異常、右心室功能障礙惡化以及患者死亡率升高有關(guān)[23]。心房擴(kuò)張先于心房顫動(dòng),并與慢性左心室舒張功能障礙以及HFpEF相關(guān)的合并癥,如肥胖、睡眠期間呼吸障礙有關(guān)[24]。

    2.2" 炎癥在HFpEF中的作用

    除了心臟功能異常之外,HFpEF還表現(xiàn)出炎癥和循環(huán)炎癥生物標(biāo)志物增加。促炎細(xì)胞因子介導(dǎo)內(nèi)皮細(xì)胞的活化,活化的內(nèi)皮細(xì)胞開(kāi)始在其表面表達(dá)黏附分子,從而觸發(fā)整個(gè)過(guò)程。單核細(xì)胞從血流遷移到內(nèi)皮細(xì)胞下轉(zhuǎn)化為巨噬細(xì)胞,巨噬細(xì)胞具有吞噬、分泌細(xì)胞因子以及產(chǎn)生ROS等功能,部分炎癥因子可誘導(dǎo)成纖維細(xì)胞向肌成纖維細(xì)胞分化,導(dǎo)致心肌纖維化和進(jìn)行性左心室舒張功能障礙[25]。除此之外,全身性炎癥導(dǎo)致膠原蛋白和其他基質(zhì)蛋白沉積增加,進(jìn)而導(dǎo)致心肌纖維化和心臟肥大,在HFpEF的病理生理過(guò)程中發(fā)揮關(guān)鍵作用。

    3" 鐵死亡參與HFpEF發(fā)病機(jī)制

    鐵死亡參與HFpEF發(fā)生和發(fā)展,細(xì)胞內(nèi)鐵超載可通過(guò)脂質(zhì)過(guò)氧化、氧化應(yīng)激、炎癥反應(yīng)等途徑對(duì)血管內(nèi)皮細(xì)胞和心肌細(xì)胞造成損傷,在HFpEF的病理生理過(guò)程中發(fā)揮重要作用,見(jiàn)圖1。

    3.1" 鐵代謝穩(wěn)態(tài)異常與HFpEF

    血管內(nèi)皮細(xì)胞損傷是心肌炎癥的關(guān)鍵起始事件。大多數(shù)HFpEF患者存在冠狀動(dòng)脈微血管功能受損[26]。鐵死亡與內(nèi)皮細(xì)胞功能障礙密切相關(guān),鐵超載會(huì)損傷血管內(nèi)皮細(xì)胞,其機(jī)制被認(rèn)為與ROS的過(guò)度產(chǎn)生有關(guān)。He等[27]證實(shí)了鐵超載導(dǎo)致ROS增多對(duì)內(nèi)皮細(xì)胞的損傷,研究發(fā)現(xiàn)過(guò)量的游離Fe2+在細(xì)胞質(zhì)中產(chǎn)生過(guò)量的ROS,從而導(dǎo)致線粒體功能障礙和內(nèi)皮細(xì)胞功能受損。同時(shí),也有研究[28]發(fā)現(xiàn)鐵超載通過(guò)誘導(dǎo)細(xì)胞凋亡和鐵死亡而促進(jìn)內(nèi)皮細(xì)胞的鈣化過(guò)程。ROS在低濃度下發(fā)揮生理作用,其產(chǎn)生增加及抗氧化反應(yīng)不足可促進(jìn)HFpEF的發(fā)生。由于過(guò)量的鐵可通過(guò)芬頓反應(yīng)產(chǎn)生羥基自由基,是ROS的形式之一。并且鐵也是一些參與HFpEF脂質(zhì)過(guò)氧化的酶活性的重要微量營(yíng)養(yǎng)素。因此,鐵超載引起的內(nèi)皮功能障礙可能參與HFpEF的發(fā)生發(fā)展。

    3.2" 巨噬細(xì)胞鐵超載參與心肌炎癥和纖維化

    心肌組織中的巨噬細(xì)胞在鐵穩(wěn)態(tài)中發(fā)揮著核心作用,在正常情況下,巨噬細(xì)胞通過(guò)吞噬衰老和受損的紅細(xì)胞在鐵的再循環(huán)中發(fā)揮重要作用。HF時(shí),受損心肌細(xì)胞釋放的血紅蛋白增加了鐵的來(lái)源,巨噬細(xì)胞吞噬紅細(xì)胞增多,導(dǎo)致巨噬細(xì)胞鐵超載[29]。研究[30]證明,鐵超載破壞了巨噬細(xì)胞極化之間的平衡,可升高M(jìn)1型巨噬細(xì)胞標(biāo)志物的水平,從而導(dǎo)致心肌炎癥和纖維化。同時(shí),研究[31]表明鐵超載誘導(dǎo)的高ROS水平通過(guò)增強(qiáng)p300/CBP乙酰轉(zhuǎn)移酶活性和促進(jìn)p53乙?;?,使巨噬細(xì)胞極化為M1型。這進(jìn)一步支持巨噬細(xì)胞鐵超載可影響心肌炎癥,從而參與HFpEF的發(fā)生發(fā)展。有研究[32]表明鐵死亡相關(guān)的調(diào)節(jié)因子和藥物可激活或抑制心肌纖維化,混合譜系激酶3通過(guò)調(diào)節(jié)NF-κB/NLRP3和JNK/p53信號(hào)通路誘導(dǎo)氧化應(yīng)激,導(dǎo)致慢性HF晚期的心肌細(xì)胞鐵死亡和心肌纖維化。

    3.3" 脂質(zhì)過(guò)氧化與HFpEF

    肥胖和脂質(zhì)代謝紊亂對(duì)HFpEF有很大影響。有研究[33]表明,脂聯(lián)素受體激動(dòng)劑通過(guò)上調(diào)脂聯(lián)素受體和激活相關(guān)下游通路來(lái)促進(jìn)心肌脂肪酸氧化及減少脂肪酸轉(zhuǎn)運(yùn),從而抑制纖維化來(lái)改善小鼠HFpEF的進(jìn)展。Lim等[34]證實(shí),誘導(dǎo)型一氧化氮合酶上調(diào)和一氧化氮(nitric oxide,NO)誘導(dǎo)的亞硝化應(yīng)激引起的高NO水平是HFpEF病理生理學(xué)的關(guān)鍵組成部分,過(guò)量NO誘導(dǎo)的脂質(zhì)過(guò)氧化物堆積可促進(jìn)鐵死亡發(fā)生。進(jìn)一步的研究[35]顯示,由NO驅(qū)動(dòng)的Xbp1s-FoxO1軸是HFpEF發(fā)病機(jī)制中的關(guān)鍵,F(xiàn)oxO1耗竭以及心肌細(xì)胞中未折疊蛋白Xbp1s的過(guò)度表達(dá)能改善HFpEF小鼠的舒張功能障礙和運(yùn)動(dòng)耐量,并減少心肌脂質(zhì)蓄積。此外,在肥胖相關(guān)HFpEF大鼠中觀察到H2O2和LPO終產(chǎn)物丙二醛水平升高[36]。這進(jìn)一步表明LPO可能在HFpEF的病理生理過(guò)程中發(fā)揮重要作用。

    4" 靶向鐵死亡治療HFpEF

    鐵死亡以鐵超載、LPO產(chǎn)物堆積以及不飽和脂肪酸代謝為特征,并且此過(guò)程不能被細(xì)胞凋亡抑制劑或其他細(xì)胞死亡抑制劑所阻斷。在此生物過(guò)程中相關(guān)的炎癥、氧化應(yīng)激以及心肌損傷與HFpEF密不可分,靶向鐵死亡可能是HFpEF潛在的治療方法。

    4.1" 鈉-葡萄糖共轉(zhuǎn)運(yùn)蛋白2抑制劑與HFpEF治療

    研究[37]表明,鈉-葡萄糖共轉(zhuǎn)運(yùn)蛋白2抑制劑恩格列凈可通過(guò)多種通路減輕炎癥和氧化應(yīng)激,改善內(nèi)皮和心肌細(xì)胞功能,降低心室壁硬度,減輕心室重塑。恩格列凈通過(guò)參與NLRP3和MyD88相關(guān)通路抑制阿霉素處理后小鼠心臟組織的鐵死亡,并改善心肌炎癥和纖維化,從而改善心臟功能[38]。Kitakata等[39]的研究表明,糖尿病治療藥物伊格列明不僅可通過(guò)恢復(fù)Xbp1s的表達(dá)而減輕HFpEF小鼠模型的體重和內(nèi)臟脂肪,改善葡萄糖耐量,減少全身炎癥,還可通過(guò)恢復(fù)GPX4的表達(dá)而保護(hù)細(xì)胞免受脂質(zhì)過(guò)氧化作用的影響。這說(shuō)明伊格列明對(duì)HFpEF小鼠心臟功能的改善作用與抑制鐵死亡有關(guān)。更重要的是,Ma等[40]通過(guò)蛋白質(zhì)組學(xué)證明,在HFpEF大鼠模型中,抑制鐵死亡可能是鈉-葡萄糖共轉(zhuǎn)運(yùn)蛋白2抑制劑卡格列凈治療HFpEF大鼠模型的關(guān)鍵機(jī)制,靶向鐵死亡可作為HFpEF的治療策略。

    4.2" 調(diào)控鐵代謝相關(guān)通路與HFpEF治療

    有研究[41]表明,缺鐵是HFpEF患者的常見(jiàn)合并癥,補(bǔ)充羧基麥芽糖鐵可通過(guò)增強(qiáng)內(nèi)皮功能和減少氧自由基的產(chǎn)生而改善鐵蛋白水平和增強(qiáng)心臟舒張功能。除此之外,F(xiàn)ang等[42]已證明鐵蛋白在介導(dǎo)心臟鐵穩(wěn)態(tài)和預(yù)防心肌細(xì)胞鐵死亡中發(fā)揮重要作用。心肌纖維化在舒張功能障礙的發(fā)展中起重要作用,并導(dǎo)致HFpEF發(fā)生。沉默信息調(diào)節(jié)因子3(silence information regulator 3,SIRT3)是心肌纖維化和HF的潛在靶點(diǎn)。一項(xiàng)研究[43]數(shù)據(jù)顯示,敲除SIRT3導(dǎo)致小鼠心臟中鐵死亡顯著增加,GPX4下調(diào)。此外,elabela還可通過(guò)調(diào)節(jié)IL-6/STAT3/GPX4信號(hào)通路,拮抗血管緊張素Ⅱ介導(dǎo)的心臟微血管內(nèi)皮細(xì)胞鐵超載、心肌纖維化和心功能不全。

    有研究[44]表明,左西孟旦長(zhǎng)期給藥可通過(guò)激活連接蛋白43介導(dǎo)的線粒體保護(hù)作用和抑制心肌細(xì)胞鐵死亡來(lái)改善HFpEF伴代謝綜合征,如肥胖和高血壓小鼠模型的心臟功能。α-硫辛酸是一種抗氧化劑,能通過(guò)清除多種ROS物質(zhì)、螯合二價(jià)過(guò)渡金屬以及再生一些內(nèi)源性抗氧化劑的還原形式(如谷胱甘肽、維生素C和E),起到抗氧化作用。脂質(zhì)運(yùn)載蛋白是一種脂肪因子,可通過(guò)與多種細(xì)胞內(nèi)信號(hào)通路相互作用來(lái)調(diào)節(jié)心室重塑[45]。在實(shí)驗(yàn)大鼠模型中發(fā)現(xiàn),脂聯(lián)素缺乏可增加舒張性HF和心室舒張功能障礙的傾向[46]。

    5" 結(jié)論與展望

    鐵死亡在心血管疾病的發(fā)病中具有重要作用,靶向鐵死亡有望成為心血管疾病的潛在治療方法。HFpEF患病率不斷增加,發(fā)病率和死亡率也明顯升高,且很少有治療被證明有效。卡格列凈可通過(guò)阻斷鐵死亡治療HFpEF,表明干預(yù)鐵死亡可作為一種新的嘗試。鐵死亡及其調(diào)控過(guò)程與HFpEF的發(fā)生和發(fā)展密切相關(guān),需進(jìn)一步研究闡明鐵死亡與HFpEF之間的因果關(guān)系和具體機(jī)制,并為靶向鐵死亡治療HFpEF提供機(jī)會(huì)。

    參考文獻(xiàn)

    [1]Chiorescu RM,Lazar RD,Ruda A,et al.Current insights and future directions in the treatment of heart failure with preserved ejection fraction[J].Int J Mol Sci,2023,25(1):440.

    [2]Dixon SJ,Lemberg KM,Lamprecht MR,et al.Ferroptosis:an iron-dependent form of nonapoptotic cell death[J].Cell,2012,149(5):1060-1072.

    [3]Masenga SK,Kabwe LS,Chakulya M,et al.Mechanisms of oxidative stress in metabolic syndrome[J].Int J Mol Sci,2023,24(9):7879.

    [4]Ovchinnikov AG,Arefieva TI,Potekhina AV,et al.The molecular and cellular mechanisms associated with a microvascular inflammation in the pathogenesis of heart failure with preserved ejection fraction[J].Acta Naturae,2020,12(2):40-51.

    [5]Liang D,Minikes AM,Jiang X.Ferroptosis at the intersection of lipid metabolism and cellular signaling[J].Mol Cell,2022,82(12):2215-2227.

    [6]Bebber CM,Müller F,Prieto Clemente L,et al.Ferroptosis in cancer cell biology[J].Cancers (Basel),2020,12(1):164.

    [7]Hassannia B,Vandenabeele P,Vanden Berghe T.Targeting ferroptosis to iron out cancer[J].Cancer Cell,2019,35(6):830-849.

    [8]Li C,Zhang Y,Liu J,et al.Mitochondrial DNA stress triggers autophagy-dependent ferroptotic death[J].Autophagy,2021,17(4):948-960.

    [9]Yan B,Ai Y,Sun Q,et al.Membrane damage during ferroptosis is caused by oxidation of phospholipids catalyzed by the oxidoreductases POR and CYB5R1[J].Mol Cell,2021,81(2):355-369.e10.

    [10]Ingold I,Berndt C,Schmitt S,et al.Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis[J].Cell,2018,172(3):409-422.e21.

    [11]Flores-romero H,Ros U,García-sáez AJ.A lipid perspective on regulated cell death[J].Int Rev Cell Mol Biol,2020,351:197-236.

    [12]Suzuki S,Venkatesh D,Tanaka T,et al.GLS2 shapes ferroptosis in hepatocellular carcinoma[J].Oncotarget,2023,14:900-903.

    [13]Mishra S,Kass DA.Cellular and molecular pathobiology of heart failure with preserved ejection fraction[J].Nat Rev Cardiol,2021,18(6):400-423.

    [14]Ross L,Patel S,Stevens W,et al.The clinical implications of left ventricular diastolic dysfunction in systemic sclerosis[J].Clin Exp Rheumatol,2022,40(10):1986-1992.

    [15]Koutroumpakis E,Kaur R,Taegtmeyer H,et al.Obesity and heart failure with preserved ejection fraction[J].Heart Fail Clin,2021,17(3):345-356.

    [16]Patel RB,Shah SJ,F(xiàn)onarow GC,et al.Designing future clinical trials in heart failure with preserved ejection fraction:lessons from TOPCAT[J].Curr Heart Fail Rep,2017,14(4):217-222.

    [17]Yano M,Nishino M,Kawanami S,et al.Impact of structural abnormalities in left ventricle and left atrium on clinical outcomes in heart failure with preserved ejection fraction[J].Int Heart J,2023,64(5):875-884.

    [18]Adler J,Gerhardt F,Wissmüller M,et al.Pulmonary hypertension associated with left-sided heart failure[J].Curr Opin Cardiol,2020,35(6):610-619.

    [19]Guazzi M,Ghio S,Adir Y.Pulmonary hypertension in HFpEF and HFrEF:JACC review topic of the week[J].J Am Coll Cardiol,2020,76(9):1102-1111.

    [20]van Wezenbeek J,Kianzad A,van de Bovenkamp A,et al.Right ventricular and right atrial function are less compromised in pulmonary hypertension secondary to heart failure with preserved ejection fraction:a comparison with pulmonary arterial hypertension with similar pressure overload[J].Circ Heart Fail,2022,15(2):e008726.

    [21]Omote K,Sorimachi H,Obokata M,et al.Pulmonary vascular disease in pulmonary hypertension due to left heart disease:pathophysiologic implications[J].Eur Heart J,2022,43(36):3417-3431.

    [22]Melenovsky V,Hwang SJ,Redfield MM,et al.Left atrial remodeling and function in advanced heart failure with preserved or reduced ejection fraction[J].Circ Heart Fail,2015,8(2):295-303.

    [23]Kosmala W.Heart failure with preserved ejection fraction and atrial fibrillation:how to fight allied enemies[J].J Am Coll Cardiol,2020,76(9):1065-1067.

    [24]Zhang P,Chamberlain AM,Hodge DO,et al.Outcomes of incident atrial fibrillation in heart failure with preserved or reduced ejection fraction:a community-based study[J].J Cardiovasc Electrophysiol,2020,31(9):2275-2283.

    [25]Hulsmans M,Sager HB,Roh JD,et al.Cardiac macrophages promote diastolic dysfunction[J].J Exp Med,2018,215(2):423-440.

    [26]Bai T,Li M,Liu Y,et al.Inhibition of ferroptosis alleviates atherosclerosis through attenuating lipid peroxidation and endothelial dysfunction in mouse aortic endothelial cell[J].Free Radic Biol Med,2020,160:92-102.

    [27]He H,Qiao Y,Zhou Q,et al.Iron overload damages the endothelial mitochondria via the ROS/ADMA/DDAHII/eNOS/NO pathway[J].Oxid Med Cell Longev,2019,2019:2340392.

    [28]Zhao LL,Yang N,Song YQ,et al.Effect of iron overload on endothelial cell calcification and its mechanism[J].Ann Transl Med,2021,9(22):1658.

    [29]Youssef LA,Rebbaa A,Pampou S,et al.Increased erythrophagocytosis induces ferroptosis in red pulp macrophages in a mouse model of transfusion[J].Blood,2018,131(23):2581-2593.

    [30]Handa P,Thomas S,Morgan-stevenson V,et al.Iron alters macrophage polarization status and leads to steatohepatitis and fibrogenesis[J].J Leukoc Biol,2019,105(5):1015-1026.

    [31]Zhou Y,Que KT,Zhang Z,et al.Iron overloaded polarizes macrophage to proinflammation phenotype through ROS/acetyl-p53 pathway[J].Cancer Med,2018,7(8):4012-4022.

    [32]Wang J,Deng B,Liu Q,et al.Pyroptosis and ferroptosis induced by mixed lineage kinase 3 (MLK3) signaling in cardiomyocytes are essential for myocardial fibrosis in response to pressure overload[J].Cell Death Dis,2020,11(7):574.

    [33]Tan W,Wang Y,Cheng S,et al.AdipoRon ameliorates the progression of heart failure with preserved ejection fraction via mitigating lipid accumulation and fibrosis[J].J Adv Res,2024:S2090-1232(24)00077-8.

    [34]Lim GB.New mouse model reveals nitrosative stress as a novel driver of HFpEF[J].Nat Rev Cardiol,2019,16(7):383.

    [35]Schiattarella GG,Altamirano F,Kim SY,et al.Xbp1s-FoxO1 axis governs lipid accumulation and contractile performance in heart failure with preserved ejection fraction[J].Nat Commun,2021,12(1):1684.

    [36]Pop C,

    瘙 塁 tefan MG,Muntean DM,et al.Protective effects of a discontinuous treatment with alpha-lipoic acid in obesity-related heart failure with preserved ejection fraction,in rats[J].Antioxidants (Basel),2020,9(11):1073.

    [37]Kolijn D,Pabel S,Tian Y,et al.Empagliflozin improves endothelial and cardiomyocyte function in human heart failure with preserved ejection fraction via reduced pro-inflammatory-oxidative pathways and protein kinase Gα oxidation[J].Cardiovasc Res,2021,117(2):495-507.

    [38]Quagliariello V,de Laurentiis M,Rea D,et al.The SGLT-2 inhibitor empagliflozin improves myocardial strain,reduces cardiac fibrosis and pro-inflammatory cytokines in non-diabetic mice treated with doxorubicin[J].Cardiovasc Diabetol,2021,20(1):150.

    [39]Kitakata H,Endo J,Hashimoto S,et al.Imeglimin prevents heart failure with preserved ejection fraction by recovering the impaired unfolded protein response in mice subjected to cardiometabolic stress[J].Biochem Biophys Res Commun,2021,572:185-190.

    [40]Ma S,He LL,Zhang GR,et al.Canagliflozin mitigates ferroptosis and ameliorates heart failure in rats with preserved ejection fraction[J].Naunyn Schmiedebergs Arch Pharmacol,2022,395(8):945-962.

    [41]Mollace A,Macrì R,Mollace R,et al.Effect of ferric carboxymaltose supplementation in patients with heart failure with preserved ejection fraction:role of attenuated oxidative stress and improved endothelial function[J].Nutrients,2022,14(23):5057.

    [42]Fang X,Cai Z,Wang H,et al.Loss of cardiac ferritin H facilitates cardiomyopathy via Slc7a11-mediated ferroptosis[J].Circ Res,2020,127(4):486-501.

    [43]Zhang Z,Tang J,Song J,et al.Elabela alleviates ferroptosis,myocardial remodeling,fibrosis and heart dysfunction in hypertensive mice by modulating the IL-6/STAT3/GPX4 signaling[J].Free Radi Biol and Med,2022,181:130-142.

    [44]Zhang LL,Chen GH,Tang RJ,et al.Levosimendan reverses cardiac malfunction and cardiomyocyte ferroptosis during heart failure with preserved ejection fraction via connexin 43 signaling activation[J].Cardiovasc Drugs Ther,2024,38(4):705-718.

    [45]Zhang ZZ,Wang W,Jin HY,et al.Apelin is a negative regulator of angiotensin Ⅱ-mediated adverse myocardial remodeling and dysfunction[J].Hypertension,2017,70(6):1165-1175.

    [46]Sam F,Duhaney TA,Sato K,et al.Adiponectin deficiency,diastolic dysfunction,and diastolic heart failure[J].Endocrinology,2010,151(1):322-331.

    收稿日期:2024-01-05

    猜你喜歡
    過(guò)氧化脂質(zhì)內(nèi)皮細(xì)胞
    脂質(zhì)過(guò)氧化在慢性腎臟病、急性腎損傷、腎細(xì)胞癌中的作用
    淺議角膜內(nèi)皮細(xì)胞檢查
    復(fù)方一枝蒿提取物固體脂質(zhì)納米粒的制備
    中成藥(2018年9期)2018-10-09 07:18:36
    白楊素固體脂質(zhì)納米粒的制備及其藥動(dòng)學(xué)行為
    中成藥(2018年1期)2018-02-02 07:19:53
    西洋參防護(hù)X線輻射對(duì)小鼠肺的過(guò)氧化損傷
    中成藥(2017年12期)2018-01-19 02:06:48
    馬錢(qián)子堿固體脂質(zhì)納米粒在小鼠體內(nèi)的組織分布
    中成藥(2017年4期)2017-05-17 06:09:26
    雌激素治療保護(hù)去卵巢對(duì)血管內(nèi)皮細(xì)胞損傷的初步機(jī)制
    細(xì)胞微泡miRNA對(duì)內(nèi)皮細(xì)胞的調(diào)控
    過(guò)氧化硫酸鈉在洗衣粉中的應(yīng)用
    痰瘀與血管內(nèi)皮細(xì)胞的關(guān)系研究
    康平县| 象州县| 鸡西市| 汤原县| 宣汉县| 西安市| 石城县| 通城县| 达孜县| 泾川县| 东乌| 宁化县| 灌南县| 丰都县| 昌平区| 顺义区| 涿州市| 禄丰县| 青州市| 平山县| 石景山区| 海原县| 高要市| 海口市| 正安县| 永修县| 伊金霍洛旗| 霍州市| 武陟县| 普定县| 拜泉县| 郧西县| 资阳市| 财经| 绵阳市| 玉树县| 丰镇市| 墨江| 肇东市| 海淀区| 沂水县|