摘要 隨著生活水平的提高以及飲食結(jié)構(gòu)的改變,代謝功能障礙相關(guān)脂肪變性肝?。∕ASLD)已成為世界范圍內(nèi)最常見(jiàn)的慢性肝病之一。研究表明腸道微生物的改變與代謝綜合征相關(guān),而MASLD被視為代謝綜合征在肝臟中的表現(xiàn)。近年研究發(fā)現(xiàn)小腸細(xì)菌過(guò)度生長(zhǎng)(SIBO)與MASLD的發(fā)生有關(guān)。SIBO可通過(guò)腸?肝軸破壞腸黏膜屏障、改變腸道微生物群及其代謝產(chǎn)物,促進(jìn)MASLD的發(fā)生、發(fā)展。本文就SIBO和MASLD的研究進(jìn)展作一綜述。
關(guān)鍵詞 代謝功能障礙相關(guān)脂肪變性肝病; 小腸細(xì)菌過(guò)度生長(zhǎng); 脂多糖; 短鏈脂肪酸; 膽汁酸; 膽堿
Advances in Research on Small Intestinal Bacterial Overgrowth and Metabolic Dysfunction?associated Steatotic Liver Disease HUANG Jiali, WANG Ziteng, TAN Wentao, ZHANG Pengfei, LIU Hong. Department of Gastroenterology, Beijing Shijitan Hospital, Capital Medical University, Beijing (100038)
Correspondence to: LIU Hong, Email: liuhong_sjt@ccmu.edu.cn
Abstract With the improvement of living standard and dietary changes, metabolic dysfunction?associated steatotic liver disease (MASLD) has become one of the most common chronic liver diseases worldwide. Studies have shown that alterations in gut microflora are associated with the metabolic syndrome, and MASLD is regarded as a manifestation of metabolic syndrome in the liver. In recent years, it has been found that small intestinal bacterial overgrowth (SIBO) is closely related to the development of MASLD. SIBO can contribute to MASLD by disrupting the intestinal mucosal barrier through the gut?hepatic axis, and by altering the intestinal microbiota and its metabolic products. This article reviewed the advances in research on SIBO and MASLD.
Key words Metabolic Dysfunction?Associated Steatotic Liver Disease; Small Intestinal Bacterial Overgrowth;
Lipopolysaccharides; Short?Chain Fatty Acids; Bile Acids; Choline
1986年Schaffner等提出了非酒精性脂肪性肝?。╪on?alcoholic fatty liver disease, NAFLD),其以肝臟脂肪變性為主要特征,無(wú)酒精和其他明確的肝損害因素,包括非酒精性脂肪肝[non?alcoholic fatty liver (NAFL),也稱單純性脂肪肝]、非酒精性脂肪性肝炎(non?alcoholic steatohepatitis, NASH)、脂肪性肝纖維化、肝硬化,甚至進(jìn)展為肝癌[1]。目前NAFLD的全球患病率高達(dá)25%,也是我國(guó)最常見(jiàn)的肝臟疾病之一[2?3]。但由于NAFLD采用的是排除診斷,且其與代謝綜合征及其組成部分,如肥胖、胰島素抵抗、高脂血癥以及高血壓等密切相關(guān),故2020年引入了代謝功能障礙相關(guān)脂肪性肝病的名稱[4]。但由于該術(shù)語(yǔ)仍存在污名化等不合理性,2023年引入了新術(shù)語(yǔ)代謝功能障礙相關(guān)脂肪變性肝病(metabolic dysfunction?associated steatotic liver disease, MASLD),并對(duì)脂肪肝進(jìn)行了更精確的分類和診斷。影像學(xué)或組織學(xué)確診為肝臟脂肪變性,同時(shí)符合5種心血管危險(xiǎn)因素之一可診斷為MASLD[5]。NASH亦更新術(shù)語(yǔ)為代謝功能障礙相關(guān)脂肪性肝炎(metabolic dysfunction?associated steatohepatitis, MASH)。然而,MASLD的發(fā)病機(jī)制至今尚未明確,目前認(rèn)為其與脂質(zhì)代謝紊亂、線粒體功能障礙、脂毒性、氧化應(yīng)激、內(nèi)質(zhì)網(wǎng)應(yīng)激、酒精攝入、腸道屏障完整性喪失、腸道來(lái)源的內(nèi)毒素如脂多糖(lipopolysaccharide, LPS)等相互作用相關(guān),最終導(dǎo)致肝臟炎癥的形成[6]。腸道及其微生物群可通過(guò)肝?腸軸與肝臟進(jìn)行雙向聯(lián)系,細(xì)菌及其產(chǎn)物、炎性介質(zhì)、LPS等可通過(guò)腸道吸收入血,隨門靜脈回流至肝臟,從而引起肝臟發(fā)生炎性改變[7]。
腸道細(xì)菌的基因組數(shù)量龐大,健康成人以厚壁菌門和擬桿菌門為主,變形菌門、放線菌門以及梭桿菌門等相對(duì)少見(jiàn)[8]。腸道微生態(tài)在正常情況下處于相對(duì)穩(wěn)定狀態(tài),在調(diào)節(jié)人體代謝中起著重要作用,但易受多種因素影響。目前有研究表明,腸道微生物群的改變會(huì)導(dǎo)致多種肝病[9]。此外,腸道菌群與MASLD的關(guān)系受到越來(lái)越多的學(xué)者關(guān)注。其中小腸細(xì)菌過(guò)度生長(zhǎng)(small intestinal bacterial overgrowth, SIBO)被認(rèn)為可能通過(guò)影響短鏈脂肪酸(short?chain fatty acids, SCFAs)的產(chǎn)生、誘導(dǎo)內(nèi)毒素血癥、調(diào)節(jié)膽汁酸代謝、產(chǎn)生內(nèi)源性酒精、調(diào)節(jié)膽堿代謝等參與MASLD的發(fā)生。本文就SIBO和MASLD的研究進(jìn)展作一綜述。
一、SIBO和MASLD的概述
1. SIBO的診斷方法: SIBO是指小腸中細(xì)菌數(shù)量異常變化和(或)異常類型的微生物定植,臨床表現(xiàn)并不具有特異性[10]。小腸液的定量培養(yǎng)、呼吸測(cè)試、16S核糖體RNA(16S rRNA)基因序列檢測(cè)、宏基因組學(xué)等可用于SIBO的診斷[11]。SIBO診斷金標(biāo)準(zhǔn)是小腸抽吸物的定量培養(yǎng),經(jīng)典的判定標(biāo)準(zhǔn)為細(xì)菌群落計(jì)數(shù)≥105 CFU/mL[11]。而北美共識(shí)建議,最佳臨界值應(yīng)確定為細(xì)菌群落計(jì)數(shù)≥103 CFU/mL[12]。作為一種侵入性技術(shù),小腸內(nèi)容物抽吸具有一定的局限性,限制了其在臨床實(shí)踐中的廣泛應(yīng)用,而呼吸測(cè)試因其非侵入性和方便性成為臨床診斷SIBO的主要方法。北美共識(shí)將口服葡萄糖或乳果糖后在90 min內(nèi)呼出氫氣(H2)濃度與基線值相比增加≥20 ppm(ppm為10-6)定義為H2呼氣試驗(yàn)陽(yáng)性,任何時(shí)候甲烷(CH4)濃度增加≥10 ppm定義為CH4呼氣試驗(yàn)陽(yáng)性[12]。CH4呼氣試驗(yàn)陽(yáng)性表明產(chǎn)甲烷菌過(guò)度生長(zhǎng),CH4是由古細(xì)菌而非細(xì)菌產(chǎn)生的,故2020年ACG發(fā)布的指南建議,在呼吸測(cè)試中檢測(cè)到CH4產(chǎn)生過(guò)量的情況下使用特定的術(shù)語(yǔ)“腸道產(chǎn)甲烷菌過(guò)度生長(zhǎng)(intestinal methanogen overgrowth, IMO)”[13]。
2. MASLD患者腸道菌群變化: MASLD患者的SIBO患病率可高達(dá)35%[14]。有研究[15]表明,與非SIBO患者相比,SIBO患者大腸埃希菌、克雷伯桿菌、變形桿菌豐度相對(duì)增加,腸道微生物群的特征菌群為鏈球菌、葡萄球菌、擬桿菌、乳桿菌、放線菌以及腸桿菌科。有代謝綜合征的MASLD患者表現(xiàn)出擬桿菌、變形桿菌、疣狀微生物組、乳球菌等增加,雙歧桿菌、乳桿菌減少[16]。一項(xiàng)系統(tǒng)性回顧和meta分析顯示,MASLD患者腸道細(xì)菌特征為大腸埃希菌、普雷沃菌、鏈球菌、糞球菌、糞大腸埃希菌以及乳球菌的豐度變化。與非MASLD患者相比,MASLD患者具有獨(dú)特的腸道菌群特征以及代謝組變化[17]。
二、SIBO參與MASLD的機(jī)制
1. LPS理論:研究[18?19]發(fā)現(xiàn),患有SIBO的MASLD患者LPS水平明顯升高,且肝臟中Toll樣受體4(TLR4) mRNA和蛋白表達(dá)顯著上調(diào)。Fei等[20]的研究發(fā)現(xiàn),高脂飲食(high fat diet, HFD)喂養(yǎng)的無(wú)菌小鼠并不會(huì)誘發(fā)MASLD,而接種細(xì)菌陰溝腸桿菌B29的HFD無(wú)菌小鼠會(huì)誘發(fā)MASLD。該研究亦發(fā)現(xiàn),敲除LPS下游蛋白TLR4可消除陰溝腸桿菌B29誘發(fā)MASLD的能力,表明腸道菌群在LPS通過(guò)TLR導(dǎo)致MASLD的發(fā)展過(guò)程中發(fā)揮重要作用。此外,LPS亦可通過(guò)作用于肝Kupffer細(xì)胞和肝星狀細(xì)胞上的TLRs,激活NF?κB和炎癥小體,從而激活炎癥級(jí)聯(lián)反應(yīng),引發(fā)宿主免疫反應(yīng),最終促進(jìn)MASLD的發(fā)生[21]。
產(chǎn)H2的SIBO在MASLD中的作用目前尚未明確,但根據(jù)現(xiàn)有證據(jù)推測(cè)其通過(guò)產(chǎn)生有利于其他微生物生長(zhǎng)和定植的環(huán)境而參與SIBO的病理狀態(tài),進(jìn)而與MASLD發(fā)生串?dāng)_。許多腸道細(xì)菌利用H2作為底物,從而在厭氧腸道生態(tài)系統(tǒng)中具有進(jìn)化優(yōu)勢(shì)。腸道硫酸鹽還原菌如脫硫弧菌屬,可利用H2將硫酸鹽還原為硫化氫(H2S)氣體,過(guò)量H2S會(huì)減少黏液層聚合黏蛋白中的二硫鍵,并抑制結(jié)腸細(xì)胞對(duì)丁酸鹽的氧化,從而破壞黏液層的完整性,損害腸道屏障,增加腸道通透性[22]。SIBO可通過(guò)減少腸道細(xì)菌多樣性,增加腸道通透性,增加促炎分子產(chǎn)生,從而促使LPS流入肝臟導(dǎo)致肝臟脂肪變性和肝臟炎癥,加重MASLD的肝損傷[23]。
2. SCFAs理論:SCFAs是腸道微生物菌分解富含膳食纖維食物的代謝物,可與腸道和脂肪組織中表達(dá)的G蛋白偶聯(lián)受體(GPR)如GPR41、GPR43結(jié)合,刺激PYY和GLP?1釋放,從而減緩胃排空,促進(jìn)飽腹感,進(jìn)而促進(jìn)MASLD的發(fā)生[24?25]。其中乙酸鹽可通過(guò)激活副交感神經(jīng)系統(tǒng)促進(jìn)生長(zhǎng)素釋放肽和葡萄糖刺激的胰島素分泌增加,亦可通過(guò)提供脂肪生成所需的乙酰輔酶A來(lái)誘導(dǎo)肝臟脂肪生成,從而導(dǎo)致熱量攝入增加、肥胖、胰島素抵抗以及脂肪肝的形成[26?27]。丙酸鹽被證實(shí)可激活交感神經(jīng)系統(tǒng),提高脂肪酸結(jié)合蛋白4和胰高血糖素濃度,從而誘導(dǎo)糖原分解和高血糖癥,促進(jìn)體質(zhì)量增加[28]。
SIBO會(huì)導(dǎo)致腸道產(chǎn)生過(guò)量SCFAs,但部分SCFAs可通過(guò)門靜脈運(yùn)輸至肝臟導(dǎo)致能量合成增加,以及用于肝臟糖異生或脂肪生成[29]。產(chǎn)甲烷菌是一組能夠利用H2作為電子供體將CO2、甲醇或乙酸鹽還原成CH4的古菌。研究[30]表明產(chǎn)甲烷菌可加速多糖和碳水化合物的發(fā)酵,并導(dǎo)致SCFAs產(chǎn)量增加,從而為宿主提供額外的熱量,并導(dǎo)致體質(zhì)量增加和肥胖的發(fā)展。一項(xiàng)回顧性研究[31]表明,與產(chǎn)H2陽(yáng)性SIBO患者相比,CH4陽(yáng)性SIBO患者的小腸轉(zhuǎn)運(yùn)明顯延遲,從而延長(zhǎng)了餐后營(yíng)養(yǎng)吸收的持續(xù)時(shí)間,既促進(jìn)熱量的吸收,又導(dǎo)致參與消化吸收的細(xì)菌數(shù)量增加以及細(xì)菌異常定植,從而加重SIBO的發(fā)展。上述研究結(jié)果表明IMO引起的產(chǎn)甲烷菌和CH4對(duì)SCAFs的影響可能是SIBO參與MASLD發(fā)展的潛在途徑之一。
3. 膽汁酸代謝途徑:在肝臟和腸道中,膽汁酸可調(diào)控自身的合成,參與調(diào)節(jié)葡萄糖和脂質(zhì)穩(wěn)態(tài),并抑制肝臟炎癥和纖維生成[32]。膽汁酸可作用于肝臟和腸道的法尼酯X受體(farnesoid X receptor, FXR)和Takeda G蛋白偶聯(lián)受體5阻止MASLD的進(jìn)展[33]。Yang等[34]發(fā)現(xiàn)MASLD患者的FXR mRNA水平降低,而肝X受體和甾醇調(diào)節(jié)元件結(jié)合蛋白1C水平升高,后者是一種關(guān)鍵的轉(zhuǎn)錄因子,通過(guò)誘導(dǎo)脂肪酸合酶促進(jìn)脂肪生成。但亦有研究表明膽汁酸暴露增加與MASLD的發(fā)病機(jī)制有關(guān)。研究[35?36]發(fā)現(xiàn),MASLD患者的膽鹽輸出泵被顯著抑制,膽固醇7α?羥化酶(CYP7A1)表達(dá)增加,從而促進(jìn)肝細(xì)胞中膽汁酸積累,并誘導(dǎo)肝細(xì)胞損傷。
膽汁酸與腸道微生物群的相互作用在MASLD發(fā)病機(jī)制中亦起著重要作用。SIBO可促進(jìn)膽汁酸的過(guò)度解偶聯(lián),從而改變膽汁酸的組成成分,導(dǎo)致內(nèi)毒素血癥和肝巨噬細(xì)胞功能改變,促使促炎細(xì)胞因子如腫瘤壞死因子(TNF)和白細(xì)胞介素?1β過(guò)度產(chǎn)生[37?38]。多項(xiàng)動(dòng)物研究[39?40]發(fā)現(xiàn),通過(guò)調(diào)節(jié)小鼠腸道菌群,使具有膽鹽水解酶活性的細(xì)菌如梭狀芽孢桿菌、腸球菌、雙歧桿菌、乳桿菌等減少,小鼠表現(xiàn)出膽汁酸組成改變,結(jié)合膽汁酸代謝物?;?β?鼠膽酸含量顯著增加。MASLD患者腸道細(xì)菌可使脫氧膽酸產(chǎn)生增加,從而抑制了肝臟和腸道中的FXR信號(hào)[36]。由此推測(cè),MASLD與腸道微生物群改變和肝膽汁酸介導(dǎo)的信號(hào)轉(zhuǎn)導(dǎo)受損有關(guān)。
4. 內(nèi)源性酒精途徑:Zhu等[41]發(fā)現(xiàn),MASH患者的酒精水平較健康受試者或肥胖非MASH患者顯著增加。同時(shí),在MASLD患者中,肝臟中的3種主要酒精代謝酶(乙醇脫氫酶、細(xì)胞色素P450 2E1以及過(guò)氧化氫酶)mRNA和蛋白質(zhì)水平均顯著升高[42]。酒精在肝臟被乙醇脫氫酶氧化為乙醛,乙醛可破壞上皮屏障功能,導(dǎo)致細(xì)菌LPS擴(kuò)散至門靜脈循環(huán)。在肝臟中,LPS可通過(guò)LBP/CD 14/TLR4依賴性機(jī)制激活肝Kupffer細(xì)胞,促進(jìn)炎癥反應(yīng)[43]。
多項(xiàng)研究[44?45]表明,產(chǎn)酒精的微生物與MASLD相關(guān),包括產(chǎn)酒精肺炎克雷伯菌屬、乳桿菌屬、乳酸乳球菌屬以及多枝乳桿菌屬等。Yuan等[44]在一項(xiàng)隊(duì)列研究中發(fā)現(xiàn),60%的MASLD患者的腸道微生物群含有高產(chǎn)酒精的肺炎克雷伯菌。該研究還表明,將高產(chǎn)酒精的肺炎克雷伯菌轉(zhuǎn)移至健康小鼠體內(nèi)可誘發(fā)MASLD。Chen等[45]的研究證實(shí)了肺炎克雷伯菌產(chǎn)生的酒精可誘導(dǎo)MASLD肝線粒體功能障礙。Mbaye等[46]發(fā)現(xiàn)發(fā)酵乳桿菌屬、乳酸乳球菌屬以及多枝乳桿菌屬與NASH關(guān),且內(nèi)源性酒精含量與乳酸乳球菌數(shù)量之間存在正相關(guān)。腸源性酒精不僅具有直接的肝毒性,亦可增加腸通透性,導(dǎo)致內(nèi)毒素血癥,從而改變腸?肝軸。綜上所述,腸道菌群可通過(guò)促進(jìn)腸源性酒精的增加從而導(dǎo)致MASLD的發(fā)生。
5. 膽堿代謝途徑:膽堿代謝是連接SIBO與MASLD的另一條途徑。在肝臟中,膽堿是產(chǎn)生極低密度脂蛋白(VLDL)所必需的。膽堿缺乏可引起VLDL產(chǎn)生減少,導(dǎo)致肝臟中甘油三酯積累。有研究[47]表明,喂食蛋氨酸?膽堿缺乏的飲食可誘導(dǎo)小鼠發(fā)生肝脂肪變性,并可能引發(fā)肝纖維化,且此種飲食會(huì)導(dǎo)致小鼠腸道屏障功能受損,同時(shí)影響腸道微生物群及其代謝功能。另一項(xiàng)研究[48]表明,膽堿缺乏小鼠發(fā)生肝臟炎癥和纖維化與線粒體β?氧化受損和氧化應(yīng)激增加相關(guān)。由此可見(jiàn),膽堿缺乏會(huì)促進(jìn)MASLD的發(fā)生。
在與SIBO相關(guān)的腸道微生物群生態(tài)失調(diào)的背景下,腸道菌群對(duì)膽堿的轉(zhuǎn)化導(dǎo)致生物體對(duì)膽堿的利用減少,此可能與MASLD的進(jìn)展有關(guān)[49]。腸道菌群可促使食物中的膽堿轉(zhuǎn)化為有毒的甲胺,即三甲胺(TMA)。TMA通過(guò)腸黏膜吸收入血,經(jīng)肝臟含黃素的單加氧酶3轉(zhuǎn)化為三甲胺?氮氧化物(TMAO)。TMAO可通過(guò)抑制膽汁酸介導(dǎo)的肝臟FXR信號(hào),以及抑制膽汁酸代謝的關(guān)鍵酶CYP7A1而加重肝臟脂肪變性[50]。然而,有研究[51]發(fā)現(xiàn),TMAO可通過(guò)維持內(nèi)皮的完整性和抑制肝臟中的Na+?K+?ATP酶來(lái)改善肝損傷期間的纖維化程度,并恢復(fù)小鼠NASH模型中腸道菌群的多樣性。因此,腸道微生物群可通過(guò)調(diào)節(jié)膽堿、TMA以及TMAO水平來(lái)影響MASLD,但需更多的研究闡明TMAO對(duì)腸道微生物群和代謝的影響。
三、結(jié)語(yǔ)
SIBO可通過(guò)引發(fā)機(jī)體代謝紊亂和炎癥反應(yīng)參與MASLD的發(fā)生。有研究[52]表明腸道微生物和相關(guān)代謝具有作為MASLD診斷或分期的非侵入性生物學(xué)標(biāo)志物的潛力,但較少有研究表明其臨床實(shí)踐的可行性。目前除了飲食和生活方式建議外,仍無(wú)批準(zhǔn)用于治療MASLD的藥物。近年,調(diào)節(jié)腸道微生物群被認(rèn)為是有前景的MASLD的治療方法,抗菌藥物、微生態(tài)制劑(益生菌、益生元、合生元)、糞便微生物群移植以及噬菌體等治療已在多項(xiàng)研究中證實(shí)了有效性[53]。亦有研究[54]表明腸道菌群代謝物可通過(guò)信號(hào)轉(zhuǎn)導(dǎo)調(diào)節(jié)免疫和炎癥反應(yīng),從而抑制MASLD和MASH的發(fā)展。
綜上所述,SIBO與MASLD的發(fā)生密切相關(guān),但兩者的具體機(jī)制目前尚未完全闡明,需進(jìn)一步研究以明確SIBO與MASLD的關(guān)聯(lián)。雖然已證實(shí)了益生菌等在MASLD中的治療潛力,但相關(guān)的臨床試驗(yàn)仍較少,且缺乏安全性評(píng)估,故未來(lái)仍需大量臨床研究為MASLD治療方案的應(yīng)用提供理論依據(jù)。
參考文獻(xiàn)
[ 1 ] POWELL E E, WONG V W, RINELLA M. Non?alcoholic fatty liver disease[J]. Lancet, 2021, 397 (10290): 2212?2224.
[ 2 ] LONARDO A, BYRNE C D, CALDWELL S H, et al. Global epidemiology of nonalcoholic fatty liver disease: meta?analytic assessment of prevalence, incidence, and outcomes[J]. Hepatology, 2016, 64 (4): 1388?1389.
[ 3 ] ZHOU J, ZHOU F, WANG W, et al. Epidemiological features of NAFLD from 1999 to 2018 in China[J]. Hepatology, 2020, 71 (5): 1851?1864.
[ 4 ] ESLAM M, NEWSOME P N, SARIN S K, et al. A new definition for metabolic dysfunction?associated fatty liver disease: an international expert consensus statement[J]. J Hepatol, 2020, 73 (1): 202?209.
[ 5 ] RINELLA M E, LAZARUS J V, RATZIU V, et al; NAFLD Nomenclature consensus group. A multisociety Delphi consensus statement on new fatty liver disease nomen?clature[J]. J Hepatol, 2023, 79 (6): 1542?1556.
[ 6 ] TILG H, ADOLPH T E, MOSCHEN A R. Multiple parallel hits hypothesis in nonalcoholic fatty liver disease: revisited after a decade[J]. Hepatology, 2021, 73 (2): 833?842.
[ 7 ] CHEN X, LIU M, TANG J, et al. Research progress on the therapeutic effect of polysaccharides on non?alcoholic fatty liver disease through the regulation of the gut?liver axis[J]. Int J Mol Sci, 2022, 23 (19): 11710.
[ 8 ] DUARTE S M B, STEFANO J T, OLIVEIRA C P. Microbiota and nonalcoholic fatty liver disease/nonal?coholic steatohepatitis (NAFLD/NASH)[J]. Ann Hepatol, 2019, 18 (3): 416?421.
[ 9 ] CAPPARELLI R, CUOMO P, GENTILE A, et al. Microbiota?liver diseases interactions[J]. Int J Mol Sci, 2023, 24 (4): 3883.
[10] BUSHYHEAD D, QUIGLEY E M M. Small intestinal bacterial overgrowth: pathophysiology and its implications for definition and management[J]. Gastroenterology, 2022, 163 (3): 593?607.
[11] ACHUFUSI T G O, SHARMA A, ZAMORA E A, et al. Small intestinal bacterial overgrowth: comprehensive review of diagnosis, prevention, and treatment methods[J]. Cureus, 2020, 12 (6): e8860.
[12] REZAIE A, BURESI M, LEMBO A, et al. Hydrogen and methane?based breath testing in gastrointestinal disorders: The North American consensus[J]. Am J Gastroenterol, 2017, 112 (5): 775?784.
[13] PIMENTEL M, SAAD R J, LONG M D, et al. ACG clinical guideline: small intestinal bacterial overgrowth[J]. Am J Gastroenterol, 2020, 115 (2): 165?178.
[14] GUDAN A, JAMIO??MILC D, HAWRY?KOWICZ V, et al. The prevalence of small intestinal bacterial overgrowth in patients with non?alcoholic liver diseases: NAFLD, NASH, fibrosis, cirrhosis. A systematic review, meta?analysis and meta?regression[J]. Nutrients, 2022, 14 (24): 5261.
[15] BOUHNIK Y, ALAIN S, ATTAR A, et al. Bacterial populations contaminating the upper gut in patients with small intestinal bacterial overgrowth syndrome[J]. Am J Gastroenterol, 1999, 94 (5): 1327?1331.
[16] DE OLIVEIRA J M, PACE F L, GHETTI F F, et al. Non?alcoholic steatohepatitis: comparison of intestinal microbiota between different metabolic profiles. A pilot study[J]. J Gastrointestin Liver Dis, 2020, 29 (3): 369?376.
[17] LI F, YE J, SHAO C, et al. Compositional alterations of gut microbiota in nonalcoholic fatty liver disease patients: a systematic review and meta?analysis[J]. Lipids Health Dis, 2021, 20 (1): 22.
[18] SHI H, MAO L, WANG L, et al. Small intestinal bacterial overgrowth and orocecal transit time in patients of nonalcoholic fatty liver disease[J]. Eur J Gastroenterol Hepatol, 2021, 33 (1S Suppl 1): e535?e539.
[19] CARPINO G, DEL BEN M, PASTORI D, et al. Increased liver localization of lipopolysaccharides in human and experimental NAFLD[J]. Hepatology, 2020, 72 (2): 470?485.
[20] FEI N, BRUNEAU A, ZHANG X, et al. Endotoxin producers overgrowing in human gut microbiota as the causative agents for nonalcoholic fatty liver disease[J]. mBio, 2020, 11 (1): e03263?19.
[21] FERRO D, BARATTA F, PASTORI D, et al. New insights into the pathogenesis of non?alcoholic fatty liver disease: gut?derived lipopolysaccharides and oxidative stress[J]. Nutrients, 2020, 12 (9): 2762.
[22] BLACHIER F, BEAUMONT M, KIM E. Cysteine?derived hydrogen sulfide and gut health: a matter of endogenous or bacterial origin[J]. Curr Opin Clin Nutr Metab Care, 2019, 22 (1): 68?75.
[23] MIELE L, VALENZA V, LA TORRE G, et al. Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease[J]. Hepatology, 2009, 49 (6): 1877?1887.
[24] MORRISON D J, PRESTON T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism[J]. Gut Microbes, 2016, 7 (3): 189?200.
[25] LóPEZ?MéNDEZ I, MéNDEZ?MALDONADO K, MANZO?FRANCISCO L A, et al. G protein?coupled receptors: key molecules in metabolic associated fatty liver disease development[J]. Nutr Res, 2021, 87: 70?79.
[26] PERRY R J, PENG L, BARRY N A, et al. Acetate mediates a microbiome?brain?β?cell axis to promote metabolic syndrome[J]. Nature, 2016, 534 (7606): 213?217.
[27] ZHAO S, JANG C, LIU J, et al. Dietary fructose feeds hepatic lipogenesis via microbiota?derived acetate[J]. Nature, 2020, 579 (7800): 586?591.
[28] TIROSH A, CALAY E S, TUNCMAN G, et al. The short?chain fatty acid propionate increases glucagon and FABP4 production, impairing insulin action in mice and humans[J]. Sci Transl Med, 2019, 11 (489): eaav0120.
[29] YAO Q, YU Z, MENG Q, et al. The role of small intestinal bacterial overgrowth in obesity and its related diseases[J]. Biochem Pharmacol, 2023, 212: 115546.
[30] SAMUEL B S, GORDON J I. A humanized gnotobiotic mouse model of host?archaeal?bacterial mutualism[J]. Proc Natl Acad Sci U S A, 2006, 103 (26): 10011?10016.
[31] SURI J, KATARIA R, MALIK Z, et al. Elevated methane levels in small intestinal bacterial overgrowth suggests delayed small bowel and colonic transit[J]. Medicine (Baltimore), 2018, 97 (21): e10554.
[32] STOFAN M, GUO G L. Bile acids and FXR: novel targets for liver diseases[J]. Front Med (Lausanne), 2020, 7: 544.
[33] LI Z, YUAN H, CHU H, et al. The crosstalk between gut microbiota and bile acids promotes the development of non?alcoholic fatty liver disease[J]. Microorganisms, 2023, 11 (8): 2059.
[34] YANG Z X, SHEN W, SUN H. Effects of nuclear receptor FXR on the regulation of liver lipid metabolism in patients with non?alcoholic fatty liver disease[J]. Hepatol Int, 2010, 4 (4): 741?748.
[35] OKUSHIN K, TSUTSUMI T, ENOOKU K, et al. The intrahepatic expression levels of bile acid transporters are inversely correlated with the histological progression of nonalcoholic fatty liver disease[J]. J Gastroenterol, 2016, 51 (8): 808?818.
[36] JIAO N, BAKER S S, CHAPA?RODRIGUEZ A, et al. Suppressed hepatic bile acid signalling despite elevated production of primary and secondary bile acids in NAFLD[J]. Gut, 2018, 67 (10): 1881?1891.
[37] CHáVEZ?TALAVERA O, TAILLEUX A, LEFEBVRE P, et al. Bile acid control of metabolism and inflammation in obesity, type 2 diabetes, dyslipidemia, and nonalcoholic fatty liver disease[J]. Gastroenterology, 2017, 152 (7): 1679?1694.
[38] PIZARRO M, BALASUBRAMANIYAN N, SOLíS N, et al. Bile secretory function in the obese Zucker rat: evidence of cholestasis and altered canalicular transport function[J]. Gut, 2004, 53 (12): 1837?1843.
[39] CHOUDHURI R, SOWERS A L, CHANDRAMOULI G V R, et al. The antioxidant tempol transforms gut micro?biome to resist obesity in female C3H mice fed a high fat diet[J]. Free Radic Biol Med, 2022, 178: 380?390.
[40] GONZALEZ F J, JIANG C, PATTERSON A D. An intestinal microbiota?farnesoid X receptor axis modulates metabolic disease[J]. Gastroenterology, 2016, 151 (5): 845?859.
[41] ZHU L, BAKER S S, GILL C, et al. Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH[J]. Hepatology, 2013, 57 (2): 601?609.
[42] ZHU L, BAKER R D, ZHU R, et al. Gut microbiota produce alcohol and contribute to NAFLD[J]. Gut, 2016, 65 (7): 1232.
[43] RAO R. Endotoxemia and gut barrier dysfunction in alcoholic liver disease[J]. Hepatology, 2009, 50 (2): 638?644.
[44] YUAN J, CHEN C, CUI J, et al. Fatty liver disease caused by high?alcohol?producing Klebsiella pneumoniae[J]. Cell Metab, 2019, 30 (4): 675?688.
[45] CHEN X, ZHANG Z, LI H, et al. Endogenous ethanol produced by intestinal bacteria induces mitochondrial dysfunction in non?alcoholic fatty liver disease[J]. J Gastro?enterol Hepatol, 2020, 35 (11): 2009?2019.
[46] MBAYE B, WASFY R M, ALOU M T, et al. Limosilactobacillus fermentum, Lactococcus lactis and Thomasclavelia ramosa are enriched and Methanobrevibacter smithii is depleted in patients with non?alcoholic steato?hepatitis[J]. Microb Pathog, 2023, 180: 106160.
[47] YE J Z, LI Y T, WU W R, et al. Dynamic alterations in the gut microbiota and metabolome during the develop?ment of methionine?choline?deficient diet?induced nonalco?holic steatohepatitis[J]. World J Gastroenterol, 2018, 24 (23): 2468?2481.
[48] ARAO Y, KAWAI H, KAMIMURA K, et al. Effect of methionine/choline?deficient diet and high?fat diet?induced steatohepatitis on mitochondrial homeostasis in mice[J]. Biochem Biophys Res Commun, 2020, 527 (2): 365?371.
[49] DUMAS M E, BARTON R H, TOYE A, et al. Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin?resistant mice[J]. Proc Natl Acad Sci U S A, 2006, 103 (33): 12511?12516.
[50] TAN X, LIU Y, LONG J, et al. Trimethylamine N?oxide aggravates liver steatosis through modulation of bile acid metabolism and inhibition of farnesoid X receptor signaling in nonalcoholic fatty liver disease[J]. Mol Nutr Food Res, 2019, 63 (17): e1900257.
[51] ZHOU D, ZHANG J, XIAO C, et al. Trimethylamine?N?oxide (TMAO) mediates the crosstalk between the gut microbiota and hepatic vascular niche to alleviate liver fibrosis in nonalcoholic steatohepatitis[J]. Front Immunol, 2022, 13: 964477.
[52] MIN B H,DEVI S,KWON G H, et al. Gut microbiota?derived indole compounds attenuate metabolic dysfunction?associated steatotic liver disease by improving fat metabolism and inflammation[J]. Gut Microbes, 2024, 16 (1): 2307568.
[53] WU J,CHEN X,QIAN J, et al. Clinical improvement effect of regulating gut microbiota on metabolic dysfunction?associated steatotic liver disease: systematic review and meta?analysis of randomized controlled trials[J]. Clin Res Hepatol Gastroenterol, 2024, 48 (7): 102397.
[54] LEI Y, TANG L, CHEN Q, et al. Disulfiram ameliorates nonalcoholic steatohepatitis by modulating the gut microbiota and bile acid metabolism[J]. Nat Commun, 2022, 13 (1): 6862.
(2024?01?03收稿;2024?02?02修回)
(本文編輯:歐洋肖)