背景:腸道菌群紊亂以及腸道屏障受損導(dǎo)致的細(xì)菌移位參與了急性胰腺炎(AP)的重癥化進(jìn)程。抗菌肽參與調(diào)節(jié)腸道菌群,但其在AP病程中的變化和作用尚不明確。目的:探究3種經(jīng)典AP模型中回腸和胰腺抗菌肽的動(dòng)態(tài)變化和意義。方法:構(gòu)建雨蛙肽+脂多糖(CAE+LPS)、?;悄懰徕c(N?Tau)和L?精氨酸(L?Arg)AP小鼠模型,評(píng)估胰腺和回腸組織病理學(xué)變化,以real?time PCR檢測(cè)促炎細(xì)胞因子和抗菌肽,包括溶菌酶(LZM)、分泌型磷脂酶A2(sPLA2)、血管生成素4(Ang4)、再生胰島衍生蛋白3(REG3)家族、β防御素家族、cathelicidin相關(guān)抗菌肽(CRAMP)、糖蛋白2(GP2)在回腸和(或)胰腺組織中的表達(dá),分析抗菌肽表達(dá)與胰腺、回腸病理損傷的相關(guān)性。結(jié)果:3組AP模型組胰腺和回腸組織在各時(shí)間點(diǎn)均可觀察到不同程度的病理損傷;在72 h內(nèi),CAE+LPS和N?Tau模型組病理損傷達(dá)峰值后開始減輕,L?Arg模型組病理損傷則逐漸加重。與相應(yīng)對(duì)照組相比,3組AP模型組回腸組織LZM、sPLA2、Ang4和胰腺組織CRAMP、GP2、β防御素mRNA表達(dá)整體上顯著下調(diào)(P均lt;0.05),CAE+LPS和N?Tau模型組呈先下降后回升趨勢(shì),L?Arg模型組則持續(xù)下降;回腸組織REG3β、REG3γ mRNA表達(dá)在48 h或24 h顯著上調(diào)達(dá)峰值后于72 h顯著下調(diào)(P均lt;0.05),胰腺組織兩者表達(dá)整體上顯著上調(diào)(P均lt;0.05),但CAE+LPS和N?Tau模型組72 h時(shí)已回落;回腸組織β防御素mRNA表達(dá)在病程早期(12 h)顯著上調(diào)(P均lt;0.05)后逐漸下降。Spearman相關(guān)系數(shù)分析表明,3種造模方式下,回腸LZM、sPLA2、Ang4和胰腺CRAMP、GP2、β防御素表達(dá)與胰腺、回腸病理損傷呈顯著負(fù)相關(guān)(P均lt;0.05),胰腺REG3β表達(dá)則與胰腺、回腸病理損傷呈顯著正相關(guān)(P均lt;0.05)。結(jié)論:在3種經(jīng)典AP模型中,回腸LZM、sPLA2、Ang4和胰腺CRAMP、GP2、β防御素家族、REG3β表達(dá)均隨AP病情嚴(yán)重程度呈動(dòng)態(tài)變化,回腸和胰腺抗菌肽可能通過調(diào)節(jié)腸道微生態(tài)影響AP時(shí)的胰腺和腸道損傷。
關(guān)鍵詞 急性胰腺炎; 腸道微生態(tài); 抗菌肽; 疾病模型,動(dòng)物
Dynamic Changes of Antimicrobial Peptides in Ileum and Pancreas of Three Classical Acute Pancreatitis Models HUANG Huizhen1,3, GAO Wei2, YIN Nuoming2,3, HUANG Chunlan2,3, MEI Qixiang2,3, ZENG Yue1,2,3. 1Shanghai General Hospital of Nanjing Medical University, Shanghai (200080); 2Department of Gastroenterology, 3Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai
Co?correspondence to: MEI Qixiang, Email: poise1236@126.com; ZENG Yue, Email: carrie_1004@sjtu.edu.cn
Background: Intestinal microbiota dysbiosis and impaired intestinal barrier, leading to bacterial translocation, are involved in acute pancreatitis (AP) exacerbation. Antimicrobial peptides participate in the regulation of intestinal microbiota, yet their changes and roles in the course of AP are unclear. Aims: To investigate the dynamic changes and significance of antimicrobial peptides in the ileum and pancreas among three classical AP models. Methods: Three AP mouse models were established by using cathelicidin plus lipopolysaccharide (CAE+LPS), sodium taurocholate (N?Tau) and L?arginine (L?Arg), respectively. The pathological changes of pancreatic and ileal tissues were observed and scored. Real?time PCR was applied to detect the expression levels of the proinflammatory cytokines, and antimicrobial peptides including lysozyme (LZM), secretory phospholipase A2 (sPLA2), angiogenin 4 (Ang4), regenerating islet?derived protein 3 (REG3) family, β?defensin family, cathelicidin?related antimicrobial peptide (CRAMP), and glycoprotein 2 (GP2) in ileum and/or pancreas. The association between expressions of antimicrobial peptides and the injuries of pancreas and ileum was analyzed. Results: Pancreatic and ileal injuries could be observed in all three AP models in different time points with various degrees. The pathological scores of" the CAE+LPS and N?Tau models reached the highest level and then declined from 0?72 h, while those of L?Arg model progressively increased within 72 hours. Compared with the corresponding controls, the mRNA levels of LZM, sPLA2, and Ang4 in ileal tissue, and the mRNA levels of CRAMP, GP2, and" β?defensins in pancreatic tissue, were generally downregulated in all three AP models (all Plt;0.05). CAE+LPS and N?Tau models showed a trend of initial decrease followed by partial recovery, while L?Arg model exhibited a gradual downregulation trend. The mRNA levels of REG3β and REG3γ in ileum upregulated and reached the peak at 48 h or 24 h and downregulated significantly at 72 h in all three AP models (all Plt;0.05); while in pancreatic tissue, both REG3β and REG3γ were generally upregulated in all three AP models (all Plt;0.05), but fell back in CAE+LPS and N?Tau models at 72 h. The mRNA levels of ileal β?defensins upregulated significantly in the early stage of the disease (12 h) in all three AP models (all Plt;0.05), and then gradually decreased. Spearman correlation coefficient analysis showed that the expressions of ileal LZM, sPLA2, and Ang4, as well as the pancreatic CRAMP, GP2, and β?defensins, were significantly negatively correlated with the pancreatic and ileal pathological scores in all three AP models (all Plt;0.05); but the expression of REG3β in the pancreas was significantly positively correlated with the pancreatic and ileal pathological scores (all Plt;0.05). Conclusions: The expressions of LZM, sPLA2, and Ang4 in the ileum, as well as the expressions of CRAMP, GP2, β?defensin family, and REG3β in the pancreas of the three classical AP models, dynamically changed with the severity of the disease. Ileal and pancreatic antimicrobial peptides may affect the injuries of pancreas and intestine during AP by regulating intestinal microbiota.
Key words Acute Pancreatitis; Gut Microbiota; Antimicrobial Peptides; Disease Models, Animal
急性胰腺炎(acute pancreatitis, AP)是一種常見的胃腸道疾病,約1/5的患者可發(fā)展為重癥,重癥急性胰腺炎(severe acute pancreatitis, SAP)患者死亡率高達(dá)20%[1]。AP患者紊亂的腸道菌群通過受損的腸道屏障移位至胰腺,導(dǎo)致胰腺壞死感染和繼發(fā)多器官功能衰竭,是SAP患者死亡的主要原因之一[2?4]。有研究[3]發(fā)現(xiàn)AP患者的胰腺壞死感染組織中存在消化道共生菌定植,如葡萄球菌、腸球菌、大腸埃希菌等,其中腸球菌豐度與住院時(shí)間呈顯著正相關(guān),提示腸道菌群在AP病程中可能發(fā)揮重要作用。
腸道分泌的抗菌肽又稱宿主防御肽,是機(jī)體固有免疫系統(tǒng)的重要組成部分[5],參與抵御致病菌入侵以及宿主與腸道共生菌內(nèi)穩(wěn)態(tài)的維持[6],可通過膜溶解作用、抑制細(xì)胞壁合成、形成網(wǎng)狀結(jié)構(gòu)捕獲細(xì)菌等方式發(fā)揮廣譜抗菌作用[7]?;啬cPaneth細(xì)胞是腸道中抗菌肽的主要來源,可表達(dá)、分泌包括溶菌酶(lysozyme, LZM)、分泌型磷脂酶A2(secretory phospholipase A2, sPLA2)、血管生成素4(angiogenin 4, Ang4)、再生胰島衍生蛋白(regenerating islet?derived protein, REG)3β和REG3γ在內(nèi)的抗菌肽[8],其他在腸道中表達(dá)的抗菌肽還包括人β防御素(human β defensin, hBD)1、hBD2和hBD3,分別對(duì)應(yīng)小鼠同源基因β防御素(mouse β defensin, mBD)1、mBD3/mBD4和mBD14[9?12]。有研究[13]發(fā)現(xiàn),AP患者和小鼠模型均存在Paneth細(xì)胞功能障礙,Paneth細(xì)胞來源的抗菌肽表達(dá)減少,予AP小鼠模型LZM灌胃可部分恢復(fù)Paneth細(xì)胞功能,改善腸道菌群紊亂,進(jìn)而減輕AP病情嚴(yán)重程度。
隨著研究的不斷深入,胰腺來源的抗菌肽也被證實(shí)參與調(diào)控腸道菌群,影響腸道免疫穩(wěn)態(tài)[14]。胰腺來源的抗菌肽約占胰液蛋白質(zhì)的10%[14]。hBD1、hBD2、糖蛋白2(glycoprotein 2, GP2)、cathelicidin相關(guān)抗菌肽(cathelicidin?related antimicrobial peptide, CRAMP)、REG3β、REG3γ等抗菌肽在胰腺組織中存在表達(dá)[15?18]。早在2010年,Tiszlavicz等[19]的研究即發(fā)現(xiàn)hBD1、hBD2基因多態(tài)性與SAP風(fēng)險(xiǎn)增加有關(guān)。2017年Ahuja等[20]報(bào)道,小鼠胰腺腺泡細(xì)胞分泌功能受損后,由其分泌至腸道的包括CRAMP在內(nèi)的抗菌肽減少,腸道中定植和移位的機(jī)會(huì)致病菌增加,隨后出現(xiàn)自發(fā)性腸道炎癥和全身感染,補(bǔ)充CRAMP則可逆轉(zhuǎn)上述病理改變。由此推測(cè)抗菌肽可能是介導(dǎo)腸道與胰腺之間交互作用的關(guān)鍵介質(zhì),通過影響腸道微生態(tài)以及機(jī)會(huì)致病菌的黏附、定植和移位,在AP病程中發(fā)揮重要作用。
雨蛙肽(caerulein, CAE)聯(lián)合脂多糖(lipopoly?saccharide, LPS)、?;悄懰徕c(sodium taurocholate, N?Tau)和L?精氨酸(L?arginine, L?Arg)模型是3種經(jīng)典AP模型,本研究旨在觀察回腸和胰腺抗菌肽在這3種模型中表達(dá)的動(dòng)態(tài)變化,及其與AP嚴(yán)重程度的相關(guān)性,以期為探索抗菌肽在AP中的作用提供線索。
材料與方法
一、實(shí)驗(yàn)動(dòng)物和主要試劑
SPF級(jí)雄性C57BL/6小鼠購自上海斯萊克實(shí)驗(yàn)動(dòng)物有限責(zé)任公司,6~8周齡,體質(zhì)量20~22 g,實(shí)驗(yàn)前于22~26 ℃動(dòng)物房飼養(yǎng)1周。動(dòng)物實(shí)驗(yàn)通過上海交通大學(xué)醫(yī)學(xué)院倫理委員會(huì)審核批準(zhǔn)(倫理編號(hào):2020AW095)。CAE(MedChemExpress LLC);LPS、N?Tau、L?Arg(Sigma?Aldrich, Merck KGaA);即用型三溴乙醇溶液(南京愛貝生物科技有限公司);RNA提取試劑盒(EZBioscience);HyperScript Ⅲ第一鏈cDNA合成試劑盒、SYBR qPCR Mix[新貝(上海)生物科技有限公司]。
二、研究方法
1. 動(dòng)物分組和模型制備:75只C57BL/6小鼠采用隨機(jī)數(shù)字表法分為CAE+LPS模型組、N?Tau模型組和L?Arg模型組,每一模型組包含4個(gè)時(shí)間點(diǎn)亞組(12 h、24 h、48 h、72 h),并對(duì)應(yīng)一組對(duì)照組,即共15個(gè)小組,每組5只小鼠。①CAE+LPS模型組小鼠腹腔注射CAE 100 μg/kg,1次/h,共10次,第10次注射的同時(shí)注射1次LPS 5 mg/kg[21],相應(yīng)對(duì)照組小鼠腹腔注射等體積0.9% NaCl溶液。②N?Tau模型組小鼠經(jīng)三溴乙醇溶液腹腔注射麻醉后開腹,逆行膽胰管注射2.5% N?Tau 50 μL[22],相應(yīng)對(duì)照組小鼠僅行手術(shù)操作,未注射藥物。③L?Arg模型組小鼠腹腔注射10% L?Arg 4.5 g/kg 2次(間隔1 h)[23],相應(yīng)對(duì)照組小鼠腹腔注射等體積0.9% NaCl溶液。造模結(jié)束后,模型組小鼠分別于12 h、24 h、48 h和72 h處死,3組對(duì)照組小鼠均于12 h處死,取胰腺和末端回腸組織,部分組織以4%多聚甲醛溶液固定,其余組織-80 ℃凍存。
2. 組織病理學(xué)檢查:胰腺和回腸組織經(jīng)4%多聚甲醛溶液固定、脫水、石蠟包埋、切片后行HE 染色,光學(xué)顯微鏡下觀察組織病理學(xué)變化。胰腺組織病理學(xué)評(píng)分參考Schmidt 標(biāo)準(zhǔn)[24],從水腫、出血、壞死、炎癥細(xì)胞浸潤(rùn)四個(gè)方面進(jìn)行評(píng)分;回腸組織病理學(xué)評(píng)分參考Chiu’s標(biāo)準(zhǔn)[25],從黏膜損傷、炎癥反應(yīng)、充血、出血等方面進(jìn)行評(píng)分。
3. Real?time PCR:分別提取胰腺和回腸組織總RNA,采用real?time PCR檢測(cè)促炎細(xì)胞因子和抗菌肽表達(dá),包括腫瘤壞死因子?α(tumor necrosis factor?α, TNF?α)、白細(xì)胞介素(interleukin, IL)?6、IL?1β、LZM、sPLA2、Ang4、CRAMP、GP2、REG3β、REG3γ、mBD1、mBD3、mBD4、mBD14。操作步驟參照試劑盒說明書,PCR引物由新貝(上海)生物科技有限公司設(shè)計(jì)、合成(表1)。以β?actin為內(nèi)參,2-△△Ct法計(jì)算目的基因mRNA相對(duì)表達(dá)量。
三、統(tǒng)計(jì)學(xué)分析
應(yīng)用GraphPad Prism 8.0軟件進(jìn)行統(tǒng)計(jì)分析。計(jì)量資料以x±s描述,符合正態(tài)分布者兩組間比較采用獨(dú)立樣本t檢驗(yàn),多組間比較采用單因素方差分析,不符合正態(tài)分布者兩組間比較采用Mann?Whitney U檢驗(yàn),多組間比較采用 Kruskal?Wallis H檢驗(yàn);相關(guān)性分析采用Spearman相關(guān)系數(shù)。Plt;0.05為差異有統(tǒng)計(jì)學(xué)意義。
結(jié) 果
一、胰腺和回腸組織病理學(xué)改變
1. 胰腺組織病理學(xué)和促炎細(xì)胞因子表達(dá):對(duì)照組小鼠胰腺組織無明顯病理損傷,3組AP模型小鼠各時(shí)間點(diǎn)均可觀察到胰腺組織存在不同程度的水腫、出血、壞死和炎癥細(xì)胞浸潤(rùn),組織病理學(xué)評(píng)分均顯著高于相應(yīng)對(duì)照組(P均lt;0.05;圖1A)。CAE+LPS和N?Tau模型組胰腺病理損傷在72 h內(nèi)呈先加重后減輕趨勢(shì),組織病理學(xué)評(píng)分于24~48 h達(dá)峰值,之后開始下降;L?Arg模型組胰腺病理損傷則在72 h內(nèi)逐漸加重。
與相應(yīng)對(duì)照組相比,除N?Tau模型組72 h亞組和L?Arg模型組12 h亞組TNF?α mRNA表達(dá)無明顯上調(diào)外,3組AP模型組各時(shí)間點(diǎn)胰腺組織TNF?α、IL?6、IL?1β mRNA表達(dá)均顯著升高(P均lt;0.05;圖1B);CAE+LPS和N?Tau模型組于48 h達(dá)峰值,72 h時(shí)已較48 h顯著下降,L?Arg模型組則于72 h達(dá)峰值。
2. 回腸組織病理學(xué)和促炎細(xì)胞因子表達(dá):對(duì)照組小鼠回腸組織無明顯病理損傷,3組AP模型小鼠各時(shí)間點(diǎn)均可觀察到不同程度的黏膜損傷,存在腸上皮和黏膜固有層充血、出血、炎癥細(xì)胞浸潤(rùn)等病理改變,組織病理學(xué)評(píng)分均顯著高于相應(yīng)對(duì)照組(P均lt;0.05;圖2A)。CAE+LPS和N?Tau模型組回腸病理損傷在72 h內(nèi)呈先加重后減輕趨勢(shì),組織病理學(xué)評(píng)分于24~48 h達(dá)峰值,之后開始下降;L?Arg模型組回腸病理損傷則在72 h內(nèi)逐漸加重。
與相應(yīng)對(duì)照組相比,除L?Arg模型組12 h和24 h亞組TNF?α mRNA表達(dá)無明顯上調(diào)外,3組AP模型組各時(shí)間點(diǎn)回腸組織TNF?α、IL?6、IL?1β mRNA表達(dá)均顯著升高(P均lt;0.05;圖2B);CAE+LPS和N?Tau模型組于48 h達(dá)峰值,72 h時(shí)已較48 h顯著下降,L?Arg模型組則于72 h達(dá)峰值。
二、回腸組織抗菌肽表達(dá)動(dòng)態(tài)變化
與相應(yīng)對(duì)照組相比, CAE+LPS(24 h、48 h)、N?Tau(12 h、24 h、48 h、72 h)和L?Arg模型組(24 h、48 h、72 h)回腸組織中LZM、sPLA2、Ang4 mRNA表達(dá)顯著下調(diào)(P均lt;0.05;圖3A)。在CAE+LPS和N?Tau模型組中,三者表達(dá)呈先下降后回升趨勢(shì),于48 h達(dá)最低值后開始回升,其中N?Tau模型組LZM、sPLA2 mRNA表達(dá)在72 h時(shí)較48 h回升顯著,CAE+LPS模型組Ang4 mRNA表達(dá)在72 h時(shí)較48 h回升顯著;L?Arg模型組三者表達(dá)均呈逐漸下降趨勢(shì),于72 h達(dá)最低值。
REG3β、REG3γ mRNA在3組AP模型組回腸組織中的表達(dá)均呈先上升后下降趨勢(shì)。與相應(yīng)對(duì)照組相比,CAE+LPS和N?Tau模型組兩者表達(dá)均于48 h顯著上調(diào)達(dá)峰值,72 h則顯著下調(diào);而在L?Arg模型組,則于24 h顯著上調(diào)達(dá)峰值,72 h則顯著下調(diào)(P均lt;0.05;圖3B)。
與相應(yīng)對(duì)照組相比,mBD1、mBD3、mBD4、mBD14 mRNA在3組AP模型組回腸組織中的表達(dá)均呈早期(12 h)顯著上調(diào)(P均lt;0.05;圖3C)后逐漸下降的趨勢(shì),N?Tau和L?Arg模型組48 h、72 h時(shí)β防御素家族mRNA表達(dá)多已顯著低于相應(yīng)對(duì)照組。
三、胰腺組織抗菌肽表達(dá)動(dòng)態(tài)變化
與相應(yīng)對(duì)照組相比,除N?Tau模型組12 h亞組CRAMP mRNA表達(dá)無明顯下調(diào)外,3組AP模型組各時(shí)間點(diǎn)胰腺組織CRAMP、GP2 mRNA表達(dá)均顯著降低(P均lt;0.05;圖4A);CAE+LPS和N?Tau模型組呈先下降后回升趨勢(shì),于48 h達(dá)最低值后開始回升,L?Arg模型組則呈逐漸下降趨勢(shì),于72 h達(dá)最低值。
與相應(yīng)對(duì)照組相比,3組AP模型組胰腺組織REG3β、REG3γ mRNA表達(dá)在24 h、48 h、72 h均顯著上調(diào)(P均lt;0.05;圖4B);CAE+LPS和N?Tau模型組呈先上升后下降趨勢(shì),于48 h達(dá)峰值后開始下降,L?Arg模型組則呈逐漸上升趨勢(shì),于72 h達(dá)峰值。
與相應(yīng)對(duì)照組相比,3組AP模型組胰腺組織mBD1、mBD3、mBD4 mRNA表達(dá)均顯著下調(diào)(P均lt;0.05;圖4C);CAE+LPS和N?Tau模型組呈先下降后回升趨勢(shì),于48 h達(dá)最低值后開始回升,L?Arg模型組則呈逐漸下降趨勢(shì),于72 h達(dá)最低值。
四、相關(guān)性分析
1. 回腸組織抗菌肽:分析小鼠回腸組織抗菌肽mRNA表達(dá)與胰腺、回腸組織促炎細(xì)胞因子mRNA表達(dá)和組織病理學(xué)評(píng)分的相關(guān)性,結(jié)果如下。
①除CAE+LPS模型組回腸sPLA2與胰腺TNF?α之間無相關(guān)性外,3組AP模型組回腸LZM、sPLA2、Ang4表達(dá)與胰腺、回腸促炎細(xì)胞因子和組織病理學(xué)評(píng)分均呈顯著負(fù)相關(guān)(P均lt;0.05;圖5A?5C)。
②N?Tau模型組回腸REG3β、REG3γ表達(dá)與胰腺、回腸促炎細(xì)胞因子和胰腺組織病理學(xué)評(píng)分呈顯著正相關(guān)(P均lt;0.05;圖5B);而在CAE+LPS模型組,兩者僅與胰腺、回腸IL?6表達(dá)呈顯著正相關(guān)(P均lt;0.05;圖5A);L?Arg模型組兩者與胰腺、回腸促炎細(xì)胞因子和組織病理學(xué)評(píng)分均呈顯著負(fù)相關(guān)(P均lt;0.05;圖5C)。
③CAE+LPS模型組回腸β防御素家族表達(dá)與回腸組織病理學(xué)評(píng)分呈顯著正相關(guān)(P均lt;0.05),與胰腺組織病理學(xué)評(píng)分無相關(guān)性(圖5A);而在N?Tau模型組,僅mBD3、mBD4表達(dá)與回腸組織病理學(xué)評(píng)分呈顯著負(fù)相關(guān)(P均lt;0.05;圖5B);L?Arg模型組β防御素家族表達(dá)與胰腺、回腸促炎細(xì)胞因子和組織病理學(xué)評(píng)分均呈顯著負(fù)相關(guān)(P均lt;0.05;圖5C)。
2. 胰腺組織抗菌肽:分析小鼠胰腺組織抗菌肽mRNA表達(dá)與胰腺、回腸組織促炎細(xì)胞因子mRNA表達(dá)和組織病理學(xué)評(píng)分的相關(guān)性,結(jié)果如下。
①3組AP模型組胰腺CRAMP、GP2、β防御素家族表達(dá)均與胰腺、回腸促炎細(xì)胞因子和組織病理學(xué)評(píng)分呈顯著負(fù)相關(guān)(P均lt;0.05;圖5A?5C)。
②CAE+LPS和N?Tau模型組胰腺REG3β、REG3γ表達(dá)與胰腺、回腸促炎細(xì)胞因子和組織病理學(xué)評(píng)分均呈顯著正相關(guān)(P均lt;0.05;圖5A、5B);而在L?Arg模型組,僅REG3β與胰腺、回腸促炎細(xì)胞因子和組織病理學(xué)評(píng)分呈顯著正相關(guān)(P均lt;0.05;圖5C)。
討 論
本研究采用CAE+LPS腹腔注射、N?Tau逆行膽胰管注射和L?Arg腹腔注射三種經(jīng)典造模方式制備AP小鼠模型。CAE+LPS模型中的CAE為膽囊收縮素同源物,能刺激胰腺腺泡細(xì)胞過度分泌,主要與AP的啟動(dòng)有關(guān),被認(rèn)為能較好地模擬AP病理過程[26]。N?Tau模型系用于模擬膽源性胰腺炎的病理過程,可啟動(dòng)AP時(shí)胰腺腺泡細(xì)胞的信號(hào)轉(zhuǎn)導(dǎo),如病理性鈣信號(hào),因而被廣泛應(yīng)用于基礎(chǔ)研究[27]。L?Arg誘導(dǎo)AP的機(jī)制為促進(jìn)氧自由基、一氧化氮或炎癥介質(zhì)釋放,并以濃度依賴的方式導(dǎo)致胰腺腺泡細(xì)胞壞死[27]。既往研究表明,這3種模型均能較好地模擬AP時(shí)的腸道損傷[28?30],因此,利用其研究AP病程中抗菌肽的動(dòng)態(tài)變化是可行的。值得注意的是,CAE+LPS模型具有較強(qiáng)的可重復(fù)性,適用于研究細(xì)胞內(nèi)生理功能如蛋白酶原激活等過程[26],而N?Tau模型和L?Arg模型分別存在需要手術(shù)操作和誘導(dǎo)方案難以標(biāo)準(zhǔn)化的不足,可能導(dǎo)致實(shí)驗(yàn)結(jié)果的不穩(wěn)定性[27]。因此,應(yīng)用CAE+LPS模型評(píng)估AP時(shí)抗菌肽的動(dòng)態(tài)變化,結(jié)果可能更為穩(wěn)定。
既往研究表明,以CAE+LPS、N?Tau和L?Arg誘導(dǎo)的AP模型均呈現(xiàn)明顯的胰腺和回腸組織損傷,伴隨腸道屏障功能破壞[13,21,31]。在AP病程中,胰腺組織損傷后可釋放大量損傷相關(guān)分子模式(damage?associated molecular pattern, DAMP)介導(dǎo)全身炎癥反應(yīng)綜合征(systemic inflammatory response syndrome, SIRS),導(dǎo)致腸道屏障功能破壞,腸道內(nèi)致病菌和內(nèi)毒素通過受損的腸道屏障進(jìn)入體循環(huán),進(jìn)一步促進(jìn)SIRS和多器官功能障礙發(fā)生,加重胰腺感染和壞死[32]。本研究AP小鼠模型的表現(xiàn)與既往研究結(jié)果基本一致,并發(fā)現(xiàn)CAE+LPS和N?Tau模型小鼠的胰腺和回腸組織損傷在24~48 h達(dá)峰值后出現(xiàn)減輕趨勢(shì)。
腸道中的抗菌肽主要由回腸Paneth細(xì)胞分泌至腸腔后發(fā)揮抗菌、促進(jìn)組織修復(fù)等作用,參與構(gòu)成腸道屏障。sPLA2和LZM分別通過膜溶解作用和水解肽聚糖發(fā)揮抗菌、調(diào)節(jié)腸道菌群的作用[8],Chen等發(fā)現(xiàn)AP時(shí)腸道LZM減少與埃希菌屬?志賀菌屬豐度增加相關(guān)[33],而Ang4可發(fā)揮抑制糞腸球菌的作用[34]。腸道中的REG3家族和β防御素家族均可經(jīng)腸道菌群和促炎細(xì)胞因子刺激后產(chǎn)生,發(fā)揮調(diào)節(jié)腸道微生態(tài)的作用[17,35]。有研究[36]報(bào)道,腸道REG3β或REG3γ缺乏可增加細(xì)菌在腸黏膜的定植,通過促進(jìn)細(xì)菌向腸系膜淋巴結(jié)和肝臟移位,促進(jìn)酒精性脂肪肝進(jìn)展為脂肪性肝炎。腸道中的β防御素家族除具有抗菌活性外,還能以趨化因子受體CCR6、CCR2依賴的方式或通過抑制T細(xì)胞受體信號(hào)發(fā)揮免疫調(diào)節(jié)作用[12,35]。本研究結(jié)果顯示,與相應(yīng)對(duì)照組相比,3種經(jīng)典AP模型回腸組織LZM、sPLA2、Ang4 mRNA表達(dá)整體上顯著下調(diào),且與胰腺、回腸病理損傷呈顯著負(fù)相關(guān);REG3β、REG3γ mRNA表達(dá)則呈先上升后下降趨勢(shì),在N?Tau和L?Arg模型組中分別與胰腺、回腸病理損傷呈顯著正相關(guān)和顯著負(fù)相關(guān),相關(guān)趨勢(shì)相反;β防御素家族mRNA表達(dá)均于12 h顯著上調(diào),呈先上升后下降趨勢(shì),在CAE+LPS和L?Arg模型組中與回腸和(或)胰腺病理損傷的相關(guān)趨勢(shì)亦相反。綜合上述發(fā)現(xiàn),與REG3家族和β防御素家族相比,AP病程中LZM、sPLA2、Ang4在腸道中的表達(dá)變化與胰腺和回腸病理損傷的變化更為一致,更能反映AP嚴(yán)重程度,推測(cè)三者可能通過調(diào)控腸道菌群改善AP的胰腺和腸道損傷。REG3家族和β防御素家族在不同AP造模方式下與腸道菌群之間的關(guān)聯(lián)尚待進(jìn)一步探索。
來源于胰腺的抗菌肽分泌至腸道后也可發(fā)揮調(diào)控腸道菌群的作用。CRAMP是目前研究較為廣泛的一類抗菌肽,通過在細(xì)菌表面形成膜孔發(fā)揮廣譜殺菌作用,并可通過促進(jìn)Th17細(xì)胞分化并抑制其凋亡等方式發(fā)揮免疫調(diào)節(jié)作用[37]。有研究[20]發(fā)現(xiàn),胰腺外分泌功能受損后,分泌至腸道的CRAMP減少,可促進(jìn)腸道炎癥和全身感染發(fā)生。另有研究[38]表明,CRAMP全身性敲除可加重AP小鼠的胰腺損傷。GP2作為胰腺腺泡細(xì)胞酶原顆粒膜中含量最豐富的蛋白質(zhì),分泌至腸腔后可與革蘭陰性菌的1型菌毛成分結(jié)合,減少細(xì)菌在腸道的黏附[39]。對(duì)于與GP2預(yù)孵育的大腸埃希菌,巨噬細(xì)胞的吞噬能力明顯增強(qiáng)[40]。有研究[41]發(fā)現(xiàn),胰腺特異性GP2敲除可加重結(jié)腸炎模型小鼠的腸道炎癥,增加大腸埃希菌對(duì)腸上皮的黏附和侵襲,證實(shí)胰腺來源的GP2在腸道中可發(fā)揮保護(hù)作用。β防御素除表達(dá)于腸道并發(fā)揮菌群調(diào)節(jié)作用外,還可表達(dá)于胰腺,胰腺中某些β防御素的基因多態(tài)性被證實(shí)與SAP風(fēng)險(xiǎn)增加相關(guān)[19]。研究表明AP時(shí)胰腺腺泡細(xì)胞REG3β表達(dá)增加[18],其可通過誘導(dǎo)肝細(xì)胞TNF?α表達(dá),進(jìn)而升高循環(huán)中的TNF?α水平以介導(dǎo)AP相關(guān)肺損傷[42]。REG3γ在AP胰腺組織中的表達(dá)亦顯著上調(diào)[17],但其在AP中的具體作用尚未明確。本研究結(jié)果顯示,與相應(yīng)對(duì)照組相比,3種AP模型胰腺組織CRAMP、GP2、β防御素家族mRNA表達(dá)整體上顯著下調(diào),且均與胰腺、回腸病理損傷呈顯著負(fù)相關(guān);REG3β、REG3γ mRNA表達(dá)整體上顯著上調(diào),但僅REG3β mRNA表達(dá)在3種AP模型中與胰腺、回腸病理損傷均呈顯著正相關(guān)。上述結(jié)果提示,胰腺分泌的CRAMP、GP2、β防御素家族和REG3β表達(dá)水平可反映AP嚴(yán)重程度,其中CRAMP、GP2可能通過調(diào)控腸道菌群影響AP病程,而β防御素家族和REG3家族是否通過影響腸道穩(wěn)態(tài)參與AP進(jìn)程,仍有待進(jìn)一步探索。
本研究的不足之處在于僅在mRNA水平初步探討了AP時(shí)回腸和胰腺抗菌肽的動(dòng)態(tài)變化,而未在蛋白水平進(jìn)行驗(yàn)證。蛋白質(zhì)表達(dá)需經(jīng)過mRNA的轉(zhuǎn)錄、加工以及蛋白質(zhì)本身的翻譯、定位、修飾等過程,因此mRNA表達(dá)水平理論上不足以反映蛋白質(zhì)豐度的變化,但有大規(guī)模蛋白質(zhì)組學(xué)和轉(zhuǎn)錄組學(xué)分析觀察到mRNA轉(zhuǎn)錄水平能較好地代表蛋白質(zhì)表達(dá)水平[43?44],且既往研究證實(shí)本研究關(guān)注的LZM、sPLA2、Ang4、REG3家族、CRAMP等抗菌肽在急性肝衰竭、腸道黏蛋白2敲除和阿米巴結(jié)腸炎動(dòng)物模型的腸道中呈現(xiàn)mRNA與蛋白質(zhì)表達(dá)變化趨勢(shì)相一致的結(jié)果[45?47]。后續(xù)擬完善實(shí)驗(yàn)以明確AP小鼠模型以及臨床AP病例中這些抗菌肽在mRNA和蛋白水平的表達(dá)變化趨勢(shì)是否相一致。
綜上所述,回腸和胰腺抗菌肽可能在AP病程中發(fā)揮重要作用。在3種經(jīng)典AP模型中,回腸組織LZM、sPLA2、Ang4和胰腺組織CRAMP、GP2、β防御素家族、REG3β表達(dá)均隨AP病情嚴(yán)重程度呈動(dòng)態(tài)變化,與胰腺和腸道病理損傷相關(guān)。結(jié)合既往研究結(jié)果,提示回腸和胰腺抗菌肽可能通過調(diào)節(jié)腸道微生態(tài)、干擾致病菌在腸道的黏附、定植和移位影響AP時(shí)的胰腺和腸道損傷,具體機(jī)制仍有待進(jìn)一步探索。
參考文獻(xiàn)
[ 1 ] MEDEROS M A, REBER H A, GIRGIS M D. Acute pancreatitis: a review[J]. JAMA, 2021, 325 (4): 382?390.
[ 2 ] LIU J, HUANG L, LUO M, et al. Bacterial translocation in acute pancreatitis[J]. Crit Rev Microbiol, 2019, 45 (5?6): 539?547.
[ 3 ] GLAUBITZ J, WILDEN A, FROST F, et al. Activated regulatory T?cells promote duodenal bacterial transloca?tion into necrotic areas in severe acute pancreatitis[J]. Gut, 2023, 72 (7): 1355?1369.
[ 4 ] PETROV M S, SHANBHAG S, CHAKRABORTY M, et al. Organ failure and infection of pancreatic necrosis as determinants of mortality in patients with acute pancre?atitis[J]. Gastroenterology, 2010, 139 (3): 813?820.
[ 5 ] MHLONGO J T, WADDAD A Y, ALBERICIO F, et al. Antimicrobial peptide synergies for fighting infectious diseases[J]. Adv Sci (Weinh), 2023, 10 (26): e2300472.
[ 6 ] BEVINS C L, SALZMAN N H. Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis[J]. Nat Rev Microbiol, 2011, 9 (5): 356?368.
[ 7 ] BOPARAI J K, SHARMA P K. Mini review on antimicrobial peptides, sources, mechanism and recent applications[J]. Protein Pept Lett, 2020, 27 (1): 4?16.
[ 8 ] MUKHERJEE S, HOOPER L V. Antimicrobial defense of the intestine[J]. Immunity, 2015, 42 (1): 28?39.
[ 9 ] SECHET E, TELFORD E, BONAMY C, et al. Natural molecules induce and synergize to boost expression of the human antimicrobial peptide β?defensin?3[J]. Proc Natl Acad Sci U S A, 2018, 115 (42): E9869?E9878.
[10] MOSER C, WEINER D J, LYSENKO E, et al. beta?Defensin 1 contributes to pulmonary innate immunity in mice[J]. Infect Immun, 2002, 70 (6): 3068?3072.
[11] RAHMAN A, FAHLGREN A, SUNDSTEDT C, et al. Chronic colitis induces expression of β?defensins in murine intestinal epithelial cells[J]. Clin Exp Immunol, 2011, 163 (1): 123?130.
[12] R?HRL J, YANG D, OPPENHEIM J J, et al. Human beta?defensin 2 and 3 and their mouse orthologs induce chemotaxis through interaction with CCR2[J]. J Immunol, 2010, 184 (12): 6688?6694.
[13] FU Y, MEI Q, YIN N, et al. Paneth cells protect against acute pancreatitis via modulating gut microbiota dysbiosis[J]. mSystems, 2022, 7 (3): e0150721.
[14] THOMAS R M, JOBIN C. Microbiota in pancreatic health and disease: the next frontier in microbiome research[J]. Nat Rev Gastroenterol Hepatol, 2020, 17 (1): 53?64.
[15] STENWALL A, INGVAST S, SKOG O, et al. Characteri?zation of host defense molecules in the human pancreas[J]. Islets, 2019, 11 (4): 89?101.
[16] SCHNAPP D, REID C J, HARRIS A. Localization of expression of human beta defensin?1 in the pancreas and kidney[J]. J Pathol, 1998, 186 (1): 99?103.
[17] SHIN J H, SEELEY R J. Reg3 proteins as gut hormones?[J]. Endocrinology, 2019, 160 (6): 1506?1514.
[18] ZECHNER D, SPITZNER M, BOBROWSKI A, et al. Diabetes aggravates acute pancreatitis and inhibits pan?creas regeneration in mice[J]. Diabetologia, 2012, 55 (5): 1526?1534.
[19] TISZLAVICZ Z, SZABOLCS A, TAKáCS T, et al. Polymorphisms of beta defensins are associated with the risk of severe acute pancreatitis[J]. Pancreatology, 2010, 10 (4): 483?490.
[20] AHUJA M, SCHWARTZ D M, TANDON M, et al. Orai1?mediated antimicrobial secretion from pancreatic acini shapes the gut microbiome and regulates gut innate immunity[J]. Cell Metab, 2017, 25 (3): 635?646.
[21] MEI Q X, HU J H, HUANG Z H, et al. Pretreatment with chitosan oligosaccharides attenuate experimental severe acute pancreatitis via inhibiting oxidative stress and modulating intestinal homeostasis[J]. Acta Pharmacol Sin, 2021, 42 (6): 942?953.
[22] LAUKKARINEN J M, VAN ACKER G J, WEISS E R, et al. A mouse model of acute biliary pancreatitis induced by retrograde pancreatic duct infusion of Na?taurocholate[J]. Gut, 2007, 56 (11): 1590?1598.
[23] HAN X, LI B, YE X, et al. Dopamine D2 receptor signalling controls inflammation in acute pancreatitis via a PP2A?dependent Akt/NF?κB signalling pathway[J]. Br J Pharmacol, 2017, 174 (24): 4751?4770.
[24] SCHMIDT J, RATTNER D W, LEWANDROWSKI K, et al. A better model of acute pancreatitis for evaluating therapy[J]. Ann Surg, 1992, 215 (1): 44?56.
[25] CHIU C J, MCARDLE A H, BROWN R, et al. Intestinal mucosal lesion in low?flow states. Ⅰ. A morphological, hemodynamic, and metabolic reappraisal[J]. Arch Surg, 1970, 101 (4): 478?483.
[26] GORELICK F S, LERCH M M. Do animal models of acute pancreatitis reproduce human disease?[J]. Cell Mol Gastroenterol Hepatol, 2017, 4 (2): 251?262.
[27] LERCH M M, GORELICK F S. Models of acute and chronic pancreatitis[J]. Gastroenterology, 2013, 144 (6): 1180?1193.
[28] ZHOU Q, XIANG H, LIU H, et al. Emodin alleviates intestinal barrier dysfunction by inhibiting apoptosis and regulating the immune response in severe acute pancre?atitis[J]. Pancreas, 2021, 50 (8): 1202?1211.
[29] SHAO Y, LI Y, JIANG Y, et al. Circulating exosomal miR?155?5p contributes to severe acute pancreatitis?associated intestinal barrier injury by targeting SOCS1 to activate NLRP3 inflammasome?mediated pyroptosis[J]. FASEB J, 2023, 37 (6): e23003.
[30] XIA H, GUO J, SHEN J, et al. Ketogenic diet exacerbates L?arginine?induced acute pancreatitis and reveals the therapeutic potential of butyrate[J]. Nutrients, 2023, 15 (20): 4427.
[31] ZHENG J, LOU L, FAN J, et al. Commensal Escherichia coli aggravates acute necrotizing pancreatitis through targeting of intestinal epithelial cells[J]. Appl Environ Microbiol, 2019, 85 (12): e00059?19.
[32] GE P, LUO Y, OKOYE C S, et al. Intestinal barrier damage, systemic inflammatory response syndrome, and acute lung injury: a troublesome trio for acute pancreatitis[J]. Biomed Pharmacother, 2020, 132: 110770.
[33] CHEN J, HUANG C, WANG J, et al. Dysbiosis of intestinal microbiota and decrease in paneth cell anti?microbial peptide level during acute necrotizing pancre?atitis in rats[J]. PLoS One, 2017, 12 (4): e0176583.
[34] HOOPER L V, STAPPENBECK T S, HONG C V, et al. Angiogenins: a new class of microbicidal proteins involved in innate immunity[J]. Nat Immunol, 2003, 4 (3): 269?273.
[35] RüCKERT T, ANDRIEUX G, BOERRIES M, et al. Human β?defensin 2 ameliorates acute GVHD by limiting ileal neutrophil infiltration and restraining T cell receptor signaling[J]. Sci Transl Med, 2022, 14 (676): eabp9675.
[36] WANG L, FOUTS D E, ST?RKEL P, et al. Intestinal REG3 lectins protect against alcoholic steatohepatitis by reducing mucosa?associated microbiota and preventing bacterial translocation[J]. Cell Host Microbe, 2016, 19 (2): 227?239.
[37] MINNS D, SMITH K J, ALESSANDRINI V, et al. The neutrophil antimicrobial peptide cathelicidin promotes Th17 differentiation[J]. Nat Commun, 2021, 12 (1): 1285.
[38] DENG Y Y, SHAMOON M, HE Y, et al. Cathelicidin?related antimicrobial peptide modulates the severity of acute pancreatitis in mice[J]. Mol Med Rep, 2016, 13 (5): 3881?3885.
[39] LIN Y, NAKATOCHI M, SASAHIRA N, et al. Glyco?protein 2 in health and disease: lifting the veil[J]. Genes Environ, 2021, 43 (1): 53.
[40] BARTLITZ C, KOLENDA R, CHILIMONIUK J, et al. Adhesion of enteropathogenic, enterotoxigenic, and com?mensal Escherichia coli to the major zymogen granule membrane glycoprotein 2[J]. Appl Environ Microbiol, 2022, 88 (5): e0227921.
[41] KURASHIMA Y, KIGOSHI T, MURASAKI S, et al. Pancreatic glycoprotein 2 is a first line of defense for mucosal protection in intestinal inflammation[J]. Nat Commun, 2021, 12 (1): 1067.
[42] FOLCH?PUY E, GARCíA?MOVTERO A, IOVANNA J L, et al. The pancreatitis?associated protein induces lung inflammation in the rat through activation of TNFalpha expression in hepatocytes[J]. J Pathol, 2003, 199 (3): 398?408.
[43] LIU Y, BEYER A, AEBERSOLD R. On the dependency of cellular protein levels on mRNA abundance[J]. Cell, 2016, 165 (3): 535?550.
[44] VOGEL C, MARCOTTE E M. Insights into the regulation of protein abundance from proteomic and transcriptomic analyses[J]. Nat Rev Genet, 2012, 13 (4): 227?232.
[45] CHEN S, LI X, LI M, et al. Mucosal expression of defensin?5, soluble phospholipase A2 and lysozyme in the intestine in a rat model of acute liver failure and its relationship to intestinal bacterial translocation[J]. Gastroenterol Hepatol, 2020, 43 (6): 293?300.
[46] BURGER?VAN PAASSEN N, LOONEN L M, Witte?Bouma J, et al. Mucin Muc2 deficiency and weaning influences the expression of the innate defense genes Reg3β, Reg3γ and angiogenin?4[J]. PLoS One, 2012, 7 (6): e38798.
[47] COBO E R, HE C, HIRATA K, et al. Entamoeba histolytica induces intestinal cathelicidins but is resistant to cathelicidin?mediated killing[J]. Infect Immun, 2012, 80 (1): 143?149.
(2024?01?15收稿;2024?02?21修回)
(本文編輯:蔣曉玲)