• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electrical characteristics of a fractionalorder 3 × n Fan network

    2024-05-09 05:20:00ZhiZhongTanandXinWang
    Communications in Theoretical Physics 2024年4期

    Zhi-Zhong Tan and Xin Wang

    Department of Physics,Nantong University,Nantong 226019,China

    Abstract In this article a new achievement of fractional-order 3×n Fan networks is presented.In the first step,the RT-I method is used to derive the general formulae of the equivalent impedance of fractional-order 3×n Fan networks.In the second part,the effects of five system parameters(L,C,n,α and β)on amplitude-frequency and phase-frequency characteristics are analyzed.At the same time,the amplitude-frequency and phase-frequency characteristics of the fractional order 3 × n Fan network are revealed by Matlab drawing.This work has important theoretical and practical significance for resistor network models in the field of natural science and engineering technology.

    Keywords: fractional-order circuit,amplitude-frequency characteristics,phase-frequency characteristics,RT-V theory

    1.Introduction

    Resistor networks are important models in engineering and natural sciences,and the calculation of resistance between two nodes is a classical problem in the fields of circuit theory,the research of which has exceeded 180 years [1–3].At present,new breakthroughs have been made in resistor network research [1–4].The breakthrough in resistor network theory is very important,and its research theory can be applied to study complex impedance networks and fractionalorder circuits (FOCs) through variable substitution.As is known,circuit network theory is very closely related to our lives,and it can help us solve many practical problems encountered in real life [5–9].Because of its flexibility,fractional-order (FO) theory has been widely used in applied physics,biology,mathematics,engineering and other fields,and has a close relationship with all areas of our lives[10–23].

    The study of fractional calculus has been going on for hundreds of years,but the real application of fractional calculus to modern fields is due to the great progress in the research in recent decades [24].Reference [25] tells us that the ubiquitous FO capacitors have become the new norm and open a new era of fractional calculus and its engineering applications.Reference [26] researched fractional-order inductors,which can be designed based on skin effects.Nowadays,with increasing new phenomena,new laws and new applications of components,researchers need to constantly solve new problems[27–29].References[30–33]have had a significant impact on the definition and research of fractional calculus.In recent years,a number of researchers have devoted themselves to the study of FOC theory[34–37];among them,some of the literature focuses on physical analysis [34],some focus on circuit models [35],while others focus on mathematical analysis [36,37].Researchers have found that the study of FOCs can be directly implemented using resistor network theory,and numerous studies have made many achievements in the study of resistor network models.For example,[3,4]set up theRT-Itheory,while[38]set up theRT-Vtheory.These theories provide new a theoretical basis for studying resistor network models with various complex boundaries,such as in [4,38–46].In addition,Green’s function technology has played an important role in the study of infinite networks,such as in [1,47–50].In [47],Owaidat used Green’s function method to study infinite resistance networks of the ruby lattice structure.References[48,49] studied the equivalent resistance and capacitance when one bond is removed from the infinite perfect cubic lattice,while [50] investigated infinite networks with two bonds removed.In summary,Green’s function technology is only applicable to infinite networks;the method established in[2]is called theLMmethod,which can solve resistor network models with regular boundaries,but cannot be used to study resistor network models with complex boundaries.However,theRT-I[3] andRT-V[38] methods fill this gap.

    In this article,RT-Itheory [3] is applied to study the electrical characteristics of the FO 3×nFan circuit network.First,three general formulae of the impedances for the FO 3 ×nFan network are derived usingRT-Itheory.Second,from the perspective of the circuit,the amplitude-frequency and phase-frequency characteristics of equivalent complex impedance are studied based on complex analysis and Matlab drawing research in detail.Specifically,the fractional calculus describes the physical phenomena better,which is impossible for the ordinary circuit network.Our research includes various circuit structures,such asRCαcircuits,RLβcircuits,LβCαcircuits andLCcircuits.

    This article mainly includes four parts.In section 2,we mainly introduce some basic definitions of FOCs and three equivalent complex impedance formulae.In section 3,the expression of equivalent impedance is derived usingRT-Itheory.In section 4,amplitude-frequency and phase-frequency characteristics are elucidated by Matlab drawing.In section 5,we provide a summary of the article.

    2.FO definition and impedance formulae

    2.1.Definition of fractional capacitor and inductors

    So far,the ethics of fractional calculus are satisfied with the unified theory.In the continuous research process,several definitions of fractional calculus (such as Grünwald–Letnikov,Caputo,Riesz,and Riemann–Liouville) have already coexisted [31–33].Now researchers have applied FO fractional calculus theory to the study of FOCs [34,35].

    The concept of FO in mathematics has been applied in the field of circuits.First,for impedance circuits with an inductor ofLand a capacitance ofC,the basic relationship betweenLC,current and voltage is.According to fractional calculus theory,a simple integerorderLCcircuit can be extended to a fractional structure.For example [30]

    where 0≤α≤1,0≤β≤1.Equation (1) has been described in [30].In particular,whenα=β=1,equation (1) is reduced to an integer-order differential equation.

    According to the research from [30,34],the FO capacitance and inductance functions can be expressed as

    where ω is the circular frequency of alternating current.Obviously,the impedance of a fractionalLβ Cαcircuit involves many parameters.

    The physical meaning of the fractional-order circuit has been discussed in[29,30,34],and here we will present some simple understandings.For example,taking a fractional-order capacitor network as an example,its complex impedance is the first equation in the equation system (2),when α=0,there will beZ=1/C,which is a real number;it shows pure resistance properties,and we study it as a pure resistance circuit.When α=1,there will beZ=-j/(ωC),which is a purely imaginary number,i.e.it exhibits ideal pure capacitance properties.When α=1/2,there will beZ=,which is a complex impedance containing real and imaginary parts,i.e.it is a circuit composed of resistance and capacitance.The actual capacitance is indeed a complex impedance with real and imaginary parts[6–21,30] (e.g.α=0.8);as a theoretical study,we can extend the range of α values to 0≤α≤1.The influence of these multiple parameters on the circuit will be studied and discussed below.

    2.2.Equivalent complex impedance formulae

    This article focuses on the equivalent complex impedance of a class of FO 3 ×n Lβ CαFan network shown in figure 1.The meaning of the Fan network is that the resistance of the lower boundary is zero,which can be topologically a nodeO[38];therefore,we can unify the entire lower boundary with a nodeO.The fractional elements in figure 1 are designed as follows:fractional inductive elementsZL(ω,β)on the horizontal axis,and fractional capacitive elementsZC(ω,α)on the vertical axis.The circular frequency ω of the alternating current passes into the circuit;then the equivalent complex impedance between any nodeAx,Bx,Cx(here,x?[0,n]is an arbitrary integer) and node O,respectively,are

    where some relevant parameters are defined as follows:

    The above are the analytic expression of equivalent complex impedance for the FO 3×n Lβ Cαcircuit established in this article.Below,we first give the derivation and calculation of the above results;the Matlab drawing tool is used to plot the images of the equivalent complex impedancechanging with the circular frequency ω of alternating current and the node positionx.Therefore,the amplitudefrequency and phase-frequency characteristics of the equivalent complex impedanceare fully understood by visual methods.

    3.Derivation and calculation of main results

    3.1.Construction of the difference equation model

    An FO 3×nFan circuit network in the topology is shown in figure 2,where the currentJis input from an arbitrary nodeAx(orBx,Cx)and the output is from the lower boundary ofO.For ease of study,we re-represent the resistor network shown in figure 1 as the circuit network graph with current parameters and their direction shown in figure 2.The currents passing through the resistors of the three horizontal axes areIak,IbkandIck(1≤k≤n),respectively.The currents passing through the longitudinal impedanceZC(ω,α)areand(0≤k≤n),respectively.

    This paper mainly adoptsRT-Itheory [4] to carry out research.We first derive the equivalent complex impedance,for this reason,and assume that currentJflows in from nodeAxand then flows out from pointO.According to the network analysis,the loop voltage equation of thekthgrid is obtained

    The nodal current equation is obtained according to figure 2

    Similar to the establishment of equations (9)–(11),the loop voltage equation of thek+1 grid can be set up.Then,using equations of thek+1 grid together with (9)–(11) and(12)–(14),we can obtain an equation system containing only the vertical current,

    wherep=ZL/ZC,represents the system of equation(15)as a matrix

    andA3×3is a third-order matrix

    The matrix transform method set up in[3,4]is applied to the third-order matrix of equation(17).First,let the eigenvalue of the matrix in equation (17) bet1,t2,t3.The third-order determinant is used

    solving equation (18) to get (one can refer to [3])

    To transform equation (16),assume that there is an unknown third-order square matrixP3×3,and the transformation is as follows

    Equation (20) is expanded and solved according to the identity of the left and right sides of the matrix,and we have

    whereθi=appears in equation (19),and the resulting inverse matrix

    The matrix equation (16) can be transformed into a simple matrix equation using the matrixP3×3left-by-multiplied matrix equation (16) and applying equation (20),

    From equation(23),one can obtain the characteristic equationx2-tk x+1=0for the difference equation ofXk.Let the two roots of the characteristic equation beλk,;then the solution can be obtained

    Bringing equation(19)into equation(25)yields equation(7),proposed above.

    According to the method established in [3,4],solving equation (23) to obtain the piecewise functional solution of the difference equation

    3.2.Derivation of the law of boundary current

    The boundary current constraint has three parts: namely,the leftmost and rightmost boundary condition constraints,and the boundary condition constraint of the current input node.

    Consider the constraint of the left boundary grid.Using a similar method to that used to establish equation (16),the matrix equation for the left boundary is obtained according to figure 2

    If the matrix transformation is implemented to equation (29),the matrix equation (29) can be converted to

    Equation (30) is the constraint equation for the left boundary of the FO 3 ×nFan circuit network.

    Similarly,the conditional constraint equation for the right boundary of the circuit network can be obtained

    Equation (31) is the constraint equation for the right boundary of the FO 3 ×nFan network.

    The following is the solution ofaccording to the above series of equations.Substitute equation (30) into equation (26) to simplify

    It is solved by four equations,(27),(28),(31) and (32),yielding

    3.3.Derivation of the equivalent impedance

    It is obtained by implementing the inverse matrix transformation according to the matrix in equation (24)

    where [?]Trepresents the transpose of the matrix.Calculated from equation (35)

    Substitute equation (33) into equation (36) to simplify

    Substitute equation (39) into equation (38) to get

    So far,we have completely derived the analytical formula for the equivalent complex impedance,whereAxis any point on the horizontal axisA0An,sois a universal formula.

    In addition,if complex impedancesare calculated,different input nodes of the current need to be considered separately.For example,when calculating complex impedance of,it is necessary to consider the current input fromBx;when calculating complex impedance of,it is necessary to consider the current input fromCx.Then,we use the same method as for the calculation ofso that we can derive the impedanceand.The calculation is omitted here.

    4.Impedance characteristics of FOC

    In this part,we will use the Matlab plotting tool to explore in detail the characteristics of amplitude-frequency and phasefrequency on equivalent complex impedanceZAO(n),and to be able to visualize their electrical characteristics.The electrical characteristics of the FOC are very rich,and the change in coefficientα,βhas a great influence on the amplitudefrequency and phase-frequency characteristics ofZAO(n).

    To facilitate research and comparison,the relevant parameters in this article are uniformly valued:n=50,L=0.02,C=0.01,α=0~1.0,β=0~1.0.The following research is divided into two parts;the first part studies the change law of mode∣ZAO(x,ω)∣of complex impedance with the circle frequency ω and different positionsx.Part two studies the change law of phaseφ[ZAO(x,ω)] of complex impedance with circular frequency ω and different positionsx.

    4.1.Visualized amplitude-frequency characteristics

    Case 1.Amplitude-frequency characteristic image when α=β=0.5

    To clearly display the amplitude-frequency characteristics atα=β=0.5,we consider the significant difference in variation atω=1~10,and we divideω=1~100intoω=1~20 andω=20~100for plotting studies.In the complex impedanceZAO(x,ω),thexin the image is the coordinate of any point on the horizontal axisA0An,and ω is the circular frequency of the alternating current of the input circuit.

    Figure 3 takes the value ofn=50,L=0.02,C=0.01,α=β=0.5,and divides ω intoω=1~20 andω=20~100for drawing.Takex=0→30in the image;specifically,the 3D image drawn represents the amplitudefrequency characteristics of 31 complex impedances.Figure 3(a)shows that∣ZAO(x,ω)∣changes significantly whenω=1~10,and its corresponding∣ZAO(x,ω)∣ decreases as ω increases.Figure 3(b)shows that whenω≥20increases with ω,its corresponding∣ZAO(x,ω)∣does not change significantly.Then,we observe the law of change between∣ZAO(x,ω)∣andx.Figure 3(a) shows that∣ZAO(x,ω)∣hardly changes asxincreases whenω=1.Whenω=10is present,∣ZA O(x,ω)∣ω> 20,for a definite ω value,betweenx=15→30,its decreases asxincreases.Figure 3(b) shows that when corresponding∣ZAO(x,ω)∣does not change significantly with the change inx.And its corresponding∣ZA O(x,ω)∣decreases significantly with the increase inxbetweenx=0→10.

    Case 2.Amplitude-frequency characteristic image when α=0.5,β=1.0

    Figure 4 takes the value ofn=50,L=0.02,C=0.01,α=0.5andβ=1,and divides the ω segment intoω=1~20 andω=20~100for drawing.Takex=0→30in the image;specifically,the 3D image drawn represents the amplitude-frequency characteristics of 31 complex impedances.Figure 4(a) shows that∣ZAO(x,ω)∣ changes significantly whenω=1~5,and its corresponding ∣ZAO(x,ω)∣ decreases as ω increases.Figure 4(b) shows that whenω≥20increases with ω,its corresponding∣ZAO(x,ω)∣ also increases.Then,we observe the law of change between ∣ZAO(x,ω)∣ andx.Figure 4(a) shows that∣ZAO(x,ω)∣hardly changes asxincreases whenω=1.Whenω=10is present,∣ZAO(x,ω)∣decreases asxincreases.Figure 4(b) shows that whenω> 20,for a definite ω value,betweenx=15→30,its corresponding∣ZAO(x,ω)∣ does not change significantly with the change inx.And its corresponding∣ZAO(x,ω)∣ decreases significantly with the increase inxbetweenx=0→10.

    Case 3.Amplitude-frequency characteristic image when α=1.0,β=0.5

    Figure 5 takes the value ofn=50,L=0.02,C=0.01,α=1 andβ=0.5,and we divide ω intoω=1~20andω=20~100for drawing.Takex=0→30in the image;the 3D image drawn represents the amplitude-frequency characteristics of 31 complex impedances.The changes in figure 5(a) are relatively difficult to describe and are only suitable for understanding by looking at the image.Of course,for each determinedxvalue,it can be described.Figure 5(b)shows that whenω≥20increases with ω,its corresponding ∣ZA O(x,ω)∣ decreases.Then,we observe the law of change between∣ZAO(x,ω)∣ andx.Figure 5(b) shows that whenω> 20,for a definite ω value,betweenx=15→30,its corresponding∣ZA O(x,ω)∣does not change significantly with the change inx.And its corresponding∣ZAO(x,ω)∣ decreases significantly with the increase inxbetweenx=0→10.

    Case 4.Amplitude-frequency characteristic image when α=0.0,β=1.0

    Whenα=0.0,β=1.0,equation (2) degenerates toZL=j ωL,ZC=1/C.This is equivalent toZL=jω Lbeing a pure inductor,andZC=1/C=Rbeing a pure resistor.Specifically,the circuit network atα=0.0,β=1.0is actually equivalent to the circuit network composed ofRL,and its characteristics are shown in figure 6.Segment ω intoω=1~20 andω=20~100 for drawing.Takex=0→30 in the image;the 3D image drawn represents the amplitude-frequency characteristics of 31 complex impedances.Figure 6(a) shows that∣ZA O(x,ω)∣ increases as ω increases.Figure 6(b)shows that whenω≥20 increases with ω,its corresponding∣ZAO(x,ω)∣ also increases.Then,we observe the law of change between∣ZAO(x,ω)∣ andx.Figure 6(a) shows that∣ZAO(x,ω)∣ hardly changes asxincreases whenω=1.Whenω≥10,∣ZAO(x,ω)∣ decreases asxincreases.Figure 6(b) shows that whenω> 20,for a definite ω value,betweenx=15→30,its corresponding ∣ZAO(x,ω)∣ does not change significantly with the change inx.And its corresponding∣ZAO(x,ω)∣ decreases significantly with the increase inxbetweenx=0→10.

    Case 5.Amplitude-frequency characteristic image when α=1.0,β=0

    Whenα=1.0,β=0.0,equation (2) degenerates toZL=L,ZC=-j/ωC.This is equivalent toZL=Lbeing a pure resistor andZC=-1/j ωCbeing a pure capacitor.Specifically,the circuit network atα=1.0,β=0.0is actually equivalent to the circuit network composed ofRC,and its characteristics are shown in figure 7.Figure 7(a)shows that∣ZAO(x,ω)∣ increases as ω increases.Figure 7(b)shows that whenω≥20increases with ω,its corresponding ∣ZAO(x,ω)∣ decreases.Then,we observe the law of change between∣ZAO(x,ω)∣ andx.Figure 7(a)shows that∣ZAO(x,ω)∣ does not change significantly with the change inx.Figure 7(b)shows that whenω≥20,x≤10,for a definite ω value,∣ZAO(x,ω)∣ decreases significantly with the increase inx,and∣ZAO(x,ω)∣ does not change significantly with the change inxbetweenx=20→30.

    Case 6.Amplitude-frequency characteristic image when α=1.0,β=1.0

    Whenα=1.0,β=1.0,equation (2) degenerates toZL=j ωL,ZC=-j/ωC,which is equivalent to an integerorderLCcircuit network consisting of pure inductors and pure capacitors,and its characteristics are shown in figure 8.Segment ω intoω=1~20 andω=20~100 for drawing.Takex=0→30in the images;the 3D image drawn represents the amplitude-frequency characteristics of 31 complex impedances.The images show the phenomenon of partial regular oscillation and partial irregular oscillation for∣ZAO(x,ω)∣.

    4.2.Visualized phase-frequency characteristics

    Case 1.Images of phase-frequency characteristics when α=β=0.5

    To clearly show the phase-frequency characteristic image atα=β=0.5,we consider the significant difference in variation atω=1~10,and we will plotω=1~100intoω=1~20 andω=20~100.In the phase angleArg[ZAO(x,ω)]of the complex impedance,xis the coordinate of any point on the horizontal axisA0An,and ω is the circular frequency of the alternating current of the input circuit.

    Figure 9 takes the values ofn=50,L=0.02,C=0.01,α=β=0.5,and we segment ω intoω=1~20 andω=20~100for drawing.Takex=0→30in the image;the 3D image drawn represents the phase-frequency characteristics of 31 complex impedances.Figure 9(a)shows thatφ[ZA O(x,ω)]changes significantly;its correspondingφ[ZAO(x,ω)]increases as ω increases whenx=0→10.Figure 9(b) shows that whenω≥20increases with ω,its correspondingφ∣ZAO(x,ω)∣ does not change significantly.When 20≤ω≤100 and 0≤x≤20,theφ[ZAO(x,ω)] decreases first and then increases asxincreases,which is like a sink,and there seems to be a platform on the right side whenx>20.

    Case 2.Images of phase-frequency characteristics when α=0.5,β=1.0

    Figure 10 takes the values ofn=50,L=0.02,C=0.01,α=0.5 andβ=1,and we segment ω intoω=1~20 andω=20~100 for drawing.Takex=0→30in the image;clearly,the 3D image drawn represents the amplitude-frequency characteristics of 31 complex impedances.Figure 10(a) shows thatφ[ZAO(x,ω)] changes significantly whenω=1~5;its correspondingφ[ZAO(x,ω)]increases as ω increases.In figure 10(b),there are significantly different variation patterns in different regions of 0≤x≤10 andx>20.There is a groove between 0≤x≤10,and there seems to be a platform in the area ofx>20.

    Figure 1. The FO 3 × n Fan circuit network model;fractional inductive elements ZL(ω,β),are arranged on the horizontal axis,and fractional capacitor elements ZC(ω,α) are arranged on the vertical axis.

    Figure 2. The topology of the FO 3×n Fan network and its parameter assumption simplified circuit model with the direction of the current parameters.

    Figure 3. Set n=50 and α=β=0.5.Two 3D amplitude-frequency characteristic curves of the equivalent complex impedance ZA,O(x,ω),where figures (a) and (b) are two segmented function images,respectively.

    Figure 4. Set n=50,α=0.5andβ=1.Two 3D amplitude-frequency characteristic curves of the equivalent complex impedance ZA,O(x,ω),where figures (a) and (b) are two segmented function images,respectively.

    Figure 5. Set n=50,α=1 and β=0.5.Two 3D amplitude-frequency characteristic curves of the equivalent complex impedance ZA,O(x,ω),where figures (a) and (b) are two segmented function images,respectively.

    Figure 6. Set n=50,α=0 and β=1.Two 3D amplitude-frequency characteristic curves of the equivalent complex impedance ZA,O(x,ω),where figures (a) and (b) are two segmented function images,respectively.

    Figure 7. Set n=50,α=1 and β=0.Two 3D amplitude-frequency characteristic curves of the equivalent complex impedance ZA,O(x,ω),where figures (a) and (b) are two segmented function images,respectively.

    Figure 8. Set n=50 and α=β=1.Two 3D amplitude-frequency characteristic curves of the equivalent complex impedance ZA,O(x,ω),where figures (a) and (b) are two segmented function images,respectively.

    Figure 9. Set n=50,α=β=0.5.Two 3D phase-frequency characteristic curves of the equivalent complex impedance ZA,O(x,ω),where figures (a) and (b) are two segmented function images,respectively.

    Figure 10. Set n=50,α=0.5 and β=1.0.Two 3D phase-frequency characteristic curves of the equivalent complex impedance ZA,O(x,ω),where figures (a) and (b) are two segmented function images,respectively.

    Case 3.Images of phase-frequency characteristics when α=1.0,β=0.5

    Figure 11 takes the values ofn=50,L=0.02,C=0.01,α=1 andβ=0.5.Image 11 and Image 10 seem to have some similarities,but their spirit is different.When you compare their vertical coordinates,you will find that the vertical coordinates of figure 10(a) are -1.0~1.0,while the vertical coordinates of figure 11(a)are-2.0~0.0;the vertical coordinates of figure 10(b) are -0.2~0.6,while the vertical coordinates of figure 11(b)are-1.0~-0.2.Specifically,their images seem to have a translational relationship.

    Figure 11. Set n=50,α=1 and β=0.5.Two 3D phase-frequency characteristic curves of the equivalent complex impedance ZA,O(x,ω),where figures (a) and (b) are two segmented function images,respectively.

    Case 4.Images of phase-frequency characteristics when α=0,β=1.0

    Whenα=0.0,β=1.0,equation (2) degenerates toZL=jωL,ZC=1/C.This is equivalent toZL=jω Lbeing a pure inductor andZC=1/C=Rbeing equivalent to a pure resistor.Image 12 and Image 9 seem to have some similarities,but their spirit is different.When you compare their vertical coordinates,you will find that the vertical coordinates of figure 9(a)are-0.8~0.0,while the vertical coordinates of figure 12(a) are 0.0~0.8;the vertical coordinates of figure 9(b) are -0.25~0.05,while the vertical coordinates of figure 12(b) are 0.5~0.8.Specifically,their images seem to have a translational relationship relative to the vertical axis.

    Case 5.Images of phase-frequency characteristics when α=1,β=0

    Whenα=0.0,β=1.0,then equation (2) degenerates toZL=j ωL,ZC=1/C.This is equivalent toZL=j ωLbeing a pure inductor andZC=1/C=Rbeing equivalent to a pure resistor.Image 13 and Image 12 seem to have some similarities,but their spirit is different.When you compare their vertical coordinates,you will find that the vertical coordinates of figure 12(a) are 0.0 ~0.8,while the vertical coordinates of figure 13(a) are -1.6 ~-0.8;the vertical coordinates of figure 12(b) are 0.5 ~0.8,while the vertical coordinates of figure 13(b) are -1.05 ~-0.75.Specifically,their images seem to have a translational relationship relative to the vertical axis.

    Case 6.Images of phase-frequency characteristics when α=β=1.0

    Figure 14 takes the values ofn=50,L=0.02,C=0.01,α=β=1.0,giving four 2D phase-frequency characteristic curves of the equivalent complex impedanceZA O(x,ω),where x={0,3,6,10} represents the complex impedance at four positions.

    Figure 14. Set n=50,α=1 andβ=1.Four 2D phase-frequency characteristic curves of the equivalent complex impedance ZA,O(x,ω),where figures (a),(b),(c),and (d) show the phase-frequency function images of the four node positions x={0,3,6,10},respectively.

    The phaseφ[ZAO(x,ω)]follows a series of jumping states with the change in frequency,as if it is an irregular pulse.We can clearly see its changing characteristics from the four images.We can seeφ?[-π/2,π/2],which is an irregular change.

    5.Conclusion and comment

    This article derives three general impedance formulae of the FO 3 ×nFan network model.We analyze the influence of some variables on the amplitude-frequency and phase-frequency characteristics in three different cases.At the same time,via the analysis of the FOC 3 ×nFan network,new impedance and phase results are derived.In addition,we use Matlab to draw a graphical model to describe the influence of several variables on amplitude-frequency and phase-frequency characteristics.From the series images of the amplitude-frequency and phase-frequency characteristics,problems under various conditions are considered and studied,such asRCαcircuits,RLβcircuits,LβCαcircuits andLCcircuits.

    People have found that actualLCcircuits are usually FO[8–15,25–37];therefore the study of FOCs has practical application value.In this article,our results make some theoretical contributions to the development of FO 3×nFan circuit networks.

    Acknowledgments

    This work is supported by the National Training Programs of Innovation and Entrepreneurship for Undergraduates (Grant No.202210304006Z).

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    ORCID iDs

    国产成年人精品一区二区| 久久精品久久久久久久性| 在线观看一区二区三区激情| 久久鲁丝午夜福利片| 日日啪夜夜撸| 嫩草影院精品99| 成年人午夜在线观看视频| 新久久久久国产一级毛片| 九草在线视频观看| 日韩不卡一区二区三区视频在线| 天天躁日日操中文字幕| 中文字幕免费在线视频6| 一个人看视频在线观看www免费| 日韩人妻高清精品专区| 国国产精品蜜臀av免费| 黄色视频在线播放观看不卡| 人人妻人人看人人澡| 成人毛片60女人毛片免费| 日日撸夜夜添| 一区二区三区免费毛片| 国产乱人偷精品视频| 内射极品少妇av片p| 免费高清在线观看视频在线观看| 偷拍熟女少妇极品色| 国产中年淑女户外野战色| 国产淫语在线视频| 男女边摸边吃奶| 少妇的逼好多水| 在线 av 中文字幕| 国产淫语在线视频| 蜜臀久久99精品久久宅男| 有码 亚洲区| 久久国内精品自在自线图片| 丝袜喷水一区| 国内精品美女久久久久久| 不卡视频在线观看欧美| 日韩中字成人| 一区二区三区四区激情视频| 别揉我奶头 嗯啊视频| 国产欧美亚洲国产| 菩萨蛮人人尽说江南好唐韦庄| 日韩成人av中文字幕在线观看| 国产精品一二三区在线看| 国产在线男女| 国产 一区精品| 午夜免费鲁丝| 日本欧美国产在线视频| 久久精品国产亚洲av天美| 亚洲国产日韩一区二区| www.色视频.com| 卡戴珊不雅视频在线播放| 欧美 日韩 精品 国产| 中国美白少妇内射xxxbb| 亚洲精品久久久久久婷婷小说| 国产一区二区亚洲精品在线观看| 热re99久久精品国产66热6| 91狼人影院| 亚洲精品,欧美精品| 日韩强制内射视频| 青春草国产在线视频| 国产又色又爽无遮挡免| 深夜a级毛片| 日本av手机在线免费观看| 国产精品久久久久久精品古装| 人人妻人人爽人人添夜夜欢视频 | 高清在线视频一区二区三区| 国内精品美女久久久久久| 啦啦啦在线观看免费高清www| 2021少妇久久久久久久久久久| 免费黄频网站在线观看国产| 亚洲第一区二区三区不卡| 国产精品人妻久久久影院| 大香蕉97超碰在线| 午夜免费男女啪啪视频观看| 国产极品天堂在线| 欧美zozozo另类| 禁无遮挡网站| 久久久久国产精品人妻一区二区| 亚洲精品成人av观看孕妇| 亚洲成人一二三区av| 免费黄网站久久成人精品| 精品久久久噜噜| 岛国毛片在线播放| 在线观看av片永久免费下载| 免费播放大片免费观看视频在线观看| 啦啦啦在线观看免费高清www| 日本爱情动作片www.在线观看| 在线 av 中文字幕| 超碰97精品在线观看| 成人一区二区视频在线观看| 欧美日韩综合久久久久久| 一区二区av电影网| 啦啦啦中文免费视频观看日本| 国产美女午夜福利| 搞女人的毛片| 亚洲精品日韩av片在线观看| 高清欧美精品videossex| 免费少妇av软件| 交换朋友夫妻互换小说| 欧美日韩视频高清一区二区三区二| 男人狂女人下面高潮的视频| 人人妻人人澡人人爽人人夜夜| 国产精品久久久久久精品电影| 男插女下体视频免费在线播放| 国产精品麻豆人妻色哟哟久久| 91久久精品电影网| 嫩草影院新地址| 中文字幕亚洲精品专区| 国内精品美女久久久久久| 欧美国产精品一级二级三级 | 毛片一级片免费看久久久久| 精品一区二区三卡| 精品人妻视频免费看| 少妇猛男粗大的猛烈进出视频 | 亚洲国产欧美人成| 日韩一区二区三区影片| 国产精品.久久久| 国产伦精品一区二区三区视频9| 18禁裸乳无遮挡免费网站照片| 久久久久久久亚洲中文字幕| 日韩一本色道免费dvd| 国产精品精品国产色婷婷| 香蕉精品网在线| 亚洲色图av天堂| av免费在线看不卡| 国产精品一二三区在线看| 大香蕉久久网| 97超视频在线观看视频| 成年免费大片在线观看| 99视频精品全部免费 在线| 国产男人的电影天堂91| 久久精品国产亚洲网站| 精品国产一区二区三区久久久樱花 | 午夜福利网站1000一区二区三区| av在线天堂中文字幕| 中文字幕免费在线视频6| 日本免费在线观看一区| 天美传媒精品一区二区| 国产成人a区在线观看| 男的添女的下面高潮视频| 偷拍熟女少妇极品色| 高清毛片免费看| 国产午夜福利久久久久久| 久久久久久久午夜电影| 亚洲精品乱码久久久v下载方式| 亚洲欧美一区二区三区黑人 | 精品午夜福利在线看| 亚洲欧美一区二区三区国产| 99久久九九国产精品国产免费| 日韩大片免费观看网站| 欧美3d第一页| 国产免费福利视频在线观看| 综合色丁香网| 精品久久久噜噜| 亚洲精品,欧美精品| 天天躁日日操中文字幕| 欧美日本视频| 亚洲精品乱久久久久久| 男人狂女人下面高潮的视频| 国产成人精品久久久久久| 777米奇影视久久| 在线免费观看不下载黄p国产| 内射极品少妇av片p| 久久久久久伊人网av| 国产人妻一区二区三区在| av在线亚洲专区| 国产精品一区二区性色av| 国产欧美另类精品又又久久亚洲欧美| 久久久久国产精品人妻一区二区| 国产男女超爽视频在线观看| 国产高清国产精品国产三级 | 大香蕉久久网| 久久人人爽人人爽人人片va| 国产欧美日韩一区二区三区在线 | 久久精品夜色国产| 老司机影院毛片| 97在线视频观看| 狠狠精品人妻久久久久久综合| 成年女人看的毛片在线观看| 啦啦啦中文免费视频观看日本| 亚洲人成网站高清观看| av国产免费在线观看| 高清欧美精品videossex| 国产伦理片在线播放av一区| 亚洲精品色激情综合| 久久99热6这里只有精品| 网址你懂的国产日韩在线| 自拍欧美九色日韩亚洲蝌蚪91 | 水蜜桃什么品种好| 黄色日韩在线| 18禁在线播放成人免费| 男女无遮挡免费网站观看| 日产精品乱码卡一卡2卡三| 国产av不卡久久| 男插女下体视频免费在线播放| 又黄又爽又刺激的免费视频.| 亚洲欧美一区二区三区黑人 | 久久6这里有精品| 91精品伊人久久大香线蕉| 男插女下体视频免费在线播放| 狂野欧美激情性bbbbbb| 欧美极品一区二区三区四区| 日韩视频在线欧美| 欧美日韩综合久久久久久| 永久免费av网站大全| av播播在线观看一区| 爱豆传媒免费全集在线观看| 久久ye,这里只有精品| 99久久精品国产国产毛片| 极品教师在线视频| 成人美女网站在线观看视频| 人妻一区二区av| 成人亚洲欧美一区二区av| 欧美精品人与动牲交sv欧美| 亚洲成人中文字幕在线播放| 亚洲自偷自拍三级| 免费大片18禁| 最后的刺客免费高清国语| 麻豆乱淫一区二区| 熟妇人妻不卡中文字幕| 午夜精品一区二区三区免费看| 人妻制服诱惑在线中文字幕| 亚洲欧美精品自产自拍| 亚洲成人精品中文字幕电影| 国产一区亚洲一区在线观看| 免费观看无遮挡的男女| 简卡轻食公司| 中文字幕免费在线视频6| 看黄色毛片网站| 99视频精品全部免费 在线| 亚洲成人精品中文字幕电影| 男女下面进入的视频免费午夜| 在线观看国产h片| 色播亚洲综合网| 青春草国产在线视频| 亚洲三级黄色毛片| 搞女人的毛片| 亚洲真实伦在线观看| 草草在线视频免费看| 美女xxoo啪啪120秒动态图| 国产片特级美女逼逼视频| 亚洲国产精品国产精品| 欧美激情国产日韩精品一区| 两个人的视频大全免费| 高清日韩中文字幕在线| 噜噜噜噜噜久久久久久91| 老司机影院成人| av黄色大香蕉| 亚洲经典国产精华液单| 婷婷色综合大香蕉| 91久久精品国产一区二区三区| 色婷婷久久久亚洲欧美| 亚洲精品乱码久久久v下载方式| 人人妻人人爽人人添夜夜欢视频 | 精品久久久久久久久av| 丰满少妇做爰视频| 亚洲精品国产av蜜桃| 看黄色毛片网站| 两个人的视频大全免费| 国产成人91sexporn| 嫩草影院新地址| 麻豆精品久久久久久蜜桃| 一级毛片aaaaaa免费看小| 国产老妇女一区| 国内揄拍国产精品人妻在线| 欧美日韩视频高清一区二区三区二| 在线免费十八禁| 成人欧美大片| av.在线天堂| 中文欧美无线码| 国产高清有码在线观看视频| 亚洲成人一二三区av| 欧美高清成人免费视频www| 1000部很黄的大片| 18禁裸乳无遮挡动漫免费视频 | 成人免费观看视频高清| 我的老师免费观看完整版| 99热网站在线观看| 午夜亚洲福利在线播放| 女人被狂操c到高潮| 青春草视频在线免费观看| 国产精品久久久久久久电影| 国产精品av视频在线免费观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 一区二区三区免费毛片| 乱码一卡2卡4卡精品| 亚洲电影在线观看av| 2018国产大陆天天弄谢| 久久人人爽人人片av| 在线精品无人区一区二区三 | 精品久久久久久电影网| 一本一本综合久久| 国产精品人妻久久久久久| 国产真实伦视频高清在线观看| 日日摸夜夜添夜夜爱| 国产高清三级在线| 亚洲精品久久久久久婷婷小说| 在线观看免费高清a一片| av在线app专区| 亚洲精品视频女| 午夜福利视频精品| 欧美潮喷喷水| 免费播放大片免费观看视频在线观看| 国产淫片久久久久久久久| 国产精品国产av在线观看| 久久久久久久久大av| 国产69精品久久久久777片| 男的添女的下面高潮视频| 插阴视频在线观看视频| 三级男女做爰猛烈吃奶摸视频| 色哟哟·www| av在线老鸭窝| 亚洲av免费在线观看| 欧美高清性xxxxhd video| 成人黄色视频免费在线看| 午夜激情福利司机影院| 婷婷色麻豆天堂久久| 在现免费观看毛片| 亚洲成人av在线免费| 国产黄片视频在线免费观看| 80岁老熟妇乱子伦牲交| 欧美日韩精品成人综合77777| 色视频在线一区二区三区| 国产一区亚洲一区在线观看| 久久午夜福利片| 国产 一区 欧美 日韩| 91久久精品电影网| 免费不卡的大黄色大毛片视频在线观看| 国语对白做爰xxxⅹ性视频网站| 中文字幕久久专区| 交换朋友夫妻互换小说| 精品久久久久久久久av| 亚洲四区av| 小蜜桃在线观看免费完整版高清| 男人舔奶头视频| 亚洲av电影在线观看一区二区三区 | 国产亚洲一区二区精品| 色综合色国产| 国产男女超爽视频在线观看| 日本黄大片高清| 一级a做视频免费观看| 久久人人爽人人片av| 国产欧美亚洲国产| 欧美精品国产亚洲| 日本黄色片子视频| 九九在线视频观看精品| 免费观看性生交大片5| 久久久久久久亚洲中文字幕| 欧美日韩在线观看h| 亚洲精品国产av成人精品| 午夜免费男女啪啪视频观看| 国内揄拍国产精品人妻在线| 51国产日韩欧美| 伦理电影大哥的女人| 国产成人免费观看mmmm| 三级国产精品片| 在线天堂最新版资源| 一级毛片久久久久久久久女| 久久久a久久爽久久v久久| 精品久久久久久电影网| 国产亚洲av片在线观看秒播厂| 草草在线视频免费看| 丝瓜视频免费看黄片| 亚洲欧洲国产日韩| 中文字幕人妻熟人妻熟丝袜美| 99热网站在线观看| 天堂网av新在线| 自拍欧美九色日韩亚洲蝌蚪91 | 国产美女午夜福利| 男女啪啪激烈高潮av片| 国产 精品1| 日韩欧美 国产精品| 下体分泌物呈黄色| 国产极品天堂在线| 久热久热在线精品观看| 91aial.com中文字幕在线观看| 久久精品久久久久久久性| 国产午夜精品久久久久久一区二区三区| 成年免费大片在线观看| av免费观看日本| 午夜精品国产一区二区电影 | 久久精品久久久久久久性| 自拍偷自拍亚洲精品老妇| 久久99热6这里只有精品| 国产午夜精品久久久久久一区二区三区| 欧美3d第一页| 视频区图区小说| 久久久久久久久久久丰满| 少妇人妻 视频| 久久久久久久久久久丰满| 国产成人免费观看mmmm| 日本一本二区三区精品| 亚洲国产欧美人成| 高清视频免费观看一区二区| 亚洲aⅴ乱码一区二区在线播放| 九草在线视频观看| 一区二区三区乱码不卡18| av.在线天堂| 在线 av 中文字幕| 2022亚洲国产成人精品| 免费看av在线观看网站| 亚洲欧洲国产日韩| 亚洲人成网站高清观看| 一级毛片电影观看| 亚洲在久久综合| 欧美zozozo另类| 波野结衣二区三区在线| 毛片女人毛片| 国产乱人视频| 美女视频免费永久观看网站| 99久久精品热视频| 欧美一级a爱片免费观看看| 一级a做视频免费观看| 国产精品国产av在线观看| 国产精品女同一区二区软件| 亚洲色图av天堂| 一区二区三区乱码不卡18| 亚洲欧美一区二区三区黑人 | 久久久久久九九精品二区国产| 能在线免费看毛片的网站| 亚洲国产精品999| 国产伦精品一区二区三区视频9| 国产亚洲一区二区精品| 久久久久久九九精品二区国产| 18禁裸乳无遮挡免费网站照片| 岛国毛片在线播放| av在线天堂中文字幕| 美女被艹到高潮喷水动态| 国产精品久久久久久精品电影| 欧美 日韩 精品 国产| 在线观看av片永久免费下载| 国产亚洲av嫩草精品影院| 欧美潮喷喷水| 少妇人妻一区二区三区视频| 在线免费观看不下载黄p国产| 国产成人freesex在线| 亚洲怡红院男人天堂| 国产精品蜜桃在线观看| 亚洲精品乱码久久久久久按摩| 99久国产av精品国产电影| 成人亚洲精品一区在线观看 | 一边亲一边摸免费视频| 18禁动态无遮挡网站| 国产 一区精品| 欧美丝袜亚洲另类| 美女脱内裤让男人舔精品视频| 观看美女的网站| 免费av观看视频| 亚洲自偷自拍三级| 99久久人妻综合| 精品国产乱码久久久久久小说| 一级黄片播放器| 久久久久久九九精品二区国产| 日本欧美国产在线视频| 99精国产麻豆久久婷婷| 欧美 日韩 精品 国产| 在线观看一区二区三区| 老女人水多毛片| 久久久久久国产a免费观看| 日日摸夜夜添夜夜添av毛片| 欧美激情在线99| 全区人妻精品视频| 熟女人妻精品中文字幕| 亚洲精品成人久久久久久| 久久精品国产鲁丝片午夜精品| 国产亚洲91精品色在线| 国产精品不卡视频一区二区| 亚洲国产精品成人综合色| 欧美区成人在线视频| av女优亚洲男人天堂| av在线观看视频网站免费| 国产爽快片一区二区三区| 亚州av有码| 18+在线观看网站| 最近中文字幕高清免费大全6| 国产成人一区二区在线| 免费电影在线观看免费观看| 色哟哟·www| 欧美高清性xxxxhd video| 自拍偷自拍亚洲精品老妇| 99热6这里只有精品| 成年女人看的毛片在线观看| 能在线免费看毛片的网站| 伊人久久精品亚洲午夜| 国产高清有码在线观看视频| 久久久久久久久久成人| 嫩草影院新地址| 九草在线视频观看| 大码成人一级视频| 精品久久久噜噜| 精品一区二区免费观看| 欧美 日韩 精品 国产| 日产精品乱码卡一卡2卡三| 国产中年淑女户外野战色| 日日啪夜夜撸| 少妇熟女欧美另类| 国产黄频视频在线观看| 久久久久性生活片| 成人毛片60女人毛片免费| 99久国产av精品国产电影| 国产精品久久久久久久电影| 精品久久久精品久久久| 成人亚洲欧美一区二区av| 亚洲婷婷狠狠爱综合网| 成年版毛片免费区| 国产av国产精品国产| 国产欧美亚洲国产| 偷拍熟女少妇极品色| 亚洲精品一二三| 国国产精品蜜臀av免费| 久久这里有精品视频免费| 亚洲国产欧美人成| 午夜视频国产福利| 欧美另类一区| 久久精品熟女亚洲av麻豆精品| 大片电影免费在线观看免费| 亚洲在线观看片| 亚洲国产欧美在线一区| 欧美97在线视频| 九色成人免费人妻av| av专区在线播放| 丰满乱子伦码专区| 免费看不卡的av| 一级二级三级毛片免费看| 亚洲无线观看免费| 午夜亚洲福利在线播放| 九草在线视频观看| 性插视频无遮挡在线免费观看| av网站免费在线观看视频| 晚上一个人看的免费电影| 亚州av有码| 内射极品少妇av片p| 国产亚洲精品久久久com| 亚洲精品,欧美精品| 老女人水多毛片| 国产精品女同一区二区软件| 亚洲第一区二区三区不卡| 亚洲成人一二三区av| 亚州av有码| 一个人看视频在线观看www免费| 大香蕉97超碰在线| 五月伊人婷婷丁香| 美女被艹到高潮喷水动态| 少妇猛男粗大的猛烈进出视频 | 美女cb高潮喷水在线观看| 街头女战士在线观看网站| 乱码一卡2卡4卡精品| 成人漫画全彩无遮挡| 在线天堂最新版资源| 国产69精品久久久久777片| 各种免费的搞黄视频| 91狼人影院| 日本欧美国产在线视频| 欧美日韩精品成人综合77777| 男人添女人高潮全过程视频| 丝袜美腿在线中文| 午夜福利高清视频| 亚洲av在线观看美女高潮| 搡老乐熟女国产| 欧美日韩综合久久久久久| 天堂俺去俺来也www色官网| 各种免费的搞黄视频| 伊人久久精品亚洲午夜| 国产人妻一区二区三区在| 亚洲av成人精品一二三区| 人人妻人人看人人澡| 亚洲va在线va天堂va国产| 日韩欧美精品v在线| 国产免费又黄又爽又色| 国产高清有码在线观看视频| 天天躁夜夜躁狠狠久久av| 高清在线视频一区二区三区| 免费大片18禁| 两个人的视频大全免费| 免费黄网站久久成人精品| 亚洲最大成人av| 精品熟女少妇av免费看| 成人亚洲精品av一区二区| av一本久久久久| 欧美日韩综合久久久久久| 婷婷色av中文字幕| 久久人人爽人人爽人人片va| 成人亚洲精品一区在线观看 | 国产在线一区二区三区精| 亚洲av电影在线观看一区二区三区 | 男女国产视频网站| 人体艺术视频欧美日本| 一级av片app| 国国产精品蜜臀av免费| 插逼视频在线观看| 极品教师在线视频| a级毛片免费高清观看在线播放| 国产熟女欧美一区二区| 欧美 日韩 精品 国产| 一级毛片电影观看| 欧美日韩一区二区视频在线观看视频在线 | 18+在线观看网站| 毛片女人毛片| 亚洲欧美成人综合另类久久久| 午夜免费男女啪啪视频观看| 免费观看的影片在线观看| 日韩伦理黄色片| 国产又色又爽无遮挡免| 大香蕉97超碰在线| 精品国产三级普通话版| 联通29元200g的流量卡| 亚洲av一区综合| 在线a可以看的网站| 亚洲婷婷狠狠爱综合网| 建设人人有责人人尽责人人享有的 | 国产一区二区亚洲精品在线观看| 欧美高清成人免费视频www| 国产高清有码在线观看视频| 熟女电影av网| 在线免费观看不下载黄p国产|