• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Exploring dielectric phenomena in sulflowerlike nanostructures via Monte Carlo technique

    2024-05-09 05:20:04SaberFadilHusseinSabbahMhirechKabouchiBahmadChaitanyJayprakashRaoraneSivaSankarSanaHassanFouadandMohamedHashem
    Communications in Theoretical Physics 2024年4期

    N Saber ,Z Fadil,? ,Hussein Sabbah ,A Mhirech ,B Kabouchi ,L Bahmad ,Chaitany Jayprakash Raorane,Siva Sankar Sana,Hassan Fouad and Mohamed Hashem

    1 Laboratory of Condensed Matter and Interdisciplinary Sciences (LaMCScI).Research Unit Labelled CNRST,URL-CNRST-17.Faculty of Sciences.PO Box 1014,Mohammed V University in Rabat,Morocco

    2 College of Engineering and Technology,American University of the Middle East,Egaila 54200,Kuwait

    3 School of Chemical Engineering,Yeungnam University,Gyeongsan,38541,Republic of Korea

    4 Applied Medical Science Department,Community College,King Saud University,PO Box 11433,Riyadh Saudi Arabia

    5 Department of Dental Health,College of Applied Medical Sciences,King Saud University,PO Box 12372,Riyadh,Saudi Arabia

    Abstract This research focuses on the electric behavior of a mixed ferrielectric sulflower-like nanostructure.The structure includes a core with spin -1atoms and a shell with spin -5/ 2atoms.The Blume–Capel model and the Monte Carlo technique (MCt) with the Metropolis algorithm are employed.Diagrams are established for absolute zero,investigating stable spin configurations correlated with various physical parameters.The MCt method explores phase transition behavior and electric hysteresis cycles under different physical parameters.

    Keywords: sulflower-like nanostructure,dielectric characteristics,Monte Carlo technique,phase transition,phase diagrams,electric hysteresis

    1.Introduction

    Efflorescence in science and nanotechnology have allowed for the successful synthesis of nanomaterials with diverse sizes and structures as well.In particular,carbon-sulfur compounds have gained colossal attention due to the possibility of using them in a myriad of organic electronic devices,including organic field-effect transistors,light modulators,light-emitting diodes,photovoltaic cells and hydrogen-storage devices [1–4].One of the recently discovered carbon-sulfur compounds that have attracted attention is sulflower [5–7].This compound has a unique molecular symmetry resulting from anti-aromaticity and orbital degeneracy,combined with its intermolecular packing due to exposed sulfur atoms,making it a promising material for organic electronics[8–10].Sulflower is chemically stable [11],making it an archetypal candidate for electronic devices.Studies have shown that thin-film OFETs made with a sulflower exhibit promising characteristics,containing a gateway threshold voltage of 45 V and a hole mobility of 9.10-3cm2Vs-1[12].Additionally,researchers have investigated the potential of sulflower systems decorated with Be2+and Mg2+to adsorb molecular hydrogen using density-functional theory (DFT)calculations [13].The decorated systems consist of cyclic polythiophene rings.In addition,DFT and time-dependent density functional theory (TD-DFT) computations have proclaimed by Shakerzadeh’s research [14] that the interaction among C16S8sulflower and a lithium atoms exhibited nonlinear optical feedback,indicating the compound’s potential as a novel nonlinear optical material.However,Donget al[15] have presented a novel method of synthesizing the first-ever fully sulfur-substituted polycyclic aromatic hydrocarbon,or‘sulflower.’This unique compound has a coronene core and represents an innovative carbon-sulfur hybrid with promising potential for various applications.

    Figure 1. Schematic illustration of a sulflower-like structure,highlighting spins labeled as S (red balls) and σ (yellow balls),alongside different exchange linkages (depicted using blue and black).

    In recent research,investigations of the magnetic,magnetocaloric,and dielectric characteristics of diverse structures have been done via the Monte Carlo technique (MCt),including nano-islands [16],nanowires [17],Borophene Superlattices and core–shell [18,19],graphene-like nanoribbons [20],copper fluorides [21],a nano-graphene bilayer[22],a diluted graphdiyne monolayer with defects [23],a trilayer graphene-like structure[24],a polyhedral chain[25],the Kagome Ferromagnet [26].Ising models have also been utilized to investigate the mixed systems,like the TbMnO3multiferroic system [27],the Gd2O3nanowire [28],the graphyne[29]and the core–shell Nanotube[30]systems and the Ising thin-film [31].These models have been useful in predicting magnetic phenomena in a variety of structures,from nanoscale to bulk materials.

    Moreover,according to what we know,no theoretical investigations have been conducted to analyze the dielectric properties of a sulflower-like structure with a mixed spin configuration consisting of-1 and-5/2.We employ the MCt with the Metropolis algorithm to examine the dielectric characteristics of a sulflower-like structure.It is worth noting that in our previous research,we effectively utilized the MCt to inspect the magnetic and dielectric characteristics of various types of nanostructures [32–37].Furthermore,the application of an external electric field in the study of dielectric properties is crucial for understanding the response of materials to electric fields,characterizing dielectric behavior,determining polarization,dielectric susceptibility,electric hysteresis cycles,studying phase transitions,and manipulating material properties[17,18,35,36,38,39].Indeed,the study of ferroelectric or ferrielectric materials can contribute to progress in the multiferroic field [27],promising diverse applications such as magnetoelectric sensors and data storage.

    This article is set out as follows: in section 2,we explain the formalism and examples of how the MCt was utilized to explore the physical properties during the simulations.In section 3,we discuss the dielectric characteristics and hysteresis demeanors,and provide our findings.First,we show the major configuration of spin in the phase diagrams in subsection 3.1.Finally,we sum up our findings in section 4.

    2.Model and method

    Our study focuses on studying the dielectric behavior of the sulflower-like structure inside the Blume–Capel model under free frontier circumstances.For this investigation,we utilized the MCt with the Metropolis algorithm [40–46].The nanosystem contains a total of 24 atoms,including 16 atoms with values of=±1 and 0,as well as 8 atoms with values of=±5/2,±3/2,and±1/2(figure 1).Our results involved implementing 106steps through Monte Carlo computations for every spin while neglecting the first 105steps to ensure thermal stabilization.

    The Hamiltonian pertaining to the sulflower-like structure takes the form:

    The terms 〈i,j〉 and 〈k,l〉 denote neighboring site pairs,specifically (iandj) and (kandl).The exchange linkages between adjacent atoms possessing spinsS-SandS—σ are represented byJSSandJSσ,respectively.The parameter μ stands for the dipole moment,and we simplify by assuming μ=1 [38,39].An external longitudinal electric field is introduced asEZ.Additionally,there are crystal fieldsDSandDσinfluencing spinsSiand σj,respectively.Our investigation is confined to cases whereDis equal toDSand toDσ.

    The energy content per individual site is:

    whereNT=NS+Nσ=16+8=24 defining the overall number of atoms in the studied nanosystem.

    The polarizations,both partial and total,exhibited by the sulflower-like structure are as follows:

    The dielectric susceptibilities,both partial and total,exhibited by the sulflower-like structure are as follows:

    whereβ=,the Boltzmann’s constant,kBis utilized in this instance.To make calculations simpler,kBis set to 1.The absolute temperature is symbolized byT.

    3.Results and analysis through numerical methods

    The focus of this section lies in the utilization of the MCt to establish the configuration of spin in the phase diagrams in subsection 3.1.Additionally,subsection 3.2 delves into the analysis of polarizations and dielectric susceptibilities,considering their dependencies on different physical parameters.

    3.1.Configuration of spin in the phase diagrams

    The configuration of spin in the phase diagrams of the mixed sulflower-like structure with spins-1 and-5/2 in several physical parameters (EZ,D,JSS,and JSσ) planes are shown in this subsection.For the ground state investigation,we simulate the energy spins,we found that (2S+1)×(2σ+1)=3×6=18 possible configurations using the Hamiltonian of equation (1).These diagrams provide comprehensive information about spin configurations of the system during the adjustment of different variables.

    Plotting figure 2(a) in the (EZ,D) plane for the constant values of exchange coupling interactions asJSS=1 andJσS=-0.01,it becomes evident that out of the 18 potential configurations,only 6 remained stable.Within this plane,a flawless symmetry is observable among the configurations with respect to theEZ=0 axis.Particularly,the stable configurations corresponding toEZ>0 are: (-1,+1/2);(-1,+3/2);and (-1,+5/2).Whereas the stable configurations obtained to EZ<0 are: (+1,-1/2);(+1,-3/2) and(+1,-5/2).

    Figure 2(b) portrays the phase diagram within the (Jss,Ez) plane in the absence of a crystal field (D=0),while maintaining a constant exchange coupling parameter ofJsσ=-1.In this plane,only two configurations,specifically(+1,-5/2) and (-1,+5/2),remained stable,aligning with the highest spin values.

    Figure 2. Configuration of spins in the phase diagrams plotted for:(a)Jss set to 1 and Jsσ to-1,followed by(b)Jsσ at-1 and D at 0,(c)Jss at 1 and D at 0,(d)Jsσ at-1 and Ez at 0,(e)Jss at 1 and Ez at 0,and finally (f) D at 0 and Ez at 0.

    Figure 2.(Continued.)

    Figure 3. (a) The total of polarization,and (b) the total dielectric susceptibility relative to temperature.The depicted figures were generated using constant parameters: JSS=1,JSσ=-0.01,Ez=0.5,and D=0.

    Figure 4. Total polarization (a),total dielectric susceptibility (b),in relation to temperature,and(c)transition temperature with respect to the JSS parameter.These figures were plotted while adhering to consistent parameters D=0,JSσ=-0.01 and Ez=0.5.

    Figure 5. Total polarization (a),total dielectric susceptibility (b),in relation to temperature,and(c)transition temperature with respect to the JSσ parameter.These figures were plotted while adhering to consistent parameters D=0,JSS=1 and Ez=0.5.

    Figure 6. Total polarization (a),total dielectric susceptibility (b),in relation to temperature,and(c)transition temperature with respect to the Ez parameter.These figures were plotted while adhering to consistent parameters D=0, JSS=1 and JSσ=-0.01.

    Figure 7. Hysteresis cycles of the sulflower-like structure,for different values of T for: Jss=1,JSσ=-0.01 and D=0.

    Figure 8. Hysteresis cycles of the sulflower-like structure,for different values of JSS for: JSσ=-0.01,T=0.1 and D=0.

    Figure 9. Hysteresis cycles of the sulflower-like structure,for different values of JSσ when Jss=1,T=0.1 and D=0.

    Figure 10. Hysteresis cycles of the sulflower-like structure,for different values of D for: Jss=1,JSσ=-0.01 and T=0.1.

    Figure 2(c) delves into the exploration of the impacts stemming from the ferrielectric parameter (Jsσ) and the external longitudinal electric field (Ez) within the (Jsσ,Ez)plane,all while refraining from applying the external longitudinal electric field (Ez=0),and keeping the exchange coupling interaction fixed atJss=1.In this plane,stability is observed across four phases,namely(-1,-5/2),(+1,+5/2),(+1,-5/2),and (-1,+5/2).

    Additionally,in figure 2(d),without applying the external longitudinal electric field(Ez=0)and with a constant value set for the ferrielectric parameterJsσ=-1,we observed that only six stable configurations exist,namely(-1,+1/2),(+1,-1/2),(+1,-3/2),(-1,+3/2),(-1,+5/2),and (+1,-5/2).The spin configurations were displayed in the (Jss,D) plane.

    In order to examine how the configurations that remain stable are affected by the ferrielectric parameterJsσand the crystal fieldD,a graph was generated on the (Jsσ,D)plane withJss=1 andEz=0,as shown in figure 2(e).This graphical representation showcases six stable phases,namely:(-1,-1/2),(-1,-3/2),(-1,-5/2),(-1,+1/2),(-1,+3/2),and (-1,+5/2).

    Ultimately,the impact of the ferrielectric parameterJsσand the exchange coupling parameterJsswas investigated.Figure 2(f)illustrates this exploration within the(Jss,Jsσ)plane,with fixed parametersEz=0 andD=0.In this visual representation,merely four stable configurations are evident,namely(-1,+5/2),(+1,-5/2),(-1,-5/2),and (+1,+5/2).

    3.2.Monte Carlo technique (MCt)

    Within this segment,the dielectric attributes of the Sulflowerlike structure are scrutinized using the MCt with the Metropolis algorithm.

    The temperature-evolving tendencies of polarizations(PS,Pσ,andPtot) are presented in figure 3(a),withJss=1,Jsσ=-0.01,Ez=0.1,andD=0.At exceedingly low temperatures,partial polarizationsPS=1 andPσ=5/2 yieldPtot==1.5.The intricate relationship between spin polarization and dielectric reliability holds substantial importance,given that dielectric reliability serves as the precise indicator of the transition point where spin polarization undergoes a shift from order to disorder.This critical juncture is identified as the ‘blocking temperature,’ and it signifies a transformative phase within the system.During this phase,the system experiences a notable transition from a state of orderliness to a state of disorder,marking a significant change in its overall behavior and characteristics.As the temperature nears the transition temperature (Ttr),polarizations decrease.Interestingly,polarizations decrease as the system transitions into the superparaelectric phase around the transition temperature.For accurate determination of the transition temperature,we scrutinize the partial and total dielectric susceptibilities against temperature,employing the same parameter values featured in figures 3(a) and (b).The dielectric susceptibility peaks related to polarization transition temperatures for σ andSspins were approximatelyTtr(σ)≈2.83 andTtr(S)≈4.5,respectively.The total susceptibility also showed a peak,which occurs atTtr(tot)≈4.

    Results obtained for the JSSinteraction on the total polarization and the dielectric susceptibility were summarized in figures 4(a)–(c).The results were presented for:D=0,Jss=1,JSσ=-0.01 andEz=0.5.As indicated in figure 4(a),an augmentation of theJSSparameter leads to the noticeable shifting of the transition temperature towards high temperatures.Similarly,for the purpose of identifying the precise transition temperature that distinguishes between the ferrielectric and superparaelectric phases,figure 4(b) was generated alongside the total dielectric susceptibility,with varyingJssvalues and using the same set of fixed parameter values as presented in figure 4(a).The outcome showcases that the displacement of the peaks in total dielectric susceptibility gravitates towards higher temperature values asJssvalues increase,confirming the behavior observed in the total polarization.The determined transition temperatures forJssvalues of 1,2,3,and 4 are approximatelyTtr≈2.3,2.7,3.4 and 4,respectively.Drawing upon figures 4(a) and (b),we created figure 4(c)to enhance our comprehension of how the transition temperature relates to theJSSparameter.This visual representation reaffirms the nearly linear increase in the transition temperature when increasingJSS.

    To delve into the impact of the ferrielectric parameterJSσon the thermal total polarization and total dielectric susceptibility,we illustrate the behavior of this parameter in figures 5(a)—(c).These visualizations were derived across varying ferrielectric parameter values:JSσ=-1,-2,-3,and-4,all while adhering to fixed parameters:D=0,Jss=1,Ez=0.5.From the insight provided by figure 5(a),it’s evident that with an increase in the absolute value of the ferrielectric parameter |JSσ|,there is a corresponding decrease in the total polarizationPtot.Furthermore,it’s observable that the curve of the total polarization closely resembles the pattern of the total polarizationPtot(figure 4(a)).To accurately determine the transition temperature values,we mapped out the total dielectric susceptibility as illustrated in figure 5(b).The shift of the peaks of the total dielectric susceptibility towards lower temperature values becomes pronounced with an increase in the ferrielectric parameter |JSσ|.The transition temperatures identified for the ferrielectric parameters |JSσ|=1,2,3,and 4 are approximatelyTtr≈4.2,4.6,5,and 5.2,respectively.To emphasize the outcomes of figures 5(a) and(b),we delineate the trend of the transition temperature with respect to the parameterJSσin figure 5(c).This graphical representation clearly demonstrates that the transition temperature rises almost linearly as the ferrielectric parameter|JSσ|increases.

    Pursuing a similar rationale,we investigated the influence of the electric field parameterEzon the thermal tendencies of total polarizations and total dielectric susceptibility across variousEzvalues (Ez=0.5,1,1.5,and 2).The outcomes are presented in figures 6(a)and(b),assumingD=0,Jss=1,andJSσ=-0.01.As depicted in figure 6(a),we observed that the total polarization diminishes towards an earlier transition temperatureTtrfor lower external longitudinal electric field values compared to higher ones.This effect arises due to the interplay between the promoting influence of the external longitudinal electric field on order within the system and the temperature’s role in promoting disorder.Additionally,figure 6(b)showcases the thermal total dielectric susceptibility.The transition temperature values align with the peaks of the total dielectric susceptibility,withTtrvalues approximately ≈4,4.5,5.5,and 6.5 forEzvalues of 0.5,1,1.5,and 2 respectively.To synthesize the findings from figures 6(a) and (b),we present a graphical representation in figure 6(c),illustrating the correlation between the transition temperature and theEzparameter.In order to consolidate the results depicted in figures 6(a) and (b),we have included a graphical representation in figure 6(c) that illustrates the correlation between the transition temperature and the parameterEz.The figure effectively demonstrates that there was an almost linear increase in the transition temperature as the ferrielectric parameterEzis progressively elevated.

    To complete the study,our focus is on scrutinizing the effect of temperature (T) on hysteresis loops,visualized in figure 7 with fixed parametersD=0,Jss=1,andJSσ=-0.01.As the temperature rises,the hysteresis loop maintains its singular nature,though its area contracts.Upon reaching a threshold temperature of 2,the loop vanishes,denoting the system’s transition from the ferrielectric to the paraelectric phases.This occurrence underscores the gradual evolution of the system into a paraelectric state with increasing temperature.

    Furthermore,figure 8 portrays the influence of the exchange coupling parameterJSSon the hysteresis loop,with constantsJSσ=-0.01,T=0.1,andD=0.The system retains a singular loop structure.Yet,in contrast to the effect ofJSS,the loops change in area,coercivity,and saturation field asJSSvalues rise.This transformation arises due to the enhanced exchange coupling,imparting greater stability to the system.

    In figure 9,we also examined the effect of the ferrielectric parameterJSσon the hysteresis cycles,plotted withD=0,Jss=1 andT=0.1 and by decreasing the parameterJSσ,the hysteresis cycles show multiple loops.The saturation also increases when decreasing the parameterJSσ.

    To wrap up,we analyze the effect of the crystal field D on hysteresis loops,illustrated in figure 10 while maintaining constantsJss=1,JSσ=-0.01,andT=0.1.A reduction in theDparameter correlates with a reduction in the hysteresis loop’s size.Upon reaching a crystal field value of -7,the loop’s presence vanishes.This shift signifies the transition of the system from the ferrielectric to the paraelectric phases.

    4.Conclusion

    In this study,we utilized the MCt to explore the dielectric characteristics of a sulflower-like structure.The structure considered in our investigation consists of mixed spins(1,5/2).One of the main objectives was to determine and analyze the configuration of spin in the phase diagrams.Moreover,we examined dielectric characteristics of the system considering their dependencies on different physical parameters.Specifically,we investigated the impact of temperature,as well as external longitudinal electric on polarization,dielectric susceptibility,and hysteresis cycles.In summary,the findings demonstrate a linear decrease in transition temperature asJSSincreases,a corresponding increase in transition temperature with |JSσ|,and a clear linear rise in transition temperature with increasingEz.As temperature rises,the solitary hysteresis loop contracts and vanishes at 2,signifying the transition from ferrielectric to paraelectric phases.Maintaining a uniform loop structure,the system exhibits altered traits asJSSvalues increase,influenced by enhanced exchange coupling.Besides,decreasingJSσyields multiple loops and elevated saturation.Moreover,loweringDfurther contracts hysteresis loops,and a crystal field of -7 erases the loop,marking the ferrielectric to paraelectric transformation.

    Acknowledgments

    This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education(2020R1I1A3052258).This work is funded by Researcher Supporting Project number (RSP2024R117),King Saud University,Riyadh,Saudi Arabia.

    Conflicts of interest or competing interests

    The authors confirm that there are no known conflicts of interest associated with this publication.

    Author contributions

    Not Applicable

    Data and code availability

    This investigation was made using Monte Carlo simulations under the Metropolis algorithm by a Fortran code.

    ORCID iDs

    国产精品一区二区在线不卡| 日韩av不卡免费在线播放| 久久青草综合色| 亚洲国产av新网站| 中文欧美无线码| 中文字幕另类日韩欧美亚洲嫩草| 在线观看人妻少妇| 三上悠亚av全集在线观看| 国产日韩欧美视频二区| 一级毛片女人18水好多 | 国产精品三级大全| 久久久久视频综合| 99精品久久久久人妻精品| 69精品国产乱码久久久| 亚洲国产精品一区二区三区在线| 欧美xxⅹ黑人| 人人妻人人澡人人爽人人夜夜| 国产精品一区二区在线观看99| 人妻一区二区av| 人妻一区二区av| 国产不卡av网站在线观看| 欧美变态另类bdsm刘玥| 丁香六月天网| av在线老鸭窝| 欧美在线黄色| 男人添女人高潮全过程视频| 久热这里只有精品99| 欧美 日韩 精品 国产| 人人妻人人添人人爽欧美一区卜| 国产97色在线日韩免费| 少妇人妻 视频| 国产极品粉嫩免费观看在线| 男人操女人黄网站| 高清黄色对白视频在线免费看| 天堂中文最新版在线下载| 亚洲欧美精品自产自拍| 久久精品国产亚洲av高清一级| 久久人妻熟女aⅴ| 九草在线视频观看| 国产三级黄色录像| 黄色一级大片看看| 欧美黑人欧美精品刺激| 国产欧美日韩一区二区三 | 久久久久网色| 国产老妇伦熟女老妇高清| 国产在视频线精品| 日日摸夜夜添夜夜爱| 中文字幕高清在线视频| 91精品伊人久久大香线蕉| 国产成人a∨麻豆精品| 久久青草综合色| 免费不卡黄色视频| 在线观看免费午夜福利视频| 69精品国产乱码久久久| 99热国产这里只有精品6| 欧美成狂野欧美在线观看| 女警被强在线播放| 午夜老司机福利片| xxx大片免费视频| 色综合欧美亚洲国产小说| 久久久久视频综合| 久久久久国产一级毛片高清牌| 美女主播在线视频| 首页视频小说图片口味搜索 | videos熟女内射| 国产亚洲精品第一综合不卡| 精品人妻一区二区三区麻豆| 国产精品久久久av美女十八| 免费黄频网站在线观看国产| 国产午夜精品一二区理论片| 人妻一区二区av| 大陆偷拍与自拍| 大话2 男鬼变身卡| 人成视频在线观看免费观看| 亚洲欧美一区二区三区黑人| 最新的欧美精品一区二区| 国产黄频视频在线观看| 久久性视频一级片| 18禁黄网站禁片午夜丰满| 91麻豆av在线| xxx大片免费视频| 搡老乐熟女国产| 99久久精品国产亚洲精品| 777米奇影视久久| 丰满人妻熟妇乱又伦精品不卡| 人人澡人人妻人| 亚洲色图综合在线观看| 丰满少妇做爰视频| 欧美日韩av久久| 蜜桃国产av成人99| 老熟女久久久| 国产日韩欧美在线精品| 精品人妻在线不人妻| 国产精品国产av在线观看| 青草久久国产| 久久精品亚洲av国产电影网| 中文欧美无线码| 99香蕉大伊视频| 色精品久久人妻99蜜桃| 99热国产这里只有精品6| 操美女的视频在线观看| 国产精品免费大片| 脱女人内裤的视频| 中文字幕高清在线视频| 国产免费视频播放在线视频| 国产免费视频播放在线视频| 男人爽女人下面视频在线观看| 亚洲五月色婷婷综合| 国产无遮挡羞羞视频在线观看| 一区二区三区激情视频| 乱人伦中国视频| 国产在线观看jvid| 亚洲国产毛片av蜜桃av| 精品一品国产午夜福利视频| 18禁国产床啪视频网站| videosex国产| 黄色一级大片看看| 性高湖久久久久久久久免费观看| 成年人免费黄色播放视频| 久久精品国产亚洲av涩爱| 国产精品九九99| 在线精品无人区一区二区三| 亚洲精品美女久久久久99蜜臀 | 十八禁人妻一区二区| 超色免费av| 国产精品秋霞免费鲁丝片| 日韩一卡2卡3卡4卡2021年| 一级片免费观看大全| 日韩av不卡免费在线播放| 午夜av观看不卡| 观看av在线不卡| 女人精品久久久久毛片| 精品第一国产精品| 中国国产av一级| 亚洲 欧美一区二区三区| 91九色精品人成在线观看| a级毛片黄视频| 亚洲熟女毛片儿| 自线自在国产av| 亚洲av在线观看美女高潮| 欧美日韩av久久| 9191精品国产免费久久| 亚洲成人免费电影在线观看 | 亚洲av欧美aⅴ国产| 大香蕉久久成人网| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲成国产人片在线观看| 两个人看的免费小视频| 啦啦啦视频在线资源免费观看| 欧美日韩国产mv在线观看视频| 久热爱精品视频在线9| 十八禁高潮呻吟视频| 久久av网站| 久久中文字幕一级| 色网站视频免费| 母亲3免费完整高清在线观看| 免费观看人在逋| 欧美在线一区亚洲| 中文欧美无线码| 欧美黄色淫秽网站| 黄色a级毛片大全视频| 午夜福利影视在线免费观看| 秋霞在线观看毛片| 久久久久久久国产电影| 日韩电影二区| 啦啦啦 在线观看视频| 一级毛片黄色毛片免费观看视频| 超色免费av| 久久久久久亚洲精品国产蜜桃av| 亚洲精品国产一区二区精华液| 伦理电影免费视频| 欧美日韩视频精品一区| 考比视频在线观看| 国产成人av激情在线播放| 成年美女黄网站色视频大全免费| 免费日韩欧美在线观看| 国产片特级美女逼逼视频| 黄色 视频免费看| h视频一区二区三区| 十八禁网站网址无遮挡| cao死你这个sao货| 日本午夜av视频| 大片电影免费在线观看免费| 亚洲精品国产一区二区精华液| 一区二区三区四区激情视频| 色播在线永久视频| 老司机亚洲免费影院| 国产精品一二三区在线看| 午夜免费成人在线视频| 国产免费又黄又爽又色| 侵犯人妻中文字幕一二三四区| 久久久久久久大尺度免费视频| 国产真人三级小视频在线观看| 亚洲黑人精品在线| 亚洲第一青青草原| 肉色欧美久久久久久久蜜桃| 99国产精品一区二区蜜桃av | a级毛片在线看网站| 亚洲美女黄色视频免费看| 18在线观看网站| 99久久精品国产亚洲精品| 久久国产精品人妻蜜桃| 一级毛片我不卡| 精品国产超薄肉色丝袜足j| 日本91视频免费播放| 99国产精品免费福利视频| 最近最新中文字幕大全免费视频 | www日本在线高清视频| 国产精品久久久久成人av| 韩国高清视频一区二区三区| 嫩草影视91久久| 欧美老熟妇乱子伦牲交| 中文字幕另类日韩欧美亚洲嫩草| 欧美日韩福利视频一区二区| 在线av久久热| 亚洲,一卡二卡三卡| 老司机影院成人| 丝瓜视频免费看黄片| 欧美精品高潮呻吟av久久| 捣出白浆h1v1| 青草久久国产| 亚洲综合色网址| 精品卡一卡二卡四卡免费| 亚洲五月色婷婷综合| 欧美精品高潮呻吟av久久| 国产精品九九99| 日本午夜av视频| 一本色道久久久久久精品综合| 18禁裸乳无遮挡动漫免费视频| 亚洲av电影在线观看一区二区三区| 亚洲中文日韩欧美视频| 手机成人av网站| 丝袜喷水一区| 国产在线免费精品| 18在线观看网站| av又黄又爽大尺度在线免费看| 日日摸夜夜添夜夜爱| 在线 av 中文字幕| 午夜福利视频在线观看免费| 91麻豆精品激情在线观看国产 | 男男h啪啪无遮挡| 在线 av 中文字幕| 久久久久久人人人人人| 国产欧美日韩一区二区三 | 9热在线视频观看99| 十八禁高潮呻吟视频| 高清视频免费观看一区二区| 天天添夜夜摸| 亚洲av国产av综合av卡| 精品欧美一区二区三区在线| 国语对白做爰xxxⅹ性视频网站| 99久久人妻综合| 国产在线免费精品| 欧美人与性动交α欧美精品济南到| 欧美大码av| 精品福利观看| av天堂在线播放| 蜜桃在线观看..| 日韩av不卡免费在线播放| 久久久精品94久久精品| 一本综合久久免费| 日韩一区二区三区影片| 美女中出高潮动态图| 天堂中文最新版在线下载| 日本vs欧美在线观看视频| 国产一区二区 视频在线| 亚洲熟女毛片儿| 18禁国产床啪视频网站| 亚洲av国产av综合av卡| 精品一区在线观看国产| 久久久久网色| 男女无遮挡免费网站观看| 久久人妻福利社区极品人妻图片 | 下体分泌物呈黄色| 国产免费又黄又爽又色| 深夜精品福利| 中文字幕人妻丝袜一区二区| 丝袜美腿诱惑在线| 欧美精品人与动牲交sv欧美| 日本av免费视频播放| 操美女的视频在线观看| 国产亚洲午夜精品一区二区久久| 久久久久久久久免费视频了| 人人澡人人妻人| 精品少妇内射三级| 91九色精品人成在线观看| 国产片特级美女逼逼视频| 亚洲中文字幕日韩| 丝瓜视频免费看黄片| 久久精品熟女亚洲av麻豆精品| a级片在线免费高清观看视频| 国产欧美亚洲国产| 久久99一区二区三区| 多毛熟女@视频| 麻豆乱淫一区二区| 深夜精品福利| 亚洲人成电影免费在线| 丝袜美足系列| 男女午夜视频在线观看| 国产av精品麻豆| 十分钟在线观看高清视频www| 亚洲自偷自拍图片 自拍| 一区福利在线观看| 国产淫语在线视频| 欧美老熟妇乱子伦牲交| 国产成人精品无人区| 欧美日韩亚洲国产一区二区在线观看 | 国产黄色视频一区二区在线观看| 免费看不卡的av| 麻豆国产av国片精品| 9色porny在线观看| 国产一级毛片在线| 九草在线视频观看| 菩萨蛮人人尽说江南好唐韦庄| av不卡在线播放| 久久毛片免费看一区二区三区| 汤姆久久久久久久影院中文字幕| 欧美久久黑人一区二区| 丝袜在线中文字幕| 亚洲成色77777| 亚洲av男天堂| 欧美日韩精品网址| 欧美激情 高清一区二区三区| 欧美亚洲 丝袜 人妻 在线| 男女国产视频网站| 国产一级毛片在线| 成在线人永久免费视频| 久久久国产一区二区| 建设人人有责人人尽责人人享有的| 99国产精品免费福利视频| 制服诱惑二区| 99久久99久久久精品蜜桃| 久久国产精品男人的天堂亚洲| 日韩人妻精品一区2区三区| 亚洲欧美日韩高清在线视频 | 日本色播在线视频| 真人做人爱边吃奶动态| 无遮挡黄片免费观看| a级毛片在线看网站| 国产精品一区二区在线不卡| 亚洲三区欧美一区| 欧美日韩综合久久久久久| 国产亚洲午夜精品一区二区久久| 手机成人av网站| 国产精品国产av在线观看| 操出白浆在线播放| 国产精品久久久久成人av| 赤兔流量卡办理| 日韩伦理黄色片| 夜夜骑夜夜射夜夜干| 黄片小视频在线播放| 99香蕉大伊视频| 人妻人人澡人人爽人人| 午夜福利视频在线观看免费| 欧美精品人与动牲交sv欧美| 脱女人内裤的视频| tube8黄色片| 久久免费观看电影| 欧美日韩视频高清一区二区三区二| 亚洲精品在线美女| 日韩熟女老妇一区二区性免费视频| 一本—道久久a久久精品蜜桃钙片| 午夜激情av网站| 亚洲国产日韩一区二区| 亚洲国产av新网站| 国产在视频线精品| 亚洲第一av免费看| 国产黄色免费在线视频| 青青草视频在线视频观看| 老熟女久久久| 日韩av在线免费看完整版不卡| 色视频在线一区二区三区| 国产无遮挡羞羞视频在线观看| 少妇裸体淫交视频免费看高清 | 精品一区在线观看国产| 手机成人av网站| 人妻一区二区av| 国产成人91sexporn| 在现免费观看毛片| 国产伦理片在线播放av一区| 亚洲欧洲国产日韩| 男人爽女人下面视频在线观看| 国产伦理片在线播放av一区| 女人精品久久久久毛片| 秋霞在线观看毛片| 国产精品.久久久| 777米奇影视久久| 免费看av在线观看网站| 国产精品.久久久| 国产亚洲午夜精品一区二区久久| 老司机靠b影院| 最近中文字幕2019免费版| www.熟女人妻精品国产| 狠狠精品人妻久久久久久综合| 亚洲国产精品一区二区三区在线| 久久久精品94久久精品| 中文字幕亚洲精品专区| 日本a在线网址| 高潮久久久久久久久久久不卡| 日韩制服丝袜自拍偷拍| cao死你这个sao货| 久久人人爽av亚洲精品天堂| 无遮挡黄片免费观看| 欧美精品一区二区免费开放| 欧美乱码精品一区二区三区| a级片在线免费高清观看视频| 精品国产一区二区久久| 亚洲精品第二区| videosex国产| 欧美另类一区| 欧美亚洲日本最大视频资源| 狠狠婷婷综合久久久久久88av| 看免费av毛片| 精品国产一区二区三区四区第35| 麻豆国产av国片精品| 五月天丁香电影| 亚洲久久久国产精品| 大码成人一级视频| 久久久久久人人人人人| 老鸭窝网址在线观看| 午夜福利视频精品| 国产91精品成人一区二区三区 | 欧美成人午夜精品| 午夜福利免费观看在线| 久久久精品94久久精品| 国产亚洲精品第一综合不卡| 久久99精品国语久久久| 亚洲国产最新在线播放| h视频一区二区三区| 日韩制服骚丝袜av| 久久久久久免费高清国产稀缺| 男女免费视频国产| 免费一级毛片在线播放高清视频 | 汤姆久久久久久久影院中文字幕| 欧美精品啪啪一区二区三区 | 精品亚洲成a人片在线观看| 久久九九热精品免费| 免费日韩欧美在线观看| 成人免费观看视频高清| av一本久久久久| av线在线观看网站| 国产淫语在线视频| 嫁个100分男人电影在线观看 | 精品一区二区三卡| 一本—道久久a久久精品蜜桃钙片| 日韩一区二区三区影片| 亚洲国产欧美一区二区综合| 午夜福利影视在线免费观看| 啦啦啦 在线观看视频| 国产国语露脸激情在线看| 性色av一级| 亚洲精品久久久久久婷婷小说| 亚洲国产精品成人久久小说| 男女免费视频国产| 女性被躁到高潮视频| 欧美xxⅹ黑人| 国产精品久久久久久精品电影小说| 大话2 男鬼变身卡| 久久久久网色| 亚洲七黄色美女视频| 日本欧美国产在线视频| 亚洲国产精品一区二区三区在线| 女性被躁到高潮视频| 国产伦人伦偷精品视频| 亚洲欧美一区二区三区久久| 国产高清不卡午夜福利| 国产极品粉嫩免费观看在线| 亚洲,一卡二卡三卡| 亚洲男人天堂网一区| 在线观看国产h片| 国产真人三级小视频在线观看| 久久这里只有精品19| 国产高清视频在线播放一区 | 亚洲人成电影免费在线| 国产精品久久久久久精品古装| 欧美精品一区二区免费开放| 亚洲五月色婷婷综合| 亚洲一区二区三区欧美精品| 亚洲国产精品成人久久小说| 纵有疾风起免费观看全集完整版| 亚洲欧美一区二区三区久久| 免费观看人在逋| 夜夜骑夜夜射夜夜干| 国产精品.久久久| svipshipincom国产片| 精品一品国产午夜福利视频| 国产男人的电影天堂91| av在线老鸭窝| 成人国语在线视频| 欧美+亚洲+日韩+国产| 国产黄频视频在线观看| 亚洲自偷自拍图片 自拍| 亚洲欧美精品自产自拍| 亚洲欧美精品综合一区二区三区| 免费观看av网站的网址| 国语对白做爰xxxⅹ性视频网站| 天天添夜夜摸| 人人妻人人添人人爽欧美一区卜| 国产一卡二卡三卡精品| 国产精品一区二区在线不卡| 午夜免费男女啪啪视频观看| 久久综合国产亚洲精品| 亚洲精品美女久久久久99蜜臀 | 亚洲国产精品999| 精品第一国产精品| 亚洲国产精品999| 亚洲国产精品一区三区| 成人午夜精彩视频在线观看| 国产高清国产精品国产三级| 捣出白浆h1v1| 国产免费一区二区三区四区乱码| 岛国毛片在线播放| 色视频在线一区二区三区| 99re6热这里在线精品视频| 高潮久久久久久久久久久不卡| 久久精品国产亚洲av涩爱| 啦啦啦在线免费观看视频4| 久久av网站| 国产高清不卡午夜福利| 亚洲欧洲国产日韩| 婷婷色麻豆天堂久久| 99热全是精品| av网站免费在线观看视频| 午夜日韩欧美国产| 国产av一区二区精品久久| 精品熟女少妇八av免费久了| 一级a爱视频在线免费观看| 欧美日韩综合久久久久久| 人人妻人人添人人爽欧美一区卜| 国产亚洲欧美在线一区二区| 2021少妇久久久久久久久久久| 久久鲁丝午夜福利片| 亚洲精品av麻豆狂野| 成在线人永久免费视频| 91精品伊人久久大香线蕉| 精品久久久久久久毛片微露脸 | www.精华液| 国产精品国产av在线观看| 亚洲国产中文字幕在线视频| 精品亚洲成国产av| 国产欧美日韩一区二区三 | av网站免费在线观看视频| 50天的宝宝边吃奶边哭怎么回事| 大片免费播放器 马上看| 香蕉丝袜av| 国产精品久久久久成人av| 精品国产乱码久久久久久男人| 精品国产国语对白av| 99re6热这里在线精品视频| 91精品国产国语对白视频| 精品久久久久久久毛片微露脸 | 男女下面插进去视频免费观看| 欧美性长视频在线观看| 伊人亚洲综合成人网| 欧美日韩黄片免| 久久久精品国产亚洲av高清涩受| 免费黄频网站在线观看国产| 国产亚洲欧美精品永久| av视频免费观看在线观看| 亚洲精品国产色婷婷电影| 老汉色av国产亚洲站长工具| 免费一级毛片在线播放高清视频 | 精品少妇久久久久久888优播| 亚洲久久久国产精品| 久久精品久久精品一区二区三区| 啦啦啦 在线观看视频| 后天国语完整版免费观看| 国产免费一区二区三区四区乱码| 国产有黄有色有爽视频| 视频在线观看一区二区三区| 欧美 亚洲 国产 日韩一| 久久人妻熟女aⅴ| 欧美日韩国产mv在线观看视频| 国产成人精品在线电影| 亚洲自偷自拍图片 自拍| 视频在线观看一区二区三区| 天堂俺去俺来也www色官网| 亚洲人成电影免费在线| 成人国产一区最新在线观看 | 午夜两性在线视频| 操出白浆在线播放| 亚洲欧美色中文字幕在线| 欧美日韩亚洲国产一区二区在线观看 | 麻豆国产av国片精品| 9色porny在线观看| 咕卡用的链子| 中文字幕人妻丝袜制服| 国产精品免费视频内射| 成年人黄色毛片网站| 成人国产一区最新在线观看 | 丝袜人妻中文字幕| 高清av免费在线| 人妻 亚洲 视频| 久久国产精品人妻蜜桃| 国产又色又爽无遮挡免| 久久综合国产亚洲精品| 欧美日本中文国产一区发布| 少妇猛男粗大的猛烈进出视频| 午夜福利,免费看| 热re99久久国产66热| 肉色欧美久久久久久久蜜桃| 丝袜脚勾引网站| 汤姆久久久久久久影院中文字幕| 亚洲成人免费电影在线观看 | 婷婷色综合www| cao死你这个sao货| 一区二区三区激情视频| 久久这里只有精品19| 久久国产精品男人的天堂亚洲| 国产亚洲午夜精品一区二区久久| 精品少妇一区二区三区视频日本电影| 成人亚洲欧美一区二区av| 水蜜桃什么品种好| 日本一区二区免费在线视频| 丝袜在线中文字幕|