• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dynamics of 2×2 matrix non-Hermitian quantum systems on Bloch sphere

    2024-05-09 05:19:30LibinFu
    Communications in Theoretical Physics 2024年4期

    Libin Fu

    Graduate School of China Academy of Engineering Physics,Beijing 100193,China

    Abstract By casting evolution to the Bloch sphere,the dynamics of 2×2 matrix non-Hermitian systems are investigated in detail.This investigation reveals that there are four kinds of dynamical modes for such systems.The different modes are classified by different kinds of fixed points,namely,the elliptic point,spiral point,critical node,and degenerate point.The Hermitian systems and the unbrokenPT non-Hermitian cases belong to the category with elliptic points.The degenerate point just corresponds to the systems with exceptional point(EP).The topological properties of the fixed point are also discussed.It is interesting that the topological charge for the degenerate point is two,while the others are one.

    Keywords: non-Hermitian quantum system,two-level system,dynamics on the Bloch sphere,PT-symmetry,fixed points

    1.Introduction

    There has recently been a great deal of interest both in the theoretical and experimental study of non-Hermitian systems[1–5].The non-Hermitian systems have been realized in many fields,for example in optics systems [6–9],microwaves systems[10,11],and electronics systems[12–14].Projective Hilbert space establishes a bridge between quantum mechanics and modern differential geometry [15,16],and many important physical quantities,such as Berry curvature [17] and Fisher information[18–20] (the imaginary and real parts of the quantum geometric tensor respectively) are directly related with it.Hence,it plays a crucial role in various aspects of physics,especially in studying geometric and topological properties for quantum systems [21].

    The dynamics on the Projective space also play a role in investigating critical behaviors for many quantum systems,for example,the self-trapping in Bose–Einstein condensates[22–24],the non-adiabatic tunneling [25–27],and so on.For non-Hermitian systems,we can also set up the Projective Hilbert space [28–31].Indeed,for a 2×2 matrix Hermitian system,the Projective space is just a Bloch sphere.Hence,it will be interesting to discuss a 2×2 matrix non-Hermitian system by employing the Bloch sphere.

    In this paper,by introducing the dynamical equations of 2×2 matrix non-Hermitian systems on the Bloch sphere,we investigate the dynamical properties of the systems in detail.We find that there are four kinds of fixed points for 2×2 matrix non-Hermitian systems,elliptic points,spiral points,critical nodes,and degenerate points.The Hermitian systems and unbrokenPT non-Hermitian cases belong to the category with elliptic points.A system with a degenerate point just corresponds to the system with an exceptional point (EP),namely with an isolated degeneracy.The topology charges of different fixed points are investigated.And,the potential application in two-band systems is also discussed.

    The rest of the paper is organized as follows.First,we introduce the definition of the Bloch sphere for non-Hermitian systems in section 2.Then we investigate the dynamical properties on the Bloch sphere for 2×2 matrix non-Hermitian system in section 3.The cases with EP are discussed in section 4.In section 5,we investigate the topological charges of the fixed points.The application in 1D two-band systems is discussed in section 6.Finally,we give a conclusion of our paper in section 7.

    2.Evolution of the non-Hermitian quantum system on the Bloch sphere

    Consider the following Schr?dinger equation

    where the 2×2 matrixHis generally a non-Hermitian Hamiltonian.Let us defineH11+H22=,H11-H22=2Ωeiη,H12=,andH21=for convenience,where Π,Ω,Γ,and Λ are real numbers.The eigenvalues of the system can be easily get

    The eigenvalues are a complex pair in general.The complex eigenvalues are in accordance with time evolution not being unitary for non-Hermitian systems.The degeneracy of a non-Hermitian system is a branch-point (commonly called an exceptional point (EP)),at which the two eigenvalues are equal to each other and the eigenstates are parallel [32].

    The evolution of the non-Hermitian quantum system can be described by the motion on the Bloch sphere[33].For the system with 2×2 matrixH,the vector on the Bloch sphere for a state ∣ψ〉=can be defined aswith,andφ=arg(a)-arg (b),where α denotes the change in norm factor and β is for total phase shift.By denoting cosθ=,it then can be mapped to a unit sphere with the spherical coordinates (θ,φ).

    Combining with the complex conjugations of equation (1),and considering=1,we obtain the dynamical equation of the system on the Bloch sphere,

    the changing in norm

    and the total phase shift

    where

    just corresponds to the so-called dynamic phase.The equation of the phase shift is as the same as what had been obtained for Hermitian system by Aharonov and Anandan [34].The second part in the right hand of the phase shift equation is known as the geometric part.

    3.Classifying non-Hermitian systems with dynamics on the Bloch sphere

    The dynamical behaviors on the Bloch sphere are interesting and play a role in investigating critical effects for many physical systems,for example,the self-trapping phenomena in Bose–Einstein condensates [22–24],the non-adiabatic tunneling [25–27],and so on.

    In this section,we will investigate the dynamical behaviors of 2×2 non-Hermitian systems in detail based on its Bloch sphere which serves as phase space of the dynamical equations (3),(4)

    The fixed points are the solutions of the equations=0 and=0,denoted as(φ*,θ*),and they satisfy the following equations,

    There should be two fixed points in general and related to the eigenstates of the system (1) corresponding to the two eigenvalues (2) respectively.

    A dynamical system may be categorized into different dynamical modes for different parameters by properties of fixed points on phase space.The property of fixed point of phase space is classified by the Jacobian matrix which is obtained by linearizing the dynamical equations around the fixed point [35,36].The Jacobian matrix is

    From the equations (8) and (9),the elements of the Jacobian matrix can be derived as follows

    By taking the equations of fixed point(10) and(11) into account,we can have

    For simplicity,we define

    In general,there are six kinds of fixed points determined by the traceT=J11+J22,determinantD=Det(J)of the Jacobian,and Δ=T2-4Dand can be summarized in figure 1 [37].

    In fact,for different parameter regions in figure 1,the eigenvaluesλ±=of the Jacobian are different.For case I,the λ±are a pure imaginary pair;for case II,λ±are a complex pair;for case III,there are two negative real eigenvalues;for case IV,there is only one nonzero real eigenvalue,i.e.λ+=λ-=-T/2,while for case V the eigenvalues are zeros;for case VI,there are two real eigenvalues with λ+>0>λ-.

    For a 2×2 non-Hermitian system,from (17),we getD=,and then we can obtain Δ=.Hence,for the system Δ≤0,we can immediately know that there are no saddle points and node points for a 2×2 non-Hermitian system.

    We then have four kinds of dynamical modes,a)T=0,Δ<0,the system belonging to Case I.b)T≠0,Δ≠0,the system belonging to Case II.c)T≠0,Δ=0,the system belonging to Case IV.And d)T=Δ=0,the system belonging to Case V.

    For mode a),becauseT=0 and Δ≠0,we easily haveJ1=0,J2≠0.Combining with the fixed point equations(10)and (11),we can get

    Figure 1. The category of the fixed points,classified by trace and determinant of Jacobian matrix J defined in equation(12).Here,the horizontal axis is the trace T=J11+J22 and the vertical axis is determinant D=Det (J).

    Taking equation (2) into account,we can find that the energy gap,Eg=E+-E-,has the following form

    Then,we haveEg=J2/2 which is a real number.Hence,if the fixed point is an elliptic point,it means that the system will have a real energy gap.The Hermitian systems andPT unbroken systems all belong to this kind.We plot the trajectories in phase space in figure 2(a)with a set of parameters satisfyingT=0 as an example.

    For mode b),T≠0,Δ≠0,thenJ1≠0,J2≠0.The system belongs to case II and the fixed points are spirals.ForT>0,the trajectories around it spiral outwards,while forT<0 they spiral inwards.Egis a complex number for this case.An example for such a case is plotted in figure 2(b).

    For mode c),T≠0,Δ=0,andJ1≠0 butJ2=0.The system belongs to Case IV and the fixed points are critical nodes.ForT>0,it is a source,while forT<0 it is a sink.Eg=iJ1/2 is a pure imaginary number.There is an example for such a case in figure 2(c).ThePT broken systems belong to this kind,of which Λ=Γ,δ1=-δ2,and η=π/2.

    The mode d) is for high order critical point with a zero Jacobian matrixJ=0 and the gapEgis also zero,which just corresponds to EP.An example for this case is shown in figure 2(d),in which there is only one fixed point since the two eigenstates coalesce together for EP.We will give more discussions for this case in the following since the EP plays an important role in a non-Hermitian system.

    Table 1. Summary of the properties of the fixed points for a 2×2 non-Hermitian system.Here,PI means pure imaginary.

    Figure 2. The trajectories in the phase space examples for different cases.(a)For dynamical mode a,(b)for mode b,(c)for mode c,and(d) for mode c.

    The above discussions show that the categories of the fixed points are related to the eigenvalues of the Jacobian matrix which is known asλ±=-(J1+J2)2 ±iJ22 sinθ* and also with the energy gap of the non-Hermitian system.We summarize the properties in table 1.

    4.The dynamics on the Bloch sphere for systems with EP

    The EP means a kind of degeneracy which only appear in a non-Hermitian system[32],and the degeneracies also happen for eigenstates so that there is only one fixed point for such a case.The system with an EP has zero gap and zero Jacobian matrix as we know,and for which the parameters satisfy

    Then,from the equations of fixed point(10)and(11),we can easily get

    Obviously,the coordinate θ*for an EP is determined by two parameters among Ω,Λ,and Γ,and φ*is determined by the relation of η and δ.

    In figure 3,we plot the trajectories in phase space with EP for different η but fixed parameters Ω,Λ,and Γ and the relation δ=η-π/2.One can find that the degenerate point is fixed but the dynamic behaviors are quite different for different η.At the fixed point,all the trajectories are tangent,but the tangent direction changes with η.

    Figure 3. The trajectories in phase space for cases with EP.The parameters are Γ=0.8,Λ=1.25,and Ω=1.δ=η- with (a)for η=π,(b) for η=2π/3,(c) for η=π/2,and (d) for η=π/3.

    In order to investigate the dynamics around the fixed point with EP,we need to expand the dynamic equations(8),(9) around the fixed point to 2th order terms of δθ=θ-θ*and δφ=φ-φ*,since the first order terms are zero.The expansions can be written as

    Let us definek=δθ/δφ,and substitute it into equations (24),(25).Then from equations (24),(25),we can obtain

    In figure 3,we plot the lines δθ=kδφ in red dashed lines for different η,which are consistent with the tangent of trajectories at the fixed point for EP.

    5.Topological charge of fixed points

    We can associate a topological charge to the fixed point.Let us introduce a vector fieldv=(vφ,vθ) withvφ=andvθ=.This vector just corresponds to tangent vector of the trajectory in phase space.Obviously,in terms ofv,a fixed point is just forv=0.

    Figure 4. The vector streams of n=(nφ,nθ)in phase space for cases with the same parameters in figure 2 respectively.

    Then,we define a unit vector fieldn=v/v=(nφ,nθ)withv=.Considering a simple closed curveCin phase space,we define the topological charge with

    in which,Aμ=nφ?μnθ-?μnφnθ.[38]

    In fact,if we parameterize the vectorv=(vφ,vθ) via an angle Θ withvφ=vcos Θandvθ=vsin Θ,the path integral of equation(33)will becomew=d Θ,andw?Z is the winding number ofv[39].The integerwis just the topological charge of a fixed point.

    Through calculations,we find that for an elliptic point,a spiral point,and a critical node,the topological charge isw=1 respectively,while for the degenerate point with an EP,the charge isw=2.The results can be understood intuitively.In figure 4,we plot the vector streams of the unit vectorn=(nφ,nθ) in phase space for different cases.One can see that the vectorn=(nφ,nθ)rotates clockwise at a 2π angle when a closed path circulates clockwise which encloses an elliptic point,a spiral point,or a critical node.For the system with an EP,the vector winds twice clockwise when a closed path circulates clockwise which encloses the fixed point.

    The total topological charge for the phase space,the sum of the charge of the fixed points is 2 for all cases,which is determined by the topology of a sphere.We know that the sum of the topological indices of the zero points of a tangent vector field is a topological invariant,the Euler number,which is 2 for a sphere [36,40].

    6.Two-band non-Hermitian systems

    The above discussion can be used in investigating 1D twoband systems,which can be generally described by

    where σi,(i=1,2,3)are the three pauli matrices,vi(k)andgiare real numbers [41].

    Comparing with equation (1),we have Π=η0=0,Ω(k)=,η(k)=arctan[g3/v3(k)],Γ(k)=,δ1(k)=arctan[(g1-v2(k))/(v1(k)+g2)],Λ(k)=,andδ2(k)=arctan[(g1+v2(k))/(v1(k)-g2)].

    For example,ifv1=ta+tbcosk,v2=tbsink,v3=0,andg1=g2=0,one gets aPT -symmetric Su–Schrieffer–Heeger (SSH) model described by [42].

    7.Conclusion

    In the above,we show that the dynamics of 2×2 non-Hermitian systems can be divided into four different categories with the properties of the fixed points in phase space (Bloch sphere serving as phase space).The different kind of fixed point corresponds to the system that has the different energy gap.Especially,for systems with elliptic points,the gap is real,while for a degenerate point,the gap is zero and the system has an EP.The topological properties of the fixed points have also been investigated.The evolutions of the norm and the total phase have not been studied in this paper.We can know that for the fixed point,the norm will increase or decrease exponentially with a constant exponential factor,hence the norm will be infinitely large or infinitely small asymptotically with time.The total phase will change at a constant rate.

    Acknowledgments

    This work is supported by the National Natural Science Foundation of China (Grant No.12088101,and U2330401).

    啦啦啦视频在线资源免费观看| 中文字幕免费在线视频6| 国产淫语在线视频| 成人亚洲欧美一区二区av| 国产极品天堂在线| 91久久精品国产一区二区三区| 大香蕉97超碰在线| 亚洲第一av免费看| 久久人妻熟女aⅴ| 69精品国产乱码久久久| av国产精品久久久久影院| 亚洲欧美日韩另类电影网站| 午夜免费男女啪啪视频观看| 大话2 男鬼变身卡| 2018国产大陆天天弄谢| 五月天丁香电影| 在线观看人妻少妇| 国产成人精品福利久久| 天天操日日干夜夜撸| 免费观看a级毛片全部| 国产成人精品婷婷| 国产精品女同一区二区软件| 婷婷色综合www| 亚洲国产色片| 国产欧美日韩一区二区三区在线 | 我要看黄色一级片免费的| 亚洲精品国产av成人精品| 国产精品久久久久成人av| 亚洲人与动物交配视频| 美女视频免费永久观看网站| 精品亚洲成国产av| 国产高清三级在线| 亚洲丝袜综合中文字幕| 久久av网站| 成人亚洲精品一区在线观看| 久久人妻熟女aⅴ| 日韩av在线免费看完整版不卡| 哪个播放器可以免费观看大片| 亚洲国产精品专区欧美| 一级a做视频免费观看| 日韩三级伦理在线观看| 在线观看免费高清a一片| 欧美成人精品欧美一级黄| 亚洲久久久国产精品| av播播在线观看一区| 18禁在线播放成人免费| 亚洲国产欧美日韩在线播放 | 最近中文字幕高清免费大全6| 久久99热6这里只有精品| 亚洲精华国产精华液的使用体验| 91aial.com中文字幕在线观看| 狂野欧美激情性xxxx在线观看| 国产老妇伦熟女老妇高清| 国产69精品久久久久777片| 丁香六月天网| 精品国产露脸久久av麻豆| 精品国产一区二区久久| 国产成人a∨麻豆精品| 亚洲精品aⅴ在线观看| 自拍欧美九色日韩亚洲蝌蚪91 | 汤姆久久久久久久影院中文字幕| 丰满迷人的少妇在线观看| 99热全是精品| 亚洲性久久影院| 亚洲精品久久久久久婷婷小说| 久久影院123| 亚洲精品成人av观看孕妇| 欧美变态另类bdsm刘玥| 亚洲欧美精品专区久久| 青青草视频在线视频观看| 性色av一级| 国产毛片在线视频| 99热国产这里只有精品6| 男男h啪啪无遮挡| 女的被弄到高潮叫床怎么办| 成人免费观看视频高清| 草草在线视频免费看| 嫩草影院入口| 日韩电影二区| 在线观看免费日韩欧美大片 | 成人二区视频| 色94色欧美一区二区| 亚洲欧洲国产日韩| av国产久精品久网站免费入址| 亚洲精品乱码久久久v下载方式| 女人久久www免费人成看片| 亚洲欧洲国产日韩| 男人爽女人下面视频在线观看| 日韩一区二区视频免费看| av网站免费在线观看视频| 男女边吃奶边做爰视频| 热re99久久精品国产66热6| 久久精品国产亚洲av涩爱| 国产精品偷伦视频观看了| 视频中文字幕在线观看| 乱码一卡2卡4卡精品| 天堂中文最新版在线下载| 又粗又硬又长又爽又黄的视频| 成年人午夜在线观看视频| 成人午夜精彩视频在线观看| 欧美日韩在线观看h| 校园人妻丝袜中文字幕| 丝瓜视频免费看黄片| 久久久久久久久久人人人人人人| 国产伦精品一区二区三区视频9| av国产精品久久久久影院| 国产深夜福利视频在线观看| 久久女婷五月综合色啪小说| 亚洲av福利一区| 亚洲欧美中文字幕日韩二区| 欧美激情国产日韩精品一区| av免费在线看不卡| 成年人午夜在线观看视频| 少妇的逼水好多| 免费高清在线观看视频在线观看| 国产精品秋霞免费鲁丝片| 国产精品女同一区二区软件| 亚洲人与动物交配视频| a级毛色黄片| 国产成人a∨麻豆精品| 啦啦啦啦在线视频资源| 成人国产麻豆网| 国产在线免费精品| 观看av在线不卡| 在线观看美女被高潮喷水网站| 精品久久久精品久久久| 亚洲欧洲精品一区二区精品久久久 | 少妇裸体淫交视频免费看高清| 亚洲国产精品成人久久小说| 亚洲精品国产av蜜桃| 亚洲精品一二三| 亚洲精品乱码久久久久久按摩| 国产视频首页在线观看| 麻豆乱淫一区二区| 日韩一区二区视频免费看| 免费观看av网站的网址| 欧美日韩视频精品一区| 精品久久国产蜜桃| 亚洲第一区二区三区不卡| 99精国产麻豆久久婷婷| 噜噜噜噜噜久久久久久91| 免费看日本二区| 成人亚洲精品一区在线观看| 欧美少妇被猛烈插入视频| 妹子高潮喷水视频| 精品熟女少妇av免费看| 成人18禁高潮啪啪吃奶动态图 | 国精品久久久久久国模美| 久久久久久久久久久丰满| 成年美女黄网站色视频大全免费 | av卡一久久| 久久精品国产亚洲网站| 国产精品国产三级国产专区5o| av不卡在线播放| 伊人久久国产一区二区| av有码第一页| 亚洲综合色惰| 18禁在线无遮挡免费观看视频| 一级av片app| 十八禁网站网址无遮挡 | 人妻少妇偷人精品九色| 亚洲欧美成人精品一区二区| 美女大奶头黄色视频| 精品久久国产蜜桃| 99热全是精品| 亚洲精品一二三| 哪个播放器可以免费观看大片| 国产高清有码在线观看视频| 久久久久久久国产电影| 国产毛片在线视频| 看非洲黑人一级黄片| 国产成人a∨麻豆精品| 国产在线一区二区三区精| 色94色欧美一区二区| 精品一区二区免费观看| 午夜老司机福利剧场| 极品少妇高潮喷水抽搐| 亚洲欧美一区二区三区黑人 | 三上悠亚av全集在线观看 | 精品一区在线观看国产| 国产中年淑女户外野战色| 国产在线男女| 国产女主播在线喷水免费视频网站| 有码 亚洲区| 欧美 亚洲 国产 日韩一| 亚洲精品456在线播放app| 国产精品不卡视频一区二区| 纵有疾风起免费观看全集完整版| 视频区图区小说| 精品少妇久久久久久888优播| 99热6这里只有精品| 另类亚洲欧美激情| 久久人妻熟女aⅴ| 日韩三级伦理在线观看| 大香蕉97超碰在线| av在线老鸭窝| 色94色欧美一区二区| 亚洲美女视频黄频| 黄色毛片三级朝国网站 | 国产真实伦视频高清在线观看| 中国国产av一级| 国产精品国产三级国产专区5o| 久久精品熟女亚洲av麻豆精品| 国产有黄有色有爽视频| 美女国产视频在线观看| 免费观看无遮挡的男女| 欧美97在线视频| 亚洲天堂av无毛| 一本大道久久a久久精品| 尾随美女入室| 各种免费的搞黄视频| 色视频www国产| 夜夜看夜夜爽夜夜摸| 人人澡人人妻人| 日日啪夜夜爽| 在线观看免费日韩欧美大片 | 老女人水多毛片| 亚洲真实伦在线观看| 日韩欧美精品免费久久| 欧美日本中文国产一区发布| 777米奇影视久久| 丰满饥渴人妻一区二区三| 老司机影院毛片| 久久久久人妻精品一区果冻| 免费少妇av软件| 久久国产乱子免费精品| 大香蕉97超碰在线| 黑丝袜美女国产一区| 久久ye,这里只有精品| 97在线人人人人妻| 69精品国产乱码久久久| a级毛色黄片| 日本-黄色视频高清免费观看| 大片电影免费在线观看免费| 国产深夜福利视频在线观看| 国产一区二区三区av在线| 热99国产精品久久久久久7| 99re6热这里在线精品视频| 777米奇影视久久| 狠狠精品人妻久久久久久综合| 一级,二级,三级黄色视频| 好男人视频免费观看在线| 国产精品不卡视频一区二区| 国国产精品蜜臀av免费| av在线老鸭窝| 日日撸夜夜添| 免费黄网站久久成人精品| 国产极品天堂在线| 亚洲人与动物交配视频| 永久免费av网站大全| 卡戴珊不雅视频在线播放| 80岁老熟妇乱子伦牲交| 五月玫瑰六月丁香| 老女人水多毛片| 日韩中字成人| 欧美3d第一页| 成人毛片a级毛片在线播放| 一区二区三区免费毛片| 欧美激情极品国产一区二区三区 | 各种免费的搞黄视频| 欧美 日韩 精品 国产| 91午夜精品亚洲一区二区三区| 午夜91福利影院| 国产毛片在线视频| av天堂久久9| 国产色婷婷99| 女人精品久久久久毛片| 国产在线一区二区三区精| 国产精品无大码| 国产老妇伦熟女老妇高清| 色94色欧美一区二区| 国产综合精华液| 美女中出高潮动态图| 欧美日韩在线观看h| 午夜91福利影院| 在线观看免费视频网站a站| 国产在线一区二区三区精| 大香蕉久久网| 777米奇影视久久| 欧美3d第一页| 欧美三级亚洲精品| 国产视频首页在线观看| 亚洲av在线观看美女高潮| 插逼视频在线观看| 在线观看三级黄色| 亚洲精品中文字幕在线视频 | 22中文网久久字幕| 99九九线精品视频在线观看视频| 亚洲人成网站在线播| 最近中文字幕2019免费版| 免费久久久久久久精品成人欧美视频 | 国产精品人妻久久久久久| 成人国产麻豆网| 成人无遮挡网站| 亚洲精品一区蜜桃| 久久久久久久久久久免费av| 搡女人真爽免费视频火全软件| 亚洲,一卡二卡三卡| 国产爽快片一区二区三区| 久久人妻熟女aⅴ| 777米奇影视久久| 在线 av 中文字幕| 久久久久久久久久成人| 亚洲国产av新网站| 亚洲四区av| 人妻 亚洲 视频| 久久99蜜桃精品久久| 嫩草影院入口| 青春草视频在线免费观看| 国产黄频视频在线观看| 中文字幕av电影在线播放| 精品人妻一区二区三区麻豆| 一级,二级,三级黄色视频| 91在线精品国自产拍蜜月| 十八禁高潮呻吟视频 | 久久久久网色| 免费看不卡的av| 久久精品久久久久久噜噜老黄| 亚洲精品日本国产第一区| 精品少妇黑人巨大在线播放| 亚洲综合色惰| 在线亚洲精品国产二区图片欧美 | 9色porny在线观看| 国产午夜精品一二区理论片| 91久久精品国产一区二区三区| 日韩电影二区| 夫妻午夜视频| 国产淫语在线视频| 国产亚洲午夜精品一区二区久久| 久久这里有精品视频免费| 精品午夜福利在线看| 乱码一卡2卡4卡精品| 日韩制服骚丝袜av| av线在线观看网站| 精品久久久久久电影网| 亚洲精品乱码久久久v下载方式| 亚洲精品日韩av片在线观看| 欧美日韩亚洲高清精品| 五月伊人婷婷丁香| 国产精品久久久久久精品古装| 欧美亚洲 丝袜 人妻 在线| 欧美 亚洲 国产 日韩一| 国产av码专区亚洲av| 午夜福利视频精品| 久久国产精品大桥未久av | 欧美精品一区二区大全| 精品人妻熟女av久视频| 在线观看av片永久免费下载| 国产精品久久久久久精品电影小说| 在线天堂最新版资源| 国语对白做爰xxxⅹ性视频网站| 久久国产精品大桥未久av | 国产免费福利视频在线观看| 男人和女人高潮做爰伦理| 天堂中文最新版在线下载| 婷婷色综合www| 色网站视频免费| videossex国产| 波野结衣二区三区在线| 一级毛片我不卡| 精品国产露脸久久av麻豆| 一级毛片我不卡| 亚洲中文av在线| 国产亚洲最大av| 免费看日本二区| 三级经典国产精品| 午夜激情久久久久久久| 超碰97精品在线观看| 伊人亚洲综合成人网| 麻豆成人午夜福利视频| 亚洲精品乱码久久久久久按摩| 日韩 亚洲 欧美在线| 91久久精品电影网| 最近2019中文字幕mv第一页| 亚洲真实伦在线观看| 国产精品99久久99久久久不卡 | 亚洲av国产av综合av卡| 青春草国产在线视频| 最新的欧美精品一区二区| 韩国av在线不卡| 亚洲精品自拍成人| a级毛色黄片| 亚洲欧美精品专区久久| 纯流量卡能插随身wifi吗| 又大又黄又爽视频免费| 乱码一卡2卡4卡精品| 97超视频在线观看视频| tube8黄色片| 少妇人妻久久综合中文| 一级爰片在线观看| 国国产精品蜜臀av免费| 国产成人一区二区在线| 日本爱情动作片www.在线观看| 人妻制服诱惑在线中文字幕| 国产成人a∨麻豆精品| 色94色欧美一区二区| 亚洲国产最新在线播放| 国产免费福利视频在线观看| 最近的中文字幕免费完整| 久久免费观看电影| 妹子高潮喷水视频| 久久精品久久久久久噜噜老黄| 亚洲精品乱码久久久v下载方式| 亚洲伊人久久精品综合| 黄色欧美视频在线观看| 国产成人精品婷婷| av专区在线播放| 国产高清国产精品国产三级| 国产一区二区三区综合在线观看 | 久久久久人妻精品一区果冻| 国产在线视频一区二区| 一区二区三区免费毛片| 大话2 男鬼变身卡| 99热全是精品| 久久精品国产自在天天线| 久久精品国产a三级三级三级| 日本vs欧美在线观看视频 | 久久久久人妻精品一区果冻| 欧美日本中文国产一区发布| 亚洲国产最新在线播放| 日韩欧美 国产精品| 99热6这里只有精品| 国产真实伦视频高清在线观看| 在线亚洲精品国产二区图片欧美 | 插阴视频在线观看视频| 亚洲av欧美aⅴ国产| 国精品久久久久久国模美| 在线精品无人区一区二区三| 男男h啪啪无遮挡| 国产av码专区亚洲av| 国产精品嫩草影院av在线观看| 久久热精品热| 丝袜在线中文字幕| 国产成人91sexporn| 亚洲第一av免费看| 亚洲精品国产成人久久av| 亚洲,欧美,日韩| 久久 成人 亚洲| 99精国产麻豆久久婷婷| 丝袜脚勾引网站| 2022亚洲国产成人精品| 国产精品蜜桃在线观看| 99热网站在线观看| 日韩精品免费视频一区二区三区 | 欧美精品一区二区免费开放| 国产深夜福利视频在线观看| 一级片'在线观看视频| 人妻 亚洲 视频| 天堂8中文在线网| 国产在线免费精品| 中文字幕精品免费在线观看视频 | 蜜桃久久精品国产亚洲av| 99热国产这里只有精品6| 亚洲国产成人一精品久久久| 97超视频在线观看视频| 久久久欧美国产精品| 天堂8中文在线网| 色94色欧美一区二区| 99久国产av精品国产电影| 22中文网久久字幕| 国产精品久久久久久久久免| 日日撸夜夜添| 亚洲人成网站在线观看播放| 久久6这里有精品| 最近中文字幕2019免费版| 亚洲国产精品成人久久小说| 91aial.com中文字幕在线观看| 亚洲美女搞黄在线观看| 国产国拍精品亚洲av在线观看| 国产午夜精品一二区理论片| 亚洲欧美日韩卡通动漫| 国产免费视频播放在线视频| 99精国产麻豆久久婷婷| 乱系列少妇在线播放| 中文天堂在线官网| 成年人午夜在线观看视频| 亚洲电影在线观看av| 久久综合国产亚洲精品| 成人午夜精彩视频在线观看| 久久久精品免费免费高清| 亚洲内射少妇av| 日本欧美视频一区| 中国三级夫妇交换| 又爽又黄a免费视频| 搡女人真爽免费视频火全软件| 午夜精品国产一区二区电影| 亚洲天堂av无毛| 妹子高潮喷水视频| 99热这里只有是精品在线观看| 天天操日日干夜夜撸| 中文乱码字字幕精品一区二区三区| av.在线天堂| 国产在视频线精品| 在线天堂最新版资源| 国语对白做爰xxxⅹ性视频网站| 看十八女毛片水多多多| 国产精品女同一区二区软件| 国产精品人妻久久久久久| 国产男女内射视频| 亚洲av成人精品一区久久| 亚洲av男天堂| 涩涩av久久男人的天堂| 日本wwww免费看| 亚洲精品一区蜜桃| 色婷婷av一区二区三区视频| 久久精品国产鲁丝片午夜精品| 久久人妻熟女aⅴ| 天美传媒精品一区二区| 不卡视频在线观看欧美| 国产高清有码在线观看视频| 日韩,欧美,国产一区二区三区| 18禁在线播放成人免费| 中文资源天堂在线| 精品一区在线观看国产| 午夜免费男女啪啪视频观看| 精品一品国产午夜福利视频| 亚洲国产欧美在线一区| 乱人伦中国视频| 极品人妻少妇av视频| 精品人妻一区二区三区麻豆| 日韩大片免费观看网站| 夜夜爽夜夜爽视频| 亚洲一级一片aⅴ在线观看| 十八禁高潮呻吟视频 | 午夜激情福利司机影院| 国产69精品久久久久777片| 免费播放大片免费观看视频在线观看| 乱码一卡2卡4卡精品| 国产精品免费大片| 欧美老熟妇乱子伦牲交| 日日摸夜夜添夜夜爱| 肉色欧美久久久久久久蜜桃| 狂野欧美白嫩少妇大欣赏| 国产精品成人在线| 美女视频免费永久观看网站| 人人妻人人澡人人看| 中文在线观看免费www的网站| 中国三级夫妇交换| 在线观看一区二区三区激情| 自拍欧美九色日韩亚洲蝌蚪91 | 啦啦啦在线观看免费高清www| 日韩精品免费视频一区二区三区 | 韩国高清视频一区二区三区| 如日韩欧美国产精品一区二区三区 | 色吧在线观看| 自线自在国产av| 精品国产一区二区久久| 高清在线视频一区二区三区| 亚洲美女视频黄频| 国产乱人偷精品视频| 国产极品粉嫩免费观看在线 | 国产淫片久久久久久久久| 亚洲av二区三区四区| 春色校园在线视频观看| 你懂的网址亚洲精品在线观看| 国产精品久久久久成人av| 男的添女的下面高潮视频| 久久精品夜色国产| 国产极品天堂在线| 久久久久久久久久久丰满| 久久午夜综合久久蜜桃| 肉色欧美久久久久久久蜜桃| 91精品国产九色| 国产亚洲欧美精品永久| 国产精品.久久久| 欧美日韩av久久| 国产极品粉嫩免费观看在线 | 成人免费观看视频高清| 亚洲欧美日韩另类电影网站| 色吧在线观看| 日本黄色日本黄色录像| 中文乱码字字幕精品一区二区三区| 精品国产乱码久久久久久小说| 人妻 亚洲 视频| 一级毛片我不卡| 少妇人妻一区二区三区视频| 亚洲丝袜综合中文字幕| 久久午夜福利片| 自拍偷自拍亚洲精品老妇| 少妇精品久久久久久久| 亚洲国产精品一区三区| 亚洲中文av在线| 中文字幕精品免费在线观看视频 | 国产欧美日韩一区二区三区在线 | 国产极品粉嫩免费观看在线 | av专区在线播放| 偷拍熟女少妇极品色| 女性生殖器流出的白浆| 免费观看的影片在线观看| 亚洲精品视频女| 18禁动态无遮挡网站| 亚洲av男天堂| 日韩欧美一区视频在线观看 | 国产午夜精品一二区理论片| 黄色怎么调成土黄色| 大陆偷拍与自拍| 久久久久网色| 欧美精品一区二区免费开放| 精品亚洲乱码少妇综合久久| 日本猛色少妇xxxxx猛交久久| 中文资源天堂在线| 99久久综合免费| 天天操日日干夜夜撸| 热re99久久精品国产66热6| www.色视频.com| 中文字幕久久专区| 亚洲欧洲精品一区二区精品久久久 | 国产精品国产三级国产专区5o| 国产精品人妻久久久影院| 欧美激情极品国产一区二区三区 | 亚洲精品日本国产第一区| 精品国产一区二区久久| 亚洲久久久国产精品| 水蜜桃什么品种好| 18禁裸乳无遮挡动漫免费视频|