摘要:【目的】篩選核心單核苷酸多態(tài)性(single nucleotide polymorphism,SNP)位點(diǎn),建立基于KASP平臺(tái)的桂花(Osmanthus fragrans)品種基因型快速檢測(cè)方法,構(gòu)建品種特異性分子身份證,為桂花品種鑒定、溯源、知識(shí)產(chǎn)權(quán)保護(hù)等提供理論基礎(chǔ)?!痉椒ā繉?shí)地調(diào)查主流桂花栽培品種的重要表型特征。通過兩輪嚴(yán)格篩選,從基因組SNP中保留一組能夠完全鑒別測(cè)序品種的最優(yōu)SNP標(biāo)記,計(jì)算SNP 位點(diǎn)的多態(tài)信息含量(PIC)、期望雜合度(He)等信息。以‘日香桂’(‘Rixianggui’)基因組為參考,設(shè)計(jì)桂花特異性KASP引物并進(jìn)行批量擴(kuò)增,根據(jù)基因分型結(jié)果建立品種指紋圖譜,評(píng)估核心SNP標(biāo)記的品種鑒別力。結(jié)合品種表型信息碼和品種分子指紋碼構(gòu)建桂花品種資源的分子身份證?!窘Y(jié)果】篩選出14個(gè)能夠完全鑒別測(cè)序品種的核心SNP位點(diǎn)。各位點(diǎn)PIC值的變化范圍為0.246~0.375,平均值為0.335;He的變化范圍為 0.288~0.500,平均值為0.431。針對(duì)核心位點(diǎn)設(shè)計(jì)的KASP引物基因分型準(zhǔn)確。根據(jù)擴(kuò)增結(jié)果構(gòu)建DNA指紋圖譜,可區(qū)分全部包括未測(cè)序品種在內(nèi)的90個(gè)參試品種。對(duì)品種表型特征賦值,結(jié)合指紋碼構(gòu)建由34位數(shù)字組成的桂花品種資源分子身份證?!窘Y(jié)論】確定了SNP1—SNP14共14個(gè)核心SNP位點(diǎn),能夠?qū)崿F(xiàn)至少90個(gè)桂花品種的有效鑒別。結(jié)合品種群類型、表型特征和分子指紋碼構(gòu)建了90個(gè)桂花品種的唯一分子身份證,并生成對(duì)應(yīng)的條形碼和二維碼。
關(guān)鍵詞:桂花;品種鑒別;單核苷酸多態(tài)性;表型性狀;分子身份證
中圖分類號(hào):S68"""""" 文獻(xiàn)標(biāo)志碼:A開放科學(xué)(資源服務(wù))標(biāo)識(shí)碼(OSID):
文章編號(hào):1000-2006(2024)04-0012-13
Construction of molecular ID for Osmanthus fragrans cultivars based on phenotypic traits and single nucleotide polymorphisms (SNPs)
WANG Yihan1,2, LIU Jiaojiao1,2, JIN Peiquan1,2, LI Shuqing1,2, WEI Jianfen3, GUO Peng1,2, SHANG Fude1,2
(1. College of Life Sciences, Henan Agricultural University, Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Zhengzhou 450046, China; 2 National Osmanthus Germplasm Resource Repository, Hangzhou 310020, China)
Abstract: 【Objective】 This study aimed to select genomic core single-nucleotide polymorphism (SNP) loci to establish a rapid SNP genotyping method for cultivar identification based on the KASP platform, and to construct molecular IDs for Osmanthus fragrans cultivars. This will provide a theoretical basis for the identification, traceability, and intellectual property protection of O. fragrans cultivars. 【Methods】 Field surveys were carried to investigate the important phenotypic characteristics of O. fragrans cultivars. Through two rounds of rigorous screening, we retained a set of core SNP markers that could fully discriminate previously sequenced cultivars. The polymorphic information content (PIC) and expected heterozygosity (He) of each SNP loci were then analyzed. Using the genome sequences of ‘Rixianggui’ as a reference, we designed species-specific KASP primers and performed PCR amplifications. Based on the genotyping results, we constructed cultivar DNA fingerprints and evaluated the cultivar identification efficiency of the core SNP markers. The molecular IDs of O. fragrans cultivars were finally constructed by combining phenotypic information codes and molecular fingerprint codes. 【Results】 A total of 14 core SNP loci that could fully discriminate sequenced cultivars were retained from the genomic SNPs. The PIC values of these loci ranged from 0.246 to 0.375, with an average of 0.335, and the He indexes ranged from 0.288 to 0.500, with an average of 0.431. The KASP primers designed for the core SNP loci had accurate genotyping results, based on which we constructed DNA fingerprints that could distinguish all 90 tested cultivars, including those that had not been sequenced. A molecular ID of each cultivar, which composed of 34 digits, was formed finally. 【Conclusion】A total of 14 core SNP loci, SNP1 to SNP14, were identified, which could effectively discriminate at least 90 cultivars of O. fragrans. The unique molecular ID codes were constructed for the 90 cultivars using the DNA fingerprint codes, and the converted serial codes from cultivar group types and phenotypic characteristics. The bar codes and quick response (QR) codes were finally generated.
【Objective】 To analyze the phylogenetic relationships and evolutionary patterns of pollen morphology in Tsuga, we observed and compared the pollen characteristics of all 10 extant species of Tsuga along with pollen fossils. 【Methods】 Pollen morphology was examined using scanning electron microscopy (SEM), and hierarchical cluster analysis (HCA) was conducted using seven quantitative indicators and one qualitative indicator. 【Results】 Tsuga pollen typically exhibits characteristics of the N1P3C1 type, with a leptoma on the distal face. The equatorial length ranges from 43.74 to 95.30 μm, predominantly lacking sacci but occasionally with sparse saccate forms. The pollen surface is typically warty or sparsely micro-warty, occasionally with spines or without. According to the hierarchical cluster analysis, Tsuga could be divided into three categories: ①T. mertensiana and Nothotsuga longibracteata; ②T. caroliniana and T. canadensis; ③T. heterophylla, T. ulleungensis, T. diversifolia, T. forrestii, T. sieboldii, T. dumosa and T. chinensis. 【Conclusion】 Pollen morphology in Tsuga has evolved from saccate to non-saccate forms, and from lacking spines to possessing spines. These pollen characteristics are closely related to geographic distribution, indicating similarity among pollen from the same regions. The clustering analysis based on pollen morphology largely aligns with molecular phylogenetic trees, offering a method to distinguish extant species and fossils of Tsuga and providing valuable insights for phylogenetic studies of Tsuga.
【Objective】 This study"" selected core genomic single-nucleotide polymorphism (SNP) loci to" establish" a rapid SNP genotyping method on the KASP platform, and" to construct molecular IDs for Osmanthus fragrans cultivars. This study"" provides a theoretical foundation for identifying, tracing" and protecting the intellectual property of O. fragrans cultivars. 【Method】 Field surveys were conducted to investigate key phenotypic characteristics of O. fragrans cultivars. Following two rounds of rigorous screening, we identified a set of core SNP markers capable of completely distinguishing previously sequenced cultivars. Subsequently, we analyzed the polymorphic information content (PIC) and expected heterozygosity (He) of each SNP locus. Using the genome sequences of ‘Rixianggui’ as a reference, species-specific KASP primers were designed for PCR amplification. Based on the genotyping results, we constructed cultivar DNA fingerprints and assessed the efficiency of core SNP markers for cultivar identification. Molecular IDs for O. fragrans cultivars were established by integrating phenotypic information codes with molecular fingerprint codes. 【Result】 We retained a total of 14 core SNP loci from genomic SNPs that fully discriminated the sequenced cultivars. The PIC values of these loci ranged from 0.246 to 0.375, with an average of 0.335, and the He indices ranged from 0.288 to 0.500, averaging 0.431. The KASP primers designed for these core SNP loci produced accurate genotyping results, enabling us to construct DNA fingerprints capable of distinguishing all 90 tested cultivars, including those not previously sequenced. Each cultivar was assigned a molecular ID composed of 34 digits. 【Conclusion】 In conclusion, 14 core SNP loci (SNP1 to SNP14) were identified that effectively discriminate among at least 90 O. fragrans cultivars. Unique molecular ID codes were constructed using DNA fingerprint codes" along with serial codes derived from cultivar group types and phenotypic characteristics. Finally, barcode and quick response (QR) codes were generated for each cultivar.
Keywords:Osmanthus fragrans; cultivar identification; single nucleotide polymorphism (SNP); phenotype; molecular ID
桂花(Osmanthus fragrans)隸屬木犀科(Oleaceae)木犀屬(Osmanthus),為中國(guó)傳統(tǒng)名花,在秦嶺淮河流域以南、南嶺以北的廣大中亞熱帶和北亞熱帶地區(qū)廣泛栽培[1]。經(jīng)過兩千多年的自然變異和人工繁育,桂花形成了豐富的種內(nèi)變異和品種資源。根據(jù)花期、花色和葉色的不同,桂花可分為金桂(Luteus group)、銀桂(Albus group)、丹桂(Aurantiacus group)、四季桂(Asiaticus group)和彩葉桂(Caiyegui group)五大品種群[2-4],已知品種有近300個(gè)[5]。近年來,隨著野生資源的開發(fā)和雜交育種工作的系統(tǒng)深入,新優(yōu)桂花品種不斷涌現(xiàn)[6-7]。然而,在引種和品種資源交換過程中,“同物異名”和“同名異物”的現(xiàn)象時(shí)有發(fā)生。國(guó)家標(biāo)準(zhǔn)《植物新品種特異性、一致性和穩(wěn)定性DUS測(cè)試指南 桂花》[8]的頒布為桂花品種鑒別和新品種測(cè)試提供了技術(shù)方法和標(biāo)準(zhǔn)。該標(biāo)準(zhǔn)確定了41個(gè)較穩(wěn)定的特征(如花枝長(zhǎng)度、葉腋內(nèi)花芽數(shù)量、花色、花期等)作為DUS測(cè)試的性狀特征。但由于表型性狀極易受環(huán)境影響,國(guó)際植物新品種保護(hù)聯(lián)盟在2013年提出了基于表型距離和分子距離聯(lián)合篩選近似品種的模式[9]。但是目前在桂花品種認(rèn)定中,除性狀特異性外,僅要求其遺傳穩(wěn)定性與一致性,尚未在分子標(biāo)記鑒定與分子條碼上進(jìn)行規(guī)范。
分子標(biāo)記不依賴表型性狀,穩(wěn)定性強(qiáng),是探索植物遺傳變異、開展品種鑒別研究的重要工具。桂花現(xiàn)代栽培品種的遺傳背景復(fù)雜,由于高質(zhì)量基因組資源的缺乏,前期研究者主要采用傳統(tǒng)標(biāo)記進(jìn)行品種鑒定、分子指紋圖譜的構(gòu)建和遺傳連鎖圖譜的繪制,比如相關(guān)序列擴(kuò)增多態(tài)性(sequence-related amplified polymorphism,SRAP)[10-11]、簡(jiǎn)單重復(fù)序列間擴(kuò)增(inter-simple sequence repeat,ISSR)[12-13]、擴(kuò)增片段長(zhǎng)度多態(tài)性(amplified fragment length polymorphism,AFLP)[14-15]、微衛(wèi)星(simple sequence repeats,SSR)[16-18]等。近年來, ‘日香桂’(‘Rixianggui’)[19]、‘柳葉金桂’(‘Liuye Jingui’)[20]、‘狀元紅’(‘Zhuangyuanhong’)和‘玉蓮銀絲’(‘Yulian Yinsi’)[21]4個(gè)桂花品種染色體水平的高質(zhì)量基因組陸續(xù)公布,為挖掘和開發(fā)全基因組范圍內(nèi)的多態(tài)性分子標(biāo)記(SSR、InDel、SNP等)提供了重要平臺(tái)。與SSR和InDel相比,SNP標(biāo)記更適合大量標(biāo)記的高通量基因分型、數(shù)據(jù)庫整合和數(shù)據(jù)共享,并且具有數(shù)量大、變異來源豐富、經(jīng)濟(jì)高效的優(yōu)勢(shì)[22-23],是BMT分子測(cè)試指南中構(gòu)建DNA指紋數(shù)據(jù)庫的推薦標(biāo)記[24]。Chen等[20]基于重測(cè)序技術(shù)檢測(cè)了桂花主流栽培品種基因組內(nèi)的SNP標(biāo)記,基于全基因組關(guān)聯(lián)分析挖掘了與花色相關(guān)的SNP位點(diǎn)和候選基因。但仍亟須嚴(yán)格篩選全基因組的高多態(tài)性、非冗余的SNP位點(diǎn),建立鑒定準(zhǔn)確、檢測(cè)高效的桂花品種分子鑒別技術(shù)。
新一代測(cè)序技術(shù)的發(fā)展推動(dòng)了全基因組SNP標(biāo)記的挖掘及其在觀賞植物品種指紋圖譜構(gòu)建和品種鑒定上的應(yīng)用,如月季(Rosa hybrida)[25]、鳶尾(Iris tectorum)[26]、波斯毛茛(Ranunculus asiaticus)[27]。研究者通過建立競(jìng)爭(zhēng)性等位基因特異性PCR技術(shù)(competitive allele-specific PCR,KASP)[28-29]、SNP芯片技術(shù)(gene chip)[30]等可以進(jìn)一步提高已有SNP的使用效率和分析通量。這些技術(shù)在作物、蔬菜等植物品種和種質(zhì)資源的基因分型、功能基因克隆與鑒定等領(lǐng)域有廣泛的應(yīng)用[31-36],為桂花高效品種鑒別技術(shù)的研究提供了參考。
在前期研究[37]的基礎(chǔ)上,本研究采用嚴(yán)格的過濾參數(shù)從桂花60個(gè)品種的全基因組重測(cè)序數(shù)據(jù)中篩選能夠區(qū)分各品種的核心SNP位點(diǎn),開發(fā)基于KASP平臺(tái)的品種基因型快速檢測(cè)方法,并建立品種特異性分子指紋圖譜和分子身份證,以期為桂花品種鑒定、溯源、知識(shí)產(chǎn)權(quán)保護(hù)等提供理論參考。
1 材料與方法
1.1 試驗(yàn)材料和DNA的提取
試驗(yàn)所用的90個(gè)桂花品種,涵蓋了4個(gè)桂花品種群,其中金桂30個(gè)、銀桂28個(gè)、丹桂23個(gè)、四季桂9個(gè),保存于浙江省杭州市余杭區(qū)的桂花國(guó)家級(jí)花卉種質(zhì)資源庫、河南省信陽市潢川金桂園和河南大學(xué)金明校區(qū)(附表1,nldxb.njfu.edu.cn,下同)。
于2019—2020年采集各品種的新鮮嫩葉,用硅膠充分干燥后置于4" ℃保存。采用改良的CTAB法[38]提取供試基因組DNA,采用1%(質(zhì)量分?jǐn)?shù),下同)瓊脂糖凝膠檢測(cè)DNA的完整性,用NanoDrop 8000分光光度計(jì)(Thermo Fisher, DE, 美國(guó))精確定量DNA濃度。提取的基因組DNA置于-20 ℃保存?zhèn)溆谩?/p>
1.2 表型性狀測(cè)定
桂花的花色、花香、花量和結(jié)實(shí)性狀是品種分類的重要依據(jù),也是產(chǎn)業(yè)上品種價(jià)值體現(xiàn)的核心品質(zhì)特征[39-41]。本研究選取花色、花香、新梢頂芽和腋芽總數(shù)、著花密度和結(jié)實(shí)性共5個(gè)表型性狀作為品種身份證中商品碼的組成部分。參考《中國(guó)桂花品種圖志》[2]《中國(guó)桂花》[3]和《桂花新品種DUS測(cè)試指南》[42] 制定調(diào)查標(biāo)準(zhǔn),于2022—2023連續(xù)兩年在樣品采集地進(jìn)行實(shí)地表型觀測(cè)。調(diào)查時(shí)每個(gè)品種取3株重復(fù),每株測(cè)定3次。
具體調(diào)查標(biāo)準(zhǔn)如下:
1)花色。在花初開放至全株1/3全開放期間觀測(cè),在晴天、自然光環(huán)境下,先把握全株整體的景觀色彩,再細(xì)觀向陽面樹冠中上部花枝上的花瓣顏色,以英國(guó)皇家園藝學(xué)會(huì)(Royal Horticultural Society,RHS)出版的比色卡(RHS Color Chart)[43-45]為標(biāo)準(zhǔn)(圖1a),進(jìn)行“白”“黃”“橙”3色的定性描述。
2)花香。采用鼻聞定性法在品種頭茬花的初花期首日進(jìn)行花香鑒定,根據(jù)香氣程度分為濃香、中香、微香、不香4種類型。
3)花量。采用新梢頂芽和腋芽總數(shù)、著花密度(即每花序小花數(shù))兩個(gè)指標(biāo)反映[3]。新梢上的芽除了頂端少數(shù)是來年或當(dāng)年秋季萌發(fā)的枝芽,絕大多數(shù)都是腋生的花芽。本研究于圓珠期隨機(jī)選擇9個(gè)1年生新生枝條,統(tǒng)計(jì)各枝條的頂芽和腋芽總數(shù)并計(jì)算平均值,根據(jù)結(jié)果將各品種劃分為少花低產(chǎn)(<20枚/梢)、中花平產(chǎn)[[20,30)枚/梢]、多花豐產(chǎn)(≥30枚/梢)3個(gè)等級(jí)[3]。此外,于盛花期統(tǒng)計(jì)從新梢頂端向下第2對(duì)葉腋處花序的小花數(shù)量,判斷各品種的著花密度為稀疏(<5朵/花序)、中等[[5,8)朵/花序或稠密(≥8朵/花序)][3](圖1b)。
4)結(jié)實(shí)性。根據(jù)雌蕊發(fā)育狀況和花后結(jié)實(shí)與否判斷,是品種內(nèi)的穩(wěn)定性狀。雌蕊發(fā)育狀況常因品種而異,有3種情況[2-3, 46](圖1c):一是雌蕊完全敗育,屬于雄花,常完全無雌蕊分化,或子房細(xì)長(zhǎng)條形、柱頭缺失;二是雌蕊退化,花內(nèi)子房較狹長(zhǎng),呈長(zhǎng)卵形,柱頭短小,不能正常授粉受精或者果實(shí)發(fā)育異常;三是雌蕊和雄蕊均發(fā)育良好,為兩性花,子房膨大呈圓球形或卵球形,能正常結(jié)實(shí)。雌蕊完全敗育和雌蕊退化兩種情況均記錄為不結(jié)實(shí)品種。
1.3 品種鑒定核心SNP標(biāo)記的篩選
前期李書情[37] 對(duì)60個(gè)桂花品種的重測(cè)序研究獲得了1 599 694個(gè)高質(zhì)量基因組SNP。本研究利用軟件VCFtools V.0.1.13[47]對(duì)上述SNP進(jìn)行嚴(yán)格過濾,過濾標(biāo)準(zhǔn)如下:最小等位基因頻率(minor allele frequency,MAF)≥0.05、樣本分型缺失率為0、多態(tài)性信息含量(polymorphism information content,PIC)為 0.2~0.5、獨(dú)立遺傳[連鎖不平衡過濾參數(shù)為L(zhǎng)D獨(dú)立性過濾(indep) 與使用成對(duì)的LD計(jì)算方法(pairwise)窗口大小50、步長(zhǎng)10、閾值(r2)0.2]、SNP位點(diǎn)前后50 bp無其他變異、SNP位點(diǎn)前后100 bp的側(cè)翼序列在染色體上有唯一比對(duì),SNP位于外顯子區(qū)且盡量在染色體上均勻分布(密度按至少100 kb/SNP)。對(duì)于第1輪過濾后的SNP位點(diǎn),采用李梓榕等[48]開發(fā)的R語言腳本,經(jīng)過“初篩”和“精簡(jiǎn)”兩步流程作進(jìn)一步過濾,篩選出數(shù)量最少、能夠完全區(qū)分60個(gè)桂花品種的5組SNP標(biāo)記。通過后續(xù)引物設(shè)計(jì)和基因分型實(shí)驗(yàn),保留一組KASP轉(zhuǎn)化成功、分型準(zhǔn)確的位點(diǎn)作為品種鑒定的核心SNP標(biāo)記,并明確每個(gè)位點(diǎn)在各樣本中的基因型。
1.4 KASP擴(kuò)增與基因型檢測(cè)
基于KASP平臺(tái),以‘日香桂’[19]基因組為參考,在每個(gè)核心SNP位點(diǎn)前后100 bp序列范圍內(nèi)設(shè)計(jì)引物。每個(gè)SNP位點(diǎn)分別設(shè)計(jì)3條引物:2條等位基因特異性的上(或下)游引物和一條下(或上)游通用引物。引物由北京擎科生物科技有限公司合成。KASP反應(yīng)體系、反應(yīng)程序和熒光信號(hào)判斷方法按照Shen等[49]的方法進(jìn)行。對(duì)于預(yù)實(shí)驗(yàn)中分型效果和準(zhǔn)確率較好的核心標(biāo)記組合,在60個(gè)測(cè)序品種的基礎(chǔ)上進(jìn)一步擴(kuò)大樣本(加入30個(gè)未測(cè)序品種),進(jìn)行KASP 批量擴(kuò)增,用于評(píng)估核心SNP標(biāo)記的品種鑒別力,并獲得90個(gè)受試桂花品種在核心SNP位點(diǎn)的基因型數(shù)據(jù)。利用PowerMarker V.3.25軟件[50]計(jì)算各核心位點(diǎn)的次要等位基因頻率(MAF)、多態(tài)信息含量(polymorphism information content,PIC)和期望雜合度(expected heterozygosity, He)。
1.5 分子指紋圖譜和分子身份證的構(gòu)建
通過KASP實(shí)驗(yàn)獲得各品種在核心SNP位點(diǎn)的基因型數(shù)據(jù)后,將A、G、C、T依次轉(zhuǎn)換為1、2、3、4,構(gòu)建每個(gè)品種的分子指紋圖譜,即分子指紋碼。結(jié)合品種信息編碼與分子指紋碼,利用條碼生成器和二維碼生成器(http://qr-batch.com/)構(gòu)建90個(gè)桂花品種的分子身份證。
2 結(jié)果與分析
2.1 表型性狀多樣性
2022—2023年連續(xù)2年對(duì)杭州市國(guó)家桂花種質(zhì)資源庫、信陽市潢川金桂園和河南大學(xué)金明校區(qū)的90個(gè)栽培桂花品種進(jìn)行了花色、花香、花量和結(jié)實(shí)性的表型調(diào)查及圖片拍攝。在調(diào)查的90個(gè)品種中,74個(gè)品種不結(jié)實(shí),占比83.15%。濃香型桂花品種有23個(gè),多集中在金桂和銀桂品種群;四季桂品種群中,‘日香桂’和‘橙黃四季桂’(‘Chenghuang Sijigui’)花香較為濃郁,適合多季的香景營(yíng)造。就花色而言,白色系桂花品種較少,代表的有銀桂品種‘中華龍桂’(‘Zhonghua Longgui’)和‘串銀球’(‘Chuanyinqiu’);金桂品種‘小花金桂’(‘Xiaohua Jingui’)和‘山茶金桂’(‘Shancha Jingui’)等;丹桂品種‘狀元紅’(‘Zhuangyuanhong’)和‘滿條紅’(‘Mantiaohong’)的花色最為鮮艷。桂花開花以當(dāng)年新梢為主,各品種的花量與新梢花芽數(shù)和每花序小花數(shù)目有關(guān)[51]。綜合考慮這兩項(xiàng)發(fā)育指標(biāo),調(diào)查品種中的‘柳葉蘇桂’(‘Liuye Sugui’)、‘玉玲瓏’(‘Yulinglong’)和‘速生金桂’(‘Susheng Jingui’)在調(diào)查年份花芽量大(平均30~36/梢)、著花稠密(7~9朵/花序)且不結(jié)實(shí),是適合用于采花的高產(chǎn)花量品種(附表1,nldxb.njfu.edu.cn)。
2.2 核心SNP的篩選和KASP標(biāo)記轉(zhuǎn)化
經(jīng)過兩輪的嚴(yán)格篩選和KASP預(yù)實(shí)驗(yàn),最終保留一組由14個(gè)核心SNP 位點(diǎn)組成的最精簡(jiǎn)SNP標(biāo)記組合,能完全區(qū)分60個(gè)桂花品種(圖2)。
這14個(gè)SNP標(biāo)記都位于基因編碼區(qū),包含4個(gè)非同義突變和10 個(gè)同義突變。6個(gè)SNP位點(diǎn)的變異類型是堿基顛換,8個(gè)SNP是堿基轉(zhuǎn)換(表1)。經(jīng)計(jì)算,14個(gè)SNP位點(diǎn)的多態(tài)性水平較高,PIC值的變異范圍為0.246~0.375,平均值為0.335;He指數(shù)的變異范圍為0.288~0.500,平均值為0.431(表1)。提取14個(gè)核心SNP位點(diǎn)前后各100 bp的側(cè)翼序列,設(shè)計(jì)合成KASP引物,攜帶有FAM熒光標(biāo)簽的引物序列為GAAGGTGACCAAGTTCATGCT,攜帶有HEX熒光標(biāo)簽的引物序列為GAAGGTCGGAGTCAACGGATT(表2)。
2.3 核心SNP鑒定能力檢驗(yàn)和品種分子指紋圖譜的構(gòu)建
利用KASP引物對(duì)60個(gè)已測(cè)序品種和30個(gè)未測(cè)序品種進(jìn)行批量擴(kuò)增,通過熒光信號(hào)強(qiáng)弱結(jié)果判斷各核心位點(diǎn)的基因型(圖3),從而驗(yàn)證分型準(zhǔn)確性。經(jīng)對(duì)比,所有SNP位點(diǎn)的KASP分型結(jié)果與重測(cè)序結(jié)果一致,可用于后續(xù)桂花品種分子鑒別中基因型的快速檢測(cè)。當(dāng)供試品種數(shù)量增多至90個(gè)時(shí),該SNP標(biāo)記組合仍能鑒定所有品種。進(jìn)一步將14個(gè)核心SNP位點(diǎn)在90個(gè)品種中的基因型數(shù)據(jù)轉(zhuǎn)化為分子指紋,結(jié)果表明,多個(gè)品種間具有較高的遺傳相似性(僅1個(gè)位點(diǎn)差異),如‘橙香丹桂’(‘Chengxiang Dangui’)和‘紅桂’(‘Honggui’)、‘湘金’(‘Xiangjin’)和‘速生銀桂’(‘Susheng Yingui’)、‘嬌容’(‘Jiaorong’)和‘武夷丹桂’(‘Wuyi Dangui’)等。
圖中坐標(biāo)值為熒光信號(hào)相對(duì)于背景的變化量(ΔRn)" changes in fluorescence signal relative to background. Allelle.等位基因;FAM.6-羧基熒光素;VIC.六氯-6-甲基熒光素。
圖中每個(gè)樣本的顏色代表不同的基因型:紅色代表等位基因 1 的純合子,藍(lán)色代表等位基因 2 的純合子,綠色代表雜合子。黃色樣本為陰性對(duì)照。SNP位點(diǎn)信息詳見表1。 Each color code in the plots represents one of three genotypes: homozygote of allele 1(red), homozygote of allele 2 (blue), and heterozygote (green). The yellow dots are negative controls. See SNP locus information in Table 1.
2.4 桂花品種分子身份證的構(gòu)建
將14個(gè)核心SNP位點(diǎn)(SNP1—SNP14)在各品種的基因型數(shù)據(jù)轉(zhuǎn)化為28位指紋碼,與品種信息編碼聯(lián)合構(gòu)建34位分子身份證碼。
品種信息碼為分子身份證的前6位,第1位數(shù)字為品種群類型編碼,1~4分別代表金桂、銀桂、丹桂和四季桂品種群;第2~6位數(shù)字為品種特征信息編碼,通過對(duì)花色、花香、新梢頂芽和腋芽總數(shù)、每花序小花數(shù)量(著花密度)、結(jié)實(shí)性(雌蕊發(fā)育狀況)5個(gè)品種表型特征賦值后生成。賦值方式如下:第2位“0、1、2”表示 “白、黃、橙”3種花色類型;第3位“0、1、2、3”表示 “不香、微香、中香、濃香”4種花香等級(jí);第4位“1、2、3”依次表示新梢花芽數(shù)“少、中、多”;第5位“1、2、3”依次表示著花密度“稀疏、中等、稠密”;第6位“0、1”分別表示“不結(jié)實(shí)、結(jié)實(shí)”。以‘狀元紅’為例見圖4)。
由圖4可見,其分子身份證號(hào)碼為3221102134211133223411334144333422,表示該品種屬于丹桂品種群,花色為橙色,中香,新梢頂芽和腋芽總數(shù)少,著花密度稀疏,花后不結(jié)實(shí),14個(gè)核心SNP標(biāo)記的基因型依次為GA、CT、GA、AA、CG、
GG、CT、AA、CC、TA、TT、CC、CT、GG。按照此方法完成90份桂花品種分子身份證的構(gòu)建(表3)。最終利用條碼在線生成器分別制作出品種特異的條形碼和二維碼(圖5),90個(gè)桂花品種的分子身份證詳見附圖1(nldxb.njfu.edu.cn)。
C-Red-Mean.樹冠紅色波段平均值 canopy red band mean;C-Blue-Mean.樹冠藍(lán)色波段平均值 canopy blue band mean;T-Red-Mean.樹干紅色波段平均值 trunk red band mean;T-Blue-Mean.樹干藍(lán)色波段平均值 trunk blue band mean;T-Green-Mean.樹干綠色波段平均值 trunk green band mean;C-Red-Std.樹冠紅色波段標(biāo)準(zhǔn)差 canopy red band standard deviation;C-Green-Mean.樹冠綠色波段平均值 canopy green band mean;T-Red-Std.樹干紅色波段標(biāo)準(zhǔn)差 trunk red band standard deviation;RL/H.冠幅樹高比 canopy width to height ratio;C-Blue-Std.樹冠藍(lán)色波段標(biāo)準(zhǔn)差 canopy blue band standard deviation;T-Green-Std.樹干綠色波段標(biāo)準(zhǔn)差 trunk green band standard deviation;T-Blue-Std.樹干藍(lán)色波段標(biāo)準(zhǔn)差 trunk blue band standard deviation;RA/H.樹冠面積樹高比 canopy area to height ratio;C-Green-Std.樹冠綠色波段標(biāo)準(zhǔn)差 canopy green band standard deviation;RA/D.樹冠面積胸徑比 canopy area to diameter at breast height ratio;RV/D.樹冠體積胸徑比 canopy volume to diameter at breast height ratio;RV/H.樹冠體積樹高比 canopy volume to height ratio;RL/D.冠幅胸徑比 canopy width to diameter at breast height ratio;0~10%、10%~20%、…、90%~100%表示分位點(diǎn)云數(shù)量占比0~10%、10%~20%、…、90%~100% represent quantile point cloud ratio。
3 討 論
SSR和SNP分子標(biāo)記是國(guó)際《UPOV-BMT測(cè)試指南》和中國(guó)《植物品種鑒定DNA指紋方法總則》(NY/T 2594—2016)中推薦的最佳分子標(biāo)記[52]。SSR標(biāo)記因通量有限、操作耗時(shí)、數(shù)據(jù)整合困難等問題,正逐漸被SNP標(biāo)記取代[53]。基于第3代SNP標(biāo)記的品種身份證構(gòu)建在觀賞物種中報(bào)道不多,僅在蘭科(Orchidaceae)[54]、山茶(Camellia japonica)[55]等少數(shù)花卉中有應(yīng)用,目前在桂花中尚無相關(guān)研究。桂花遺傳背景復(fù)雜,基因組雜合度(1.02%~1.45%)和重復(fù)序列比例(49.35%~54.41%)較高[19-21],多態(tài)性位點(diǎn)的信息量大且解析難度較高。因此,以高質(zhì)量基因組為參考,從海量的全基因組變異中發(fā)掘可靠且有“鑒別力”的共顯性SNP標(biāo)記是建立品種基因型快速檢測(cè)體系的關(guān)鍵。
從降低檢測(cè)成本的方面考慮,用于構(gòu)建分子指紋圖譜的位點(diǎn)選擇原則是用盡可能少的SNP鑒定全部樣本。常規(guī)的SNP篩選流程主要關(guān)注位點(diǎn)檢出率和多態(tài)性指標(biāo)[56-57]。前期桂花重測(cè)序研究[37]在121個(gè)品種中檢測(cè)到SNP位點(diǎn)數(shù)約160萬個(gè),PIC值為0.2~0.5的SNP約有41萬個(gè)。采用傳統(tǒng)的高PIC值方法從基因組數(shù)據(jù)中篩選核心位點(diǎn)操作難度大,且常有精簡(jiǎn)優(yōu)化的空間。為克服該問題,本研究選擇近期開發(fā)的新方法[48],經(jīng)過“初篩”和“精簡(jiǎn)”兩步流程篩選能夠鑒定全部60個(gè)供試品種的SNP標(biāo)記組合。經(jīng)計(jì)算,最終保留了14個(gè)(SNP1—SNP14)位于基因編碼區(qū)、在染色體上均勻分布的SNP位點(diǎn)(PIC:0.246~0.375),并進(jìn)行了KASP標(biāo)記的轉(zhuǎn)化。對(duì)比發(fā)現(xiàn),這一組合的鑒別率明顯高于高PIC值篩選的SNP組合(100% vs. 89%),并且當(dāng)品種數(shù)量增多至90個(gè)時(shí),仍能鑒定所有品種(1~13個(gè)位點(diǎn)差異)。在受試品種中,‘長(zhǎng)葉碧珠’(‘Changye Bizhu’)和‘銀盞碧珠’(‘Yinzhan Bizhu’)、‘雄黃桂’(‘Xionghuanggui’)和‘堰虹桂’(‘Yanhonggui’)之間的表型差異很小[2-3],加之環(huán)境影響,在引種栽培中容易混淆。利用本研究的14個(gè)核心KASP-SNP標(biāo)記進(jìn)行鑒定,兩對(duì)近似品種分別有5個(gè)和9個(gè)位點(diǎn)的基因型差異,易于區(qū)分。理論上,14個(gè)標(biāo)記區(qū)分目前已知的所有桂花品種存在可行性,但具體的實(shí)用性有待進(jìn)一步檢驗(yàn)。在實(shí)踐中也可以重復(fù)分析多次,聯(lián)合多套SNP組合提高鑒定方法的容錯(cuò)能力[48]??傊?,本研究針對(duì)桂花核心SNP的KASP快速檢測(cè)體系具有標(biāo)記數(shù)量少、鑒別能力強(qiáng)、操作便捷、成本低的優(yōu)勢(shì),檢測(cè)結(jié)果可為今后桂花品種真實(shí)性鑒定和DUS測(cè)試標(biāo)準(zhǔn)的制定提供參考。
不同于單純的分子指紋圖譜,本研究將90個(gè)桂花品種的重要經(jīng)濟(jì)表型和14個(gè)SNP位點(diǎn)構(gòu)建的分子指紋圖譜信息結(jié)合起來,簡(jiǎn)化為標(biāo)準(zhǔn)化“身份”編碼,再生成對(duì)應(yīng)的條形碼和二維碼,可被設(shè)備快速掃碼識(shí)別,便于產(chǎn)業(yè)上品種身份和品種應(yīng)用特性的便捷化查詢。同時(shí),品種身份證的開發(fā)也可用于品種溯源和知識(shí)產(chǎn)權(quán)保護(hù)。例如,根據(jù)本研究的基因分型結(jié)果,國(guó)家地理標(biāo)識(shí)產(chǎn)品‘潢川金桂’(‘Huangchuan Jingui’)在SNP2、SNP3、SNP7具有品種特異性的基因型組合(分別為C/C、G/A和C/T),可作為其在遺傳上的明確標(biāo)識(shí)特征,用于地理標(biāo)志保護(hù)。但是,由于前期進(jìn)行表型觀測(cè)的種質(zhì)資源圃中未引種彩葉桂品種,故本研究生成的品種身份證未涵蓋該品種群。未來將收集市場(chǎng)主流的彩葉桂品種,如‘云田彩桂’(‘Yuntian Caigui’)、‘紫嫣公主’(‘Ziyan Gongzhu’)等,進(jìn)一步檢驗(yàn)SNP標(biāo)記組合的品種鑒定力,并擴(kuò)充桂花分子身份證庫。
參考文獻(xiàn)(reference):
[1]趙宏波,郝日明,胡紹慶.中國(guó)野生桂花的地理分布和種群特征[J].園藝學(xué)報(bào),2015,42(9):1760-1770. ZHAO H B,HAO R M,HU S Q.Geographic distribution and population characteristics of Osmanthus fragrans[J].Acta Hortic Sin,2015,42(9):1760-1770.DOI: 10.16420/j.issn.0513-353x.2014-0939.
[2]向其柏,劉玉蓮.中國(guó)桂花品種圖志 [M].杭州:浙江科學(xué)技術(shù)出版社,2008. XIANG Q B,LIU Y L.An illustrated monograph of the sweet osmanthus cultivars in China[M].Hangzhou:Zhejiang Science amp; Technology Press,2008.
[3]楊康民.中國(guó)桂花[M].北京:中國(guó)林業(yè)出版社,2013. YANG K M.Chinese osmanthus[M].Beijing:China Forestry Publishing House,2013.
[4]向民,段一凡,向其柏.木犀屬品種國(guó)際登錄中心年報(bào)(1) 彩葉桂品種群的建立[J].南京林業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2014,38(1):2,187.XIANG M,DUAN Y F, XIANG Q B.International Cultivar Registration Center for Osmanthus,Nanjing Forestry University.Establishment of a new group-Osmanthus fragrans Colour Group[J].J Nanjing For Univ (Nat Sci Ed),2014,38(1):2,187.DOI: 10.3969/j.issn.1000-2006.2014.01.034.
[5]高麗,何岳球,孫志國(guó),等.三個(gè) “新發(fā)展” 下咸寧市中國(guó)桂花城傳承創(chuàng)新發(fā)展研究[J].安徽農(nóng)業(yè)科學(xué),2023,51(12):256-259.GAO L,HE Y Q,SUN Z G,et al.Research on the inheritance,innovation and high-quality development of Chinese Osmanthus city in Xianning under three" “new developments”[J].J Anhui Agric Sci,2023,51(12):256-259.DOI: 10.3969/j.issn.0517-6611.2023.12.058.
[6]劉燕培,李書情,王長(zhǎng)海,等. 桂花新品種‘潢川丹桂’[J]. 園藝學(xué)報(bào), 2022, 49(S2): 229-230. LIU Y P, LI S Q, WANG C H, et al. A new Osmanthus fragrans cultivar ‘Huangchuan Dangui’ [J]. Hortic Plant J, 2022, 49(S2): 229-230 (in Chinese with English abstract). DOI:10.16420/j.issn.0513-353x.2022-0376.
[7]王良桂,潘多,丁卉芬,等.彩葉桂新品種‘南林彩云’[J].南京林業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2023,47(2):243-244.WANG L G,PAN D,DING H F,et al.Osmanthus fragrans ‘Nanlin Caiyun’:a new cultivar of Osmanthus[J].J Nanjing For Univ (Nat Sci Ed),2023,47(2):243-244.
[8]國(guó)家質(zhì)量監(jiān)督檢驗(yàn)檢疫總局,中國(guó)國(guó)家標(biāo)準(zhǔn)化管理委員會(huì).植物新品種特異性、一致性、穩(wěn)定性測(cè)試指 桂花:GB/T 24885—2010[S].北京:中國(guó)標(biāo)準(zhǔn)出版社,2011.General Administration of Quality Supervision,Inspection and Quarantine of the People’s Republic of China,Standardization Administration of the People’s Republic of China.Guidelines for the conduct of test for distinctness,uniformity and stability-Sweet osmanthus(Osmanthus fragrans L.):GB/T 24885-2010[S].Beijing:Standards Press of China,2011.
[9]UPOV.TGP/15. Guidance on the use of biochemical and molecular markers in the examination of distinctness,uniformity and stability(DUS). Geneva:UPOV, 2013.
[10]李梅.桂花種質(zhì)資源遺傳多樣性研究及品種鑒定[D].南京:南京農(nóng)業(yè)大學(xué),2009.LI M.Study on genetic diversity and cultivar identification of Osmanthus fragrans germplasm[D].Nanjing:Nanjing Agricultural University,2009.
[11]邱帥,吳光洪,陳徐平,等.基于相關(guān)序列擴(kuò)增多態(tài)性分子標(biāo)記的桂花栽培品種演化分析[J].浙江大學(xué)學(xué)報(bào)(農(nóng)業(yè)與生命科學(xué)版),2017,43(4):404-415.QIU S,WU G H,CHEN X P,et al.Evolution analysis of sweet Osmanthus(Osmanthus fragrans) cultivars based on sequence-related amplified polymorphism molecular marker[J].J Zhejiang Univ (Agric Life Sci),2017,43(4):404-415.DOI: 10.3785/j.issn.1008-9209.2016.08.241.
[12]喬中全,王曉明,李永欣,等.桂花優(yōu)良品種‘珍珠彩桂’遺傳多樣性的ISSR分析及指紋圖譜構(gòu)建[J].湖南林業(yè)科技,2016,43(3):1-5.QIAO Z Q,WANG X M,LI Y X,et al.Genetic diversity and fingerprint construction of varieties of Osmanthus fragrans ‘Zhenzhu Caigui’ by ISSR markers[J].Hunan For Sci Technol,2016,43(3):1-5.DOI: 10.3969/j.issn.1003-5710.2016.03.001.
[13]羅仙英,桂敬飛,嚴(yán)治,等.貴州桂花種質(zhì)資源遺傳多樣性的ISSR分析[J].種子,2017,36(6):62-66.LUO X Y,GUI J F,YAN Z,et al.Genetic diversity analyses of Osmanthus fragrans lour.in Guizhou with ISSR markers[J].Seed,2017,36(6):62-66.DOI: 10.16590/j.cnki.1001-4705.2017.06.062.
[14]韓遠(yuǎn)記.桂花品種資源遺傳多樣性的AFLP分析[D].開封:河南大學(xué),2008.HAN Y J.Study on the genetic diversity of Osmanthus fragrans cultivars by AFLP markers[D].Kaifeng:Henan University,2008.
[15]YAN X Y,XIAO B L,HAN Y J,et al.AFLP analysis of genetic relationships and diversity of some Chinese Osmanthus fragrans cultivars[J].Life Sci J,2009,6(2):11-16.
[16]ZHANG Z R,F(xiàn)AN D M,GUO S Q,et al.Development of 29 microsatellite markers for Osmanthus fragrans (Oleaceae),a traditional fragrant flowering tree of China[J].Am J Bot,2011,98(12):e356-e359.DOI: 10.3732/ajb.1100241.
[17]DUAN Y F,WANG X R,XIANG Q B,et al.Genetic diversity of androdioecious Osmanthus fragrans (Oleaceae) cultivars using microsatellite markers[J].Appl Plant Sci,2013,1(6):apps.1200092.DOI: 10.3732/apps.1200092.
[18]李軍,董彬,張超,等.桂花EST-SSR引物開發(fā)及在品種鑒定中的應(yīng)用[J].浙江農(nóng)林大學(xué)學(xué)報(bào),2018,35(2):306-313.LI J,DONG B,ZHANG C,et al.EST-SSR primers and their application in cultivar identification of Osmanthus fragrans[J].J Zhejiang A F Univ,2018,35(2):306-313.DOI: 10.11833/j.issn.2095-0756.2018.02.015.
[19]YANG X L,YUE Y Z,LI H Y,et al.The chromosome-level quality genome provides insights into the evolution of the biosynthesis genes for aroma compounds of Osmanthus fragrans[J].Hortic Res,2018,5:72.DOI: 10.1038/s41438-018-0108-0.
[20]CHEN H G,ZENG X L,YANG J,et al.Whole-genome resequencing of Osmanthus fragrans provides insights into flower color evolution[J].Hortic Res,2021,8(1):98.DOI: 10.1038/s41438-021-00531-0.
[21]LI Y,ZHAO H,XIA H X,et al.Multi-omics analyses provide insights into the genomic basis of differentiation among four sweet osmanthus groups[J].Plant Physiol,2024:kiae280.DOI: 10.1093/plphys/kiae280.
[22]魏中艷,李慧慧,李駿,等.應(yīng)用SNP精準(zhǔn)鑒定大豆種質(zhì)及構(gòu)建可掃描身份證[J].作物學(xué)報(bào),2018,44(3):315-323.WEI Z Y,LI H H,LI J,et al.Accurate identification of varieties by nucleotide polymorphisms and establishment of scannable variety IDs for soybean germplasm[J].Acta Agron Sin,2018,44(3):315-323.DOI: 10.3724/SP.J.1006.2018.000315.
[23]DU H S,YANG J J,CHEN B,et al.Target sequencing reveals genetic diversity,population structure,core-SNP markers,and fruit shape-associated loci in pepper varieties[J].BMC Plant Biol,2019,19(1):578.DOI: 10.1186/s12870-019-2122-2.
[24]BUTTON P.The international union for the protection of new varieties of plants (upov) recommendations on variety denominations[J].Acta Hortic,2008(799):191-200.DOI: 10.17660/actahortic.2008.799.27.
[25]HEO M S,HAN K,KWON J K,et al.Development of SNP markers using genotyping-by-sequencing for cultivar identification in rose (Rosa hybrida)[J].Hortic Environ Biotechnol,2017,58(3):292-302.DOI: 10.1007/s13580-017-0268-0.
[26]賈清香.基于RAD測(cè)序的野鳶尾和射干的SSR及SNP特征分析[D].沈陽:沈陽農(nóng)業(yè)大學(xué),2018.JIA Q X.Characteristics of SSR and SNP in I. dichotoma and I. domestica using RAD sequencing[D].Shenyang:Shenyang Agricultural University,2018.
[27]MARTINA M,ACQUADRO A,PORTIS E,et al.Diversity analyses in two ornamental and large-genome Ranunculaceae species based on a low-cost Klenow NGS-based protocol[J].Front Plant Sci,2023,14:1187205.DOI: 10.3389/fpls.2023.1187205.
[28]SEMAGN K,BABU R,HEARNE S,et al.Single nucleotide polymorphism genotyping using Kompetitive Allele Specific PCR (KASP):Overview of the technology and its application in crop improvement[J].Mol Breed,2014,33(1):1-14.DOI: 10.1007/s11032-013-9917-x.
[29]HE C L,HOLME J,ANTHONY J.SNP genotyping: the KASP assay[M]. New York:Humana Press,2014:75-86. DOI: 10.1007/978-1-4939-0446-4_7.
[30]GANAL M W,WIESEKE R,LUERSSEN H,et al.High-throughput SNP profiling of genetic resources in crop plants using genotyping arrays[M]//Genom Plant Genet Resour.Dordrecht:Springer,2014:113-130. DOI: 10.1007/978-94-007-7572-5_6.
[31]DO KIM K,KANG Y N,KIM C.Application of genomic big data in plant breeding:past,present,and future[J].Plants,2020,9(11):1454.DOI: 10.3390/plants9111454.
[32]NGUYENen, TOAN" K, HA S T T, et al. Analysis of Chrysanthemum genetic diversity by genotyping-by-sequencing[J]. Hortic Environ Biotechnol,2020,61: 903-913. DOI:10.1007/s13580-020-00274-2.
[33]WANG F Q, FAN X C, ZHANG Y, et al.Establishment and application of an SNP molecular identification system for grape cultivars[J].J Integr Agric,2022,21(4):1044-1057.DOI: 10.1016/S2095-3119(21)63654-7.
[34]LI Z Y,YU H L,LI X,et al.Kompetitive allele-specific PCR (KASP) genotyping and heterotic group classification of 244 inbred lines in cabbage (Brassica oleracea L.var.capitata)[J].Euphytica,2020,216(7):106.DOI: 10.1007/s10681-020-02640-8.
[35]RASHEED A,WEN W E,GAO F M,et al.Development and validation of KASP assays for genes underpinning key economic traits in bread wheat[J].Theor Appl Genet,2016,129(10):1843-1860.DOI: 10.1007/s00122-016-2743-x.
[36]GREWAL S,HUBBART-EDWARDS S,YANG C Y,et al.Rapid identification of homozygosity and site of wild relative introgressions in wheat through chromosome-specific KASP genotyping assays[J].Plant Biotechnol J,2020,18(3):743-755.DOI: 10.1111/pbi.13241.
[37]李書情.基于全基因組SNP的桂花品種精準(zhǔn)鑒定體系的構(gòu)建及應(yīng)用[D].鄭州:河南農(nóng)業(yè)大學(xué),2023.LI S Q.Construction and application of accurate identification system of Osmanthus fragrans varieties based on whole-genome SNP[D].Zhengzhou:Henan Agricultural University,2023.DOI: 10.27117/d.cnki.ghenu.2023.000780.
[38]POREBSKI S,BAILEY L G,BAUM B R.Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components[J].Plant Mol Biol Report,1997,15(1):8-15.DOI: 10.1007/BF02772108.
[39]CAI X,MAI R Z,ZOU J J,et al.Analysis of aroma-active compounds in three sweet Osmanthus (Osmanthus fragrans) cultivars by GC-olfactometry and GC-MS[J].J Zhejiang Univ Sci B,2014,15(7):638-648.DOI: 10.1631/jzus.B1400058.
[40]FU J X,HOU D,ZHANG C,et al.The emission of the floral scent of four Osmanthus fragrans cultivars in response to different temperatures[J].Molecules,2017,22(3):430.DOI: 10.3390/molecules22030430.
[41]HAN Y J,LI L X,DONG M F,et al.cDNA cloning of the phytoene synthase (PSY) and expression analysis of PSY and carotenoid cleavage dioxygenase genes in Osmanthus fragrans[J].Biologia,2013,68(2):258-263.DOI: 10.2478/s11756-013-0002-z.
[42]路飛.桂花新品種DUS測(cè)試指南的研制[D].南京:南京林業(yè)大學(xué),2009.LU F.Study on the design of DUS testing guideline for new varieties of Osmanthus fragrans[D].Nanjing:Nanjing Forestry University,2009.
[43]VOSS D H,HALE W N.A comparison of the three editions of the royal horticultural society colour chart[J].Hortscience,1998,33:13-17.DOI: 10.21273/HORTSCI.33.1.13.
[44]臧德奎,向其柏.中國(guó)桂花品種分類研究[J].中國(guó)園林,2004,20(11):40-49.ZANG D K,XIANG Q B.Studies on the cultivar classification of Chinese sweet Osmanthus[J].J Chin Landsc Archit,2004,20(11):40-49.DOI: 10.3969/j.issn.1000-6664.2004.11.011.
[45]尚富德,陳仲芳,劉玉蓮,等.桂花品種資源調(diào)查方法研究[J].河南大學(xué)學(xué)報(bào)(自然科學(xué)版),2003,33(1):9-13.SHANG F D,CHEN Z F,LIU Y L,et al.Study on the investigation of cultivar resources of Osmanthus fragrans[J].J Henan Univ (Nat Sci),2003,33(1):9-13.DOI: 10.15991/j.cnki.411100.2003.01.003.
[46]GLEISER G,VERD M.Repeated evolution of dioecy from androdioecy in Acer[J].New Phytol,2005,165(2):633-640.DOI: 10.1111/j.1469-8137.2004.01242.x.
[47]DANECEK P,AUTON A,ABECASIS G,et al.The variant call format and VCFtools[J].Bioinformatics,2011,27(15):2156-2158.DOI: 10.1093/bioinformatics/btr330.
[48]李梓榕,袁雄,陳葉,等.基于全基因組SNP高效鑒定水稻種質(zhì)資源并構(gòu)建指紋圖譜[J].分子植物育種,2020,18(18):6050-6057.LI Z R,YUAN X,CHEN Y,et al.Effective identification for varieties by genome-wide SNPs and establishment of fingerprint for rice germplasm[J].Mol Plant Breed,2020,18(18):6050-6057.DOI: 10.13271/j.mpb.018.006050.
[49]SHEN Y S,WANG J S,SHAW R K,et al.Development of GBTS and KASP panels for genetic diversity,population structure,and fingerprinting of a large collection of broccoli (Brassica oleracea L.var.italica) in China[J].Front Plant Sci,2021,12:655254.DOI: 10.3389/fpls.2021.655254.
[50]LIU K J,MUSE S V.PowerMarker:An integrated analysis environment for genetic marker analysis[J].Bioinformatics,2005,21(9):2128-2129.DOI: 10.1093/bioinformatics/bti282.
[51]楊康民,朱文江.桂花[M].上海:上海科學(xué)技術(shù)出版社,1999.YANG K M,ZHU W J.Osmanthus fragrans[M].Shanghai:Shanghai Scientific amp; Technical Publishers,1999 (in Chinese).
[52]任海龍,許東林,張晶,等.菜薹KASP-SNP指紋圖譜構(gòu)建及品種鑒定[J].園藝學(xué)報(bào),2023,50(2):307-318.REN H L,XU D L,ZHANG J,et al.Establishment of SNP fingerprinting and identification of Chinese flowering cabbage varieties based on KASP genotyping[J].Acta Hortic Sin,2023,50(2):307-318.DOI: 10.16420/j.issn.0513-353x.2021-1046.
[53]王富強(qiáng),樊秀彩,張穎,等.SNP分子標(biāo)記在作物品種鑒定中的應(yīng)用和展望[J].植物遺傳資源學(xué)報(bào),2020,21(5):1308-1320.WANG F Q,F(xiàn)AN X C,ZHANG Y,et al.Application and prospect of SNP molecular markers in crop variety identification[J].J Plant Genet Resour,2020,21(5):1308-1320.DOI: 10.13430/j.cnki.jpgr.20200309002.
[54]LI H L,XIAO W J,TONG T,et al.The specific DNA barcodes based on chloroplast genes for species identification of Orchidaceae plants[J].Sci Rep,2021,11(1):1424.DOI: 10.1038/s41598-021-81087-w.
[55]樊曉靜,于文濤,蔡春平,等.利用SNP標(biāo)記構(gòu)建茶樹品種資源分子身份證[J].中國(guó)農(nóng)業(yè)科學(xué),2021,54(8):1751-1772.FAN X J,YU W T,CAI C P,et al.Construction of molecular ID for tea cultivars by using of single-nucleotide polymorphism(SNP) markers[J].Sci Agric Sin,2021,54(8):1751-1772.DOI: 10.3864/j.issn.0578-1752.2021.08.014.
[56]趙仁欣,李森業(yè),郭瑞星,等.利用SNP芯片構(gòu)建我國(guó)冬油菜參試品種DNA指紋圖譜[J].作物學(xué)報(bào),2018,44(7):956-965.ZHAO R X,LI S Y,GUO R X,et al.Construction of DNA fingerprinting for Brassica napus varieties based on SNP chip[J].Acta Agron Sin,2018,44(7):956-965.DOI: 10.3724/SP.J.1006.2018.00956.
[57]朱國(guó)忠,張芳,付潔,等.適于陸地棉品種身份鑒定的SNP核心位點(diǎn)篩選與評(píng)價(jià)[J].作物學(xué)報(bào),2018,44(11):1631-1639.ZHU G Z,ZHANG F,F(xiàn)U J,et al.Genome-wide screening and evaluation of SNP core loci for identification of upland cotton varieties[J].Acta Agron Sin,2018,44(11):1631-1639.DOI: 10.3724/SP.J.1006.2018.01631.9.
(責(zé)任編輯 吳祝華)
收稿日期Received:2024-05-15 """修回日期Accepted:2024-06-07
基金項(xiàng)目:國(guó)家自然科學(xué)基金項(xiàng)目(32371911);河南省重大公益專項(xiàng)(201300110900)。
第一作者:王一涵(yihanwang@vip.163.com),副教授。
*通信作者:尚富德(shangfude@henau.edu.cn),教授。
引文格式:王一涵,劉姣姣,金沛權(quán),等.
基于表型性狀和SNP標(biāo)記構(gòu)建桂花主要品種資源的分子身份證[J]. 南京林業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2024,48(4):12-24.
WANG Y H, LIU J J, JIN P Q, et al.
Construction of molecular ID for Osmanthus fragrans cultivars based on phenotypic traits and single nucleotide polymorphisms (SNPs)[J]. Journal of Nanjing Forestry University (Natural Sciences Edition),2024,48(4):12-24.
DOI:10.12302/j.issn.1000-2006.202405026.