• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Theoretical study of the nonlinear forceloading control in single-molecule stretching experiments

    2024-05-09 05:19:58XingyuQiZilongGuoShiminLeandHuChen
    Communications in Theoretical Physics 2024年4期

    Xingyu Qi ,Zilong Guo ,Shimin Le and Hu Chen

    1 Research Institute for Biomimetics and Soft Matter,Fujian Provincial Key Lab for Soft Functional Materials Research,Department of Physics,Xiamen University,Xiamen 361005,China

    2 Center of Biomedical Physics,Wenzhou Institute,University of Chinese Academy of Sciences,Wenzhou 325000,China

    Abstract Force spectrum measurements with constant loading rates are widely used in single-molecule manipulation experiments to study the mechanical stability and force response of biomolecules.Force-dependent transition rates can be obtained from the transition force distribution,but it is limited to the force range with non-zero force distribution.Although constant loading rate control can be realized with magnetic tweezers,the loading rate range is limited due to the slow movement of permanent magnets.Non-linear exponential and exponential squared force loading functions are more feasible in magnetic tweezers,while there is no theoretical result available for these two kinds of non-linear force loading functions.In this study,we solved the unfolding process of a protein following Bell’s model under nonlinear exponential and exponential squared force loading functions,which offer a broader range of unfolding force distribution compared to the traditional constant loading rate experiments.Furthermore,we derived two force loading functions,which can produce uniform unfolding force distribution.This research contributes fundamental equations for the analysis of experimental data obtained through single-molecule manipulation under nonlinear force loading controls,paving the way for the use of nonlinear force control in magnetic tweezer experiments.

    Keywords: single-molecule manipulation,magnetic tweezers,force loading,transition rates,force distribution

    1.Introduction

    The relationship between mechanical force and the structural transitions of biomolecules has always been a focus in biophysical and mechanobiology researches.Over the years,single-molecule manipulation experiments have emerged as an important technique to measure the mechanical stability and force response of biomolecules[1–9].In single-molecule manipulation experiments,the force-dependent conformation transition rates of biomolecules are the most important data to be measured [10].The force range is always desired to be as wide as possible since it is important to reveal the detailed information of the underlying free-energy landscape,which determines the dynamic properties of biomolecules [11].

    Constant loading rates and constant pulling speeds are usually applied in magnetic tweezers (MT) and atomic force microscopy (AFM)/optical tweezers (OT) experiments,respectively [1–9].These measurements have provided kinetic parameters of various molecular systems [3–6].In the case of constant loading rate in MT experiments,the unfolding force of proteins can be derived as an analytical equation for biomolecules following Bell’s model.The equation can be used to fit the experimental data to obtain kinetic parameters such as unfolding distance and zeroforce unfolding rate [12,13].On the other hand,constant pulling speed experiments using AFM and OT can generate an average loading rate within a certain range.Although not very strict,the same analysis method can be used to obtain the kinetic properties [1].

    Figure 1. Schematic diagram of magnetic tweezers setup.(a)The force exerted on a protein molecule by a magnetic bead within the magnetic field of the double magnets.(b)The relationship between the force F and the distance d between the magnets and the paramagnetic bead is assumed to be F(d)=200 exp (-3d)pN,where d is in units of millimeters.

    However,a significant limitation with the constant loading rate method is that the extracted force-dependent transition rates are confined to limited force range with nonzero force distribution.To obtain transition rates over a large force range,different loading rates with orders of magnitude difference usually need to be applied [14].Force is approximately an exponential function of the distance between permanent magnets and the sample in MT [figure 1].Therefore,the magnets need to move nonlinearly to obtain a constant loading rate with an initial fast speed,which makes the mechanical control complex and limits the range of loading rate feasible in MT [15].

    Another experimental strategy is to measure the waiting time of transitions at a series of constant forces.At forces with slow transitions,the stability of the equipment is crucial for the measurement.MT has the advantage of stability for longtime measurements over AFM and OT [3,7].On the other hand,if the transition is very fast,the process of the force jumping will give a dead time of measurement,which limits the fastest measurable transition rate [16].

    In this study,we venture beyond the traditional realm of constant loading rate or constant force measurements and study the consequence of nonlinear force-loading controls.First,we derived the unfolding force distribution under exponential or exponential squared force-loading functions for Bell’s model.Second,a theoretical force versus time function was derived to render a uniform unfolding force distribution.By integrating traditional methods with innovative nonlinear force control,accurate unfolding rates can be achieved over a broader force range to enhance the efficiency of single-molecule manipulation experiments.

    2.Model and methods

    2.1.Force-dependent unfolding rate ku(F)

    We conventionally conceptualize the unfolding of a protein as a process of overcoming a free-energy barrier[17,18].As the barrier height is affected by the stretching force,the unfolding ratekuis dependent on stretching forceF.In this study,we suppose that the unfolding transition of a protein follows Bell’s model,whose force-dependent unfolding rate is given by [12],

    wherek0denotes the zero-force unfolding rate,xuthe unfolding distance,i.e.the distance between the native state and transition state,β=1/kBT,kBthe Boltzmann constant andTthe absolute temperature.In this study,unless otherwise specified,we set parametersk0=0.005 s-1andxu=2 nm.

    2.2.Force-loading function F(t)

    The force-loading function,F(t),defines the forceFas a function of timet.The linear force-loading function:

    whereF0denotes the initial force andrthe loading rate.Two kinds of nonlinear force-loading functions under scrutiny are the exponential function:

    and the exponential squared function:

    wherev0anda0are parameters determining how fast the force increases.

    The double exponential function has been used to fit the force as a function of distancedbetween the magnets and the sample[15].In this study,for simplicity,we suppose that the force in magnetic tweezers is an exponential functionF(d)=200 exp (-3d)pN,withdin units of millimeters[figure 1].

    2.3.Simulation to obtain unfolding force distribution P(F)

    Given the known force-dependent unfolding rateku(F) of a protein and the force-loading functionF(t),the unfolding process can be simulated using a Monte Carlo simulator[19].The initial state of the protein is its native state N.The entire simulation process is coarse-grained into a random event chain with a time interval of Δtper frame.The probability of the protein unfolding in each frame isku(F)Δt.When the protein molecule unfolds,the simulation stops,and the unfolding force is recorded.The unfolding force distributionP(F)can be obtained by the statistical histogram of unfolding forces from multiple repeated simulations.

    2.4.Relationship between F(t),ku(F) and P(F)

    From the knownku(F) andF(t),P(F) can also be derived analytically or numerically.Since the initial state is native state N,the survival probability of N stateS(t) obeys the differential equation:

    with initial conditionS(0)=1,and

    Therefore,P(F) is given by equation:

    In single-molecule manipulation experiments,we controlF(t) and measureP(F),and analyze the data to obtainku(F)with equation [23]:

    The unfolding force distribution is usually obtained as discrete values from a statistical histogram.The Dudko–Hummer–Szabo equation elucidates the relationship between the histogram of the unfolding force andku(F) [20]:

    In this study,derivations were performed usingWolfram Mathematica12.1 software for complex analytical calculations.

    3.Results

    3.1.Comparison of force distributions under linear and nonlinear force-loading

    First,we study the force distributions of two kinds of nonlinear force-loading,exponential function and exponential squared function,in comparison with that of linear forceloading with a constant loading rate.We set the force-loading curves of the exponential function with parametersF0=1 pN andv0=0.7 s-1,exponential squared function with parametersF0=1 pN anda0=0.06 s-2,and linear function with parametersF0=1 pN andr=8 pN·s-1[figure 2(c)].The parameters are set to have unfolding forces at similar values,under Bell’s model with default parameters.It was observed that,compared to the linear force-loading,the exponential and exponential squared functions spend more time at lower forces and reach a faster instantaneous loading rate at higher forces.

    We calculated the velocity profile of magnetsvmag(t)[figure 2(a)],and the trajectory of magnetsdmag(t)[figure 2(b)] in the MT setup for these three types ofF(t).Under linear force-loading,the magnets move with drastically changing velocity,especially with high velocity and high acceleration at lower forces.The motion of the magnets under the exponential force-loading is slower with constant velocity.Under the exponential squared force-loading,the magnets move with constant acceleration.Therefore,the exponential force-loading offers a more user-friendly control,requiring only motion with uniform velocity.

    Furthermore,we examined the unfolding force distributionsP(F) under these three types of force-loading.We derived the formula forP(F) and performed numerical calculations [figures 3(a)–(c)].Based on equation (5),the unfolding force distribution for the linear force-loading function (2) is given by,

    The unfolding force distribution for the exponential force function (3) is given by,

    where Ei(x) represents the exponential integral function:

    For the exponential squared force function,we cannot derive the analytical formula of unfolding force distribution,while the numerical solution can be obtained.

    Figure 2. Linear force-loading and two nonlinear force-loading schemes.The plots illustrate the linear force-loading Flinear(t)=1+8t (in black)with a constant loading rate of 8 pN·s-1,the exponential force-loading function Fexp(t)=exp (0.7t)pN(in red)and the exponential squared force-loading function Fexp2(t)=exp (0.06t2)pN (in blue).The velocity of magnets (a),the distance between the magnets and the sample (b),and force (c) are shown as functions of time for three types of force-loading schemes.

    We conducted numerical calculations of the probability density of unfolding force for different parameters.For each of the three force functions,three sets of parameters were used to calculate unfolding force distributionsP(F)[figures 3(a)–(c)].The parameters for the red curve are the same as in figure 2.

    Under linear force-loading,it was observed that the shape ofP(F) remains essentially the same across different loading rates,with the most probable unfolding forceincreasing with the loading rate [figure 3(a)].Similarly,for both exponential and exponential squared force functions,the most probable unfolding forcesincrease with the parametersv0ora0[figures 3(b) and (c)].

    For the linear force-loading,the Bell–Evans formula provides the relationship between the most probable unfolding forceand the loading rater[13]:

    which gives:

    We computed the relationship between the most probable unfolding forceand the force-loading parameterv0under Bell’s model for the exponential force function:

    whose solution is expressed with a LambertWfunctionWk(z)[24]:

    Figure 3. The unfolding force distribution for linear force-loading and two nonlinear force-loading schemes following Bell’s model.(a)The unfolding force distributions under linear force-loading with constant loading rates r=0.8 (black),8 (red) and 80 (blue) pN·s-1.(b) The unfolding force distributions for the exponential force-loading function with parameters v0=0.07(black),0.7(red)and 7(blue)s-1.(c)The unfolding force distributions for the exponential squared force-loading function with parameters a0=0.006(black),0.06(red)and 0.6(blue)s-2.(d) The relationship between the most probable force and loading rate r under linear force-loading.The square dots are derived from the numerical data in figure(a),and the black line represents the theoretical relationship.(e)The relationship between the most probable force and parameter v0 for the exponential force-loading.The square dots are derived from numerical data in (b),and the black line represents the theoretical relationship.(f) The relationship between the most probable force and parameter a0 for the exponential squared force-loading.The square dots are derived from numerical data in (c).

    When dealing exclusively with real numbers,it suffices to considerW-1andW0.Here,W-1corresponds to the maxima in the unfolding force distribution profile,whileW0corresponds to the minima.According to the probability distribution[figure 3(b)],the smaller solutionW0corresponds to a local minimum of the probability distribution function,consistent with the upward trend in probability at lower forces observed in the exponential force-loading.

    We plotted the analytical relationships [figures 3(d)–(f)]of the most probable forceF*with the force-loading parameters (equations (12) and (14)) and compared them with specific points of the most probable force derived from the numerical probability distributionP(F)[figures 3(a)–(c)].It is concluded thatF*derived numerically for the linear forceloading and exponential force-loading curves are consistent with the predictions of analytical equations (12) and (14)[figures 3(d)–(e)].

    For the case of an exponential squared force-loading,the unfolding probability distributionPexp2(F) resists simplification,and the most probable unfolding forceis challenging to calculate.Although no specific analytical expression has been derived,the scatter plot from the numerical method suggests thatis also approximately a linear function of the logarithm ofa0.

    Figure 4. Under Bell’s model,when the forces involved in protein unfolding events are approximately similar,we present a comparative graph of the theoretical probability density P(F)distributions for unfolding events under linear,exponential and exponential squared force-loading.The specific force functions are Flinear(t)=1+8t (in black), Fexp(t)=exp (0.7t)pN (in red) and Fexp2(t)=exp (0.06t2)pN (in blue).The three curves in the graph represent the numerical solutions for the theoretical probability density P(F),calculated using these three force curves F(t) and typical protein molecular properties,with 1000 equidistant numerical solutions for each curve.

    At lower forces,both the exponential and exponential squared force functions show more unfolding events,especially the exponential squared force-loading,which exhibits a pronounced upward trend at very low forces.This phenomenon is more evident when the force-loading parameters (v0ora0) are small,which is related to the longer duration these functions spend at lower forces.

    3.2.Practicality comparison of exponential force functions

    Our focus was directed towards the study of exponential force functions,due to their ease of implementation in magnetic tweezers setups.We compared the unfolding events obtained under constant loading rate,exponential loading and exponential squared loading conditions [figure 4].The force curves for these three conditions are as shown in figure 2(c).The peak distributions of unfolding events for all three forceloading functions are closely aligned (around 14 pN).At lower forces,the exponential and exponential squared functions exhibit more unfolding events,especially the exponential squared function,which shows a pronounced upward trend at very low forces.The upward trend observed in the probability density curves is not always present.Through analytical derivation,we found that under the exponential force-loading,the occurrence of a local minimum requires the exponential function parameterF0to be sufficiently small(preferably less than 1/βxu),andv0to satisfy the inequalityv0>k0e2.Moreover,the probability density curves for the exponential and exponential squared force-loading functions appear flatter.For example,the probability at 2.5 pN differs by approximately a factor of 10.Under the exponential function,the magnets in our setup required only a uniform motion and remained at low speeds over an extended period [figure 2(a)],offering mechanical stability far surpassing that under the constant loading rate.Thus,the exponential force-loading function not only facilitates easier implementation in experimental setups but also fully meets the requirements for standard measurements of protein unfolding events.

    3.3.Derivation of F(t) to generate uniform P(F)

    According to the Dudko–Hummer–Szabo equation,ku(F)can be obtained in the force range with a non-zero histogram,and the relative error depends on the counts of unfolding events in each bin.Therefore,we raise the question:what kind of forceloading function can generate a uniformly distributedF?With uniformly distributedF,the rate of change of survival probability is proportional to the rate of change ofF:

    whereC0is a proportionality constant,and

    Combining equations (1),(15) and (16),we derived the following relationship:

    wheret(F) is the inverse function ofF(t),andF0andt0are constants of integration that incorporate the constantC0and the force range with uniform distribution [Appendix].

    Directly deriving the expression forF(t) is challenging.Therefore,F(t) is obtained using the numerical method.The exponential integral Ei(x) diverges asx→0,and its inverse function has multiple-value regions.Consequently,F(t) theoretically possesses two distinct solutions satisfying the equation;one solution ofF1(t) increases with time,while the other solutionF2(t) decreases with time [figure 5(a)].

    Having obtainedF1(t) andF2(t) force curves that can uniformly distribute the unfolding force within the range of 1–21 pN through equation(17),we tested the unfolding force distributions of protein under this force-loading via Monte Carlo simulation [figures 5(b)–(c)],which are significantly flatter than the unfolding force distributions under linear force-loading[figure 5(d)].UnderF1(t)orF2(t)force-loading,the unfolding force distributions cover our range of interest(1–21 pN)and are nearly flat,fulfilling the initial assumption.

    InF1(t) orF2(t) force-loading curves,the absolute value of the slope is exceptionally high,specifically during the late phase of the monotonically increasing curveF1(t) and the early phases of the monotonically decreasing curveF2(t)[figure 5(a)].Insufficient density of sampling data points in single-molecule manipulation experiment setups can lead to significant precision loss.Under the monotonically decreasingF2(t)force-loading,there is a steeper slope at the beginning of the experiment and a more extended duration of low force at the end of the experiment.In addition,starting from a high force is not easy to control in magnetic tweezers experiments.Therefore,onlyF1(t) might be practical in real experiments.

    Figure 5. Visualization of the force curves for force-loading F1/2(t)that can uniformly distribute the unfolding force and linear force-loading.Histogram of simulated unfolding events with respect to force under these conditions.(a)The force curves observed in the range of 1–21 pN generated by proteins with typical attributes.The red and blue curves represent monotonically increasing and decreasing forces,respectively,generated using the inverse function of equation (17).Black curve represents the traditional constant force-loading of 8 pN·s-1.(b)Histogram of unfolding force under F1(t) force-loading,simulated with a Monte Carlo model based on Bell’s model for protein unfolding rates.Simulation,divided into ten groups of 500 force-application experiments each,presents the average (histogram height) and standard deviation (error bars) across these groups.(c) Similar to the above,but tested under the condition of F2(t) force-loading.(d) Similar to the above,but tested under the condition of a constant force-loading of 8 pN·s-1.

    4.Summary and discussion

    Theoretically,the force-loading functionF(t),forcedependent transition rateku(F) and unfolding force distributionP(F) are interdependent.With two of them known,the third can be obtained.In single-molecule manipulation experiments,we setF(t),measureP(F) and analyze the data to obtainku(F).

    In traditional single-molecule manipulation experiments,linear force-loading with a constant loading rate is the most popular approach.Constant force measurement can be considered as zero loading rate,which gives the transition rate at a specific force.In this study,we have explored several typical nonlinear force-loading methods.The force of magnetic tweezers is almost an exponential function of the distance between the magnets and the sample.Consequently,we analyzed the distribution of protein unfolding forces under exponential and exponential squared force-loading functions,corresponding to the movements of magnets with constant velocity and constant acceleration,respectively.We found that the obtained force distribution is broader compared to constant loading rate measurements,providing unfolding rates across a larger force range.

    We found that exponential force-loading provides an additional advantage when it is used in magnetic tweezers.Under similar forces,the motion of the magnet using exponential force-loading involves slower velocities and smaller accelerations compared to the constant loading rate.This offers greater mechanical stability for the experimental apparatus.On the other hand,with the same limitation of velocity and acceleration,exponential force-loading can cover a larger range of dynamic measurements,which is important since it reveals the more detailed free-energy landscape of biomolecules.

    In addition,we have conducted theoretical analyses with the premise of uniformly distributed unfolding force across a certain force range.We have derived the force functionF(t)under Bell’s model to meet this expectation.Surprisingly,we discovered a force curve that decreases monotonically over time and also meets our expectation of uniform force distribution.Although it might be not very practical in experiments since we do not knowku(F) in advance,as the first trial to derive force functionF(t) with knownku(F) andP(F),this demonstrates that there are two solutions ofF(t)that both satisfy the requirements.

    In magnetic tweezers experiments,the extension of molecule is obtained from the position of the magnetic bead.When the fluctuation of the extension is much smaller than the unfolding step size,the unfolding event can be identified accurately.Force is only determined by the distance between the permanent magnets and the sample.Therefore,the uncertainty of unfolding force is affected by the synchronization of the camera and the position reading of the motorized stage that moves magnets in the setup.Fortunately,the uncertainty of the unfolding force for each unfolding event is usually much smaller than the distribution range of the unfolding forces.Therefore,noise of both force and extension will not affect the application of our theoretical results in magnetic tweezers experiments.

    Acknowledgments

    This research project was supported by the National Natural Science Foundation of China (Grant Nos.12174322 to HC,12204124 to ZG,32271367 and 12204389 to SL),the 111 project (Grant No.B16029) and the Research Fund of Wenzhou Institute.

    Appendix: Derivation of nonlinear F(t) for uniform P(F) under Bell’s model

    This section gives the derivation procedures of equation(17).With uniformP(F),equation (15) and the following two equations:

    are equivalent,whereF0,C1andC2are constants of integration.These equations essentially state thatS(t)andF(t)are linearly related at any time.By inserting equation (A1) into Bell’s model (1),we get:

    whereC3is a constant of integration.After transformation,we obtain:

    Let us define:

    Substituting equation (A4) into equation (A3) yields:

    Moreover,considering the expression for Ei (equation (10)),we can determine that,

    Thus,it can be concluded that,

    Integrating both sides results in the following:

    whereC4is a constant of integration.After simplification,we have:

    whereC5is another constant of integration.Substituting with equation (A4),we obtain:

    After further simplification,we obtain equation (17).

    精品福利观看| 99精品在免费线老司机午夜| 国产精品久久视频播放| 久久精品人妻少妇| 窝窝影院91人妻| 亚洲最大成人手机在线| 九九久久精品国产亚洲av麻豆| 亚洲av五月六月丁香网| 干丝袜人妻中文字幕| 在线观看美女被高潮喷水网站| 亚洲自拍偷在线| 国产伦在线观看视频一区| 国产亚洲欧美98| 天美传媒精品一区二区| 最好的美女福利视频网| 成人永久免费在线观看视频| 啦啦啦啦在线视频资源| 精品一区二区三区视频在线| 精品国产三级普通话版| 黄色一级大片看看| 女人被狂操c到高潮| 午夜精品久久久久久毛片777| 久久久成人免费电影| 99热精品在线国产| 一边摸一边抽搐一进一小说| 日韩一本色道免费dvd| 亚洲国产日韩欧美精品在线观看| 十八禁网站免费在线| 午夜视频国产福利| 成人性生交大片免费视频hd| 久久精品综合一区二区三区| 神马国产精品三级电影在线观看| 免费av观看视频| 啦啦啦啦在线视频资源| 狠狠狠狠99中文字幕| 国内揄拍国产精品人妻在线| 色哟哟哟哟哟哟| 国产 一区 欧美 日韩| 日韩亚洲欧美综合| 久久精品综合一区二区三区| 琪琪午夜伦伦电影理论片6080| 免费不卡的大黄色大毛片视频在线观看 | 日本欧美国产在线视频| 亚洲av美国av| 永久网站在线| 亚洲午夜理论影院| 99久久成人亚洲精品观看| 如何舔出高潮| 亚洲精品久久国产高清桃花| 亚洲无线在线观看| 久久精品久久久久久噜噜老黄 | 在线播放国产精品三级| 久久九九热精品免费| 少妇丰满av| 国产高清不卡午夜福利| 亚洲在线自拍视频| 欧美日本视频| 久久久国产成人免费| 亚洲av熟女| 国产高清视频在线观看网站| 亚洲成人久久性| 亚洲无线观看免费| 国产综合懂色| 老司机午夜福利在线观看视频| 深爱激情五月婷婷| www日本黄色视频网| 一级黄色大片毛片| 午夜精品一区二区三区免费看| 熟女人妻精品中文字幕| 日本爱情动作片www.在线观看 | 999久久久精品免费观看国产| av专区在线播放| 性欧美人与动物交配| 久久久久国内视频| 国产亚洲91精品色在线| 午夜福利在线在线| 成年版毛片免费区| 啦啦啦观看免费观看视频高清| 亚洲成人久久爱视频| 亚洲最大成人av| 国内揄拍国产精品人妻在线| 身体一侧抽搐| 亚洲性久久影院| 精品久久久久久久久久久久久| 久久久色成人| 欧美一区二区亚洲| 搡女人真爽免费视频火全软件 | 成人二区视频| 日本一二三区视频观看| 美女免费视频网站| 亚洲天堂国产精品一区在线| 国产亚洲av嫩草精品影院| 久久久久久久午夜电影| 一级a爱片免费观看的视频| 国产精品98久久久久久宅男小说| 十八禁国产超污无遮挡网站| 一级黄片播放器| 日本 欧美在线| 床上黄色一级片| 久久亚洲精品不卡| 欧美+亚洲+日韩+国产| 波野结衣二区三区在线| 亚洲中文日韩欧美视频| 国产综合懂色| 国产v大片淫在线免费观看| 嫁个100分男人电影在线观看| 校园人妻丝袜中文字幕| 波多野结衣高清作品| 亚洲精品亚洲一区二区| 天天一区二区日本电影三级| 久久草成人影院| 麻豆精品久久久久久蜜桃| 国产精品美女特级片免费视频播放器| 91在线精品国自产拍蜜月| 国产欧美日韩精品亚洲av| 国产真实伦视频高清在线观看 | 18禁在线播放成人免费| 少妇的逼好多水| 免费看美女性在线毛片视频| 日日干狠狠操夜夜爽| 波多野结衣高清作品| eeuss影院久久| av在线观看视频网站免费| 人妻夜夜爽99麻豆av| 在线观看66精品国产| 老司机深夜福利视频在线观看| 99热精品在线国产| 国产又黄又爽又无遮挡在线| 久久久久性生活片| 久久久色成人| 亚洲精品久久国产高清桃花| 亚洲欧美日韩卡通动漫| 亚洲最大成人av| 精品久久久久久久久av| 免费电影在线观看免费观看| 黄片wwwwww| 人人妻人人澡欧美一区二区| 在线观看免费视频日本深夜| 国产69精品久久久久777片| 国产一区二区三区在线臀色熟女| 亚洲在线观看片| av女优亚洲男人天堂| 免费看美女性在线毛片视频| 色噜噜av男人的天堂激情| 成人国产综合亚洲| 成人一区二区视频在线观看| 国产精华一区二区三区| 亚洲国产欧洲综合997久久,| 久久欧美精品欧美久久欧美| av天堂中文字幕网| 亚洲不卡免费看| 一进一出抽搐动态| 少妇猛男粗大的猛烈进出视频 | 最近中文字幕高清免费大全6 | 免费av毛片视频| 在线观看av片永久免费下载| 日韩欧美在线乱码| 乱码一卡2卡4卡精品| 欧美成人a在线观看| 永久网站在线| 中文资源天堂在线| 麻豆av噜噜一区二区三区| 国产精品一区二区三区四区久久| 日韩一本色道免费dvd| av在线老鸭窝| 舔av片在线| 国产乱人伦免费视频| 日本欧美国产在线视频| 少妇丰满av| 国产高清不卡午夜福利| 国产精品野战在线观看| 亚洲av电影不卡..在线观看| 国产黄色小视频在线观看| 国产三级中文精品| 两性午夜刺激爽爽歪歪视频在线观看| 老女人水多毛片| 观看美女的网站| 天堂√8在线中文| 日日撸夜夜添| 99久久久亚洲精品蜜臀av| 在线观看舔阴道视频| 成人二区视频| 最后的刺客免费高清国语| 国产一区二区亚洲精品在线观看| 久久精品人妻少妇| a级一级毛片免费在线观看| 亚洲av成人精品一区久久| 99热这里只有精品一区| 桃红色精品国产亚洲av| 欧美一区二区亚洲| 色吧在线观看| 久久中文看片网| 中国美白少妇内射xxxbb| 国产精品一区www在线观看 | 春色校园在线视频观看| 91在线精品国自产拍蜜月| 国产91精品成人一区二区三区| 久久精品夜夜夜夜夜久久蜜豆| 日韩一本色道免费dvd| 日本与韩国留学比较| 色噜噜av男人的天堂激情| 亚洲精品在线观看二区| 亚洲色图av天堂| 国产精品亚洲美女久久久| 人妻丰满熟妇av一区二区三区| 成熟少妇高潮喷水视频| 少妇人妻精品综合一区二区 | 日本爱情动作片www.在线观看 | 赤兔流量卡办理| 天堂网av新在线| 欧美高清性xxxxhd video| 欧美丝袜亚洲另类 | 免费人成在线观看视频色| 国产日本99.免费观看| 午夜免费激情av| 亚洲最大成人手机在线| 亚洲国产欧美人成| 精品人妻视频免费看| 成人鲁丝片一二三区免费| 国产单亲对白刺激| 久久久国产成人精品二区| 性插视频无遮挡在线免费观看| 免费看美女性在线毛片视频| 88av欧美| 久久精品国产亚洲av香蕉五月| 草草在线视频免费看| 欧美日本亚洲视频在线播放| 亚洲第一区二区三区不卡| 又黄又爽又免费观看的视频| 亚洲男人的天堂狠狠| 欧美xxxx性猛交bbbb| 春色校园在线视频观看| 亚洲黑人精品在线| 欧美性猛交╳xxx乱大交人| 免费不卡的大黄色大毛片视频在线观看 | 精品午夜福利视频在线观看一区| 一本久久中文字幕| 国产一区二区三区在线臀色熟女| 亚洲18禁久久av| 日韩中字成人| 婷婷精品国产亚洲av在线| 午夜福利在线观看免费完整高清在 | 夜夜夜夜夜久久久久| 国产欧美日韩一区二区精品| 亚洲精华国产精华精| 超碰av人人做人人爽久久| 噜噜噜噜噜久久久久久91| 女生性感内裤真人,穿戴方法视频| 亚洲av中文av极速乱 | 亚洲18禁久久av| 五月玫瑰六月丁香| eeuss影院久久| 久久婷婷人人爽人人干人人爱| 久久热精品热| 国产精品99久久久久久久久| 色5月婷婷丁香| 内射极品少妇av片p| 国产av麻豆久久久久久久| 男女那种视频在线观看| 国产在线男女| 国产亚洲精品av在线| 黄色丝袜av网址大全| 无人区码免费观看不卡| 两人在一起打扑克的视频| 欧美国产日韩亚洲一区| 特级一级黄色大片| 在线观看66精品国产| 永久网站在线| 亚洲中文字幕一区二区三区有码在线看| 不卡一级毛片| 国产老妇女一区| 成人国产综合亚洲| 亚洲国产高清在线一区二区三| 22中文网久久字幕| 国产精品国产高清国产av| 婷婷亚洲欧美| 又黄又爽又免费观看的视频| 伦理电影大哥的女人| 色综合色国产| 日韩精品中文字幕看吧| 一个人看的www免费观看视频| 欧美日韩综合久久久久久 | 国产精品一区二区三区四区免费观看 | 久久精品人妻少妇| 动漫黄色视频在线观看| 夜夜看夜夜爽夜夜摸| 动漫黄色视频在线观看| 国产精品99久久久久久久久| 亚洲最大成人中文| av专区在线播放| 麻豆一二三区av精品| 91在线观看av| 国产免费男女视频| 内射极品少妇av片p| 国产探花极品一区二区| 成年版毛片免费区| 国产白丝娇喘喷水9色精品| 亚洲人成网站高清观看| 男女那种视频在线观看| 日韩一区二区视频免费看| 精品久久久久久久人妻蜜臀av| 久久精品国产鲁丝片午夜精品 | 亚洲午夜理论影院| 日韩欧美在线乱码| 伊人久久精品亚洲午夜| 亚洲精品国产成人久久av| a级毛片a级免费在线| 国产精品爽爽va在线观看网站| 免费看美女性在线毛片视频| 好男人在线观看高清免费视频| 成年人黄色毛片网站| 亚洲人与动物交配视频| 久久草成人影院| 欧美最黄视频在线播放免费| 日韩大尺度精品在线看网址| 天堂网av新在线| 99精品在免费线老司机午夜| 日韩大尺度精品在线看网址| 乱码一卡2卡4卡精品| 午夜久久久久精精品| 可以在线观看毛片的网站| 午夜视频国产福利| 内射极品少妇av片p| 网址你懂的国产日韩在线| 99视频精品全部免费 在线| 亚洲国产高清在线一区二区三| 悠悠久久av| 日韩欧美国产一区二区入口| 欧美日本亚洲视频在线播放| 欧美bdsm另类| 草草在线视频免费看| 国产成年人精品一区二区| 精品久久久久久久久av| 嫩草影院精品99| 校园人妻丝袜中文字幕| 欧美在线一区亚洲| 最后的刺客免费高清国语| 亚洲av免费高清在线观看| 久久久久性生活片| 成年女人毛片免费观看观看9| 欧洲精品卡2卡3卡4卡5卡区| 最近最新中文字幕大全电影3| 大又大粗又爽又黄少妇毛片口| 看片在线看免费视频| 成年版毛片免费区| 亚洲专区国产一区二区| 男人舔奶头视频| 日韩欧美精品v在线| 美女黄网站色视频| 免费高清视频大片| 亚洲一级一片aⅴ在线观看| 男人舔女人下体高潮全视频| 在线免费观看的www视频| 成人特级av手机在线观看| а√天堂www在线а√下载| 18禁裸乳无遮挡免费网站照片| 久久久国产成人免费| 人妻久久中文字幕网| 久久人妻av系列| 欧美日韩国产亚洲二区| 小说图片视频综合网站| 国产真实伦视频高清在线观看 | 天美传媒精品一区二区| 天天躁日日操中文字幕| 日韩亚洲欧美综合| 欧美3d第一页| 久久草成人影院| 麻豆精品久久久久久蜜桃| 亚洲美女搞黄在线观看 | 我要看日韩黄色一级片| 最近最新免费中文字幕在线| 简卡轻食公司| 亚洲avbb在线观看| 亚洲精华国产精华液的使用体验 | 韩国av一区二区三区四区| 日本成人三级电影网站| 亚洲精品一区av在线观看| 亚洲av免费在线观看| 欧美一区二区亚洲| 在现免费观看毛片| 国产精品久久久久久久久免| 一个人看视频在线观看www免费| 国产三级中文精品| 91麻豆精品激情在线观看国产| 日韩欧美免费精品| 人妻久久中文字幕网| 日日摸夜夜添夜夜添小说| 欧美日韩综合久久久久久 | 熟女电影av网| 成人国产一区最新在线观看| 热99在线观看视频| 噜噜噜噜噜久久久久久91| 欧美色视频一区免费| 级片在线观看| 在线观看舔阴道视频| 国产一级毛片七仙女欲春2| 久久精品国产清高在天天线| 国产高清有码在线观看视频| 一进一出抽搐动态| 两人在一起打扑克的视频| 免费在线观看日本一区| 亚洲欧美日韩东京热| 日韩精品青青久久久久久| 日韩欧美三级三区| 一边摸一边抽搐一进一小说| 99久国产av精品| 中文字幕免费在线视频6| 啦啦啦韩国在线观看视频| 亚洲性久久影院| 老司机深夜福利视频在线观看| 男女啪啪激烈高潮av片| 哪里可以看免费的av片| av女优亚洲男人天堂| 精品久久久久久久久久免费视频| 一个人看的www免费观看视频| 黄色视频,在线免费观看| 免费大片18禁| 欧美激情在线99| 日本撒尿小便嘘嘘汇集6| 看黄色毛片网站| 国产精品久久久久久亚洲av鲁大| 国产亚洲91精品色在线| 人妻少妇偷人精品九色| 真实男女啪啪啪动态图| 成年版毛片免费区| 99久久精品热视频| 欧美xxxx黑人xx丫x性爽| 精品久久久久久成人av| 少妇高潮的动态图| 国内揄拍国产精品人妻在线| 毛片一级片免费看久久久久 | 91久久精品国产一区二区成人| 国产亚洲欧美98| 午夜免费男女啪啪视频观看 | 51国产日韩欧美| 真实男女啪啪啪动态图| 成人高潮视频无遮挡免费网站| 亚洲精品亚洲一区二区| 亚州av有码| 一边摸一边抽搐一进一小说| 欧美高清性xxxxhd video| 日韩,欧美,国产一区二区三区 | 能在线免费观看的黄片| 亚洲av电影不卡..在线观看| 国产成人一区二区在线| 亚洲精品亚洲一区二区| 色哟哟·www| 在线免费十八禁| 免费观看精品视频网站| 九九在线视频观看精品| 18禁黄网站禁片免费观看直播| 国产一区二区激情短视频| 亚洲熟妇中文字幕五十中出| 欧美bdsm另类| 哪里可以看免费的av片| 97热精品久久久久久| 女的被弄到高潮叫床怎么办 | 人妻夜夜爽99麻豆av| 亚洲综合色惰| 日本一二三区视频观看| 蜜桃久久精品国产亚洲av| 国产伦在线观看视频一区| 在线观看av片永久免费下载| 久久中文看片网| 天天躁日日操中文字幕| 亚洲人成网站在线播| 亚洲人成网站在线播| 一个人看的www免费观看视频| 亚洲av成人av| 老司机午夜福利在线观看视频| 在线观看免费视频日本深夜| 国产一区二区激情短视频| 99久国产av精品| 欧美日韩黄片免| 欧美日韩乱码在线| av在线老鸭窝| 2021天堂中文幕一二区在线观| 欧美xxxx黑人xx丫x性爽| 99精品在免费线老司机午夜| 国产精品综合久久久久久久免费| 日本精品一区二区三区蜜桃| 禁无遮挡网站| 伦精品一区二区三区| 九九久久精品国产亚洲av麻豆| 欧美xxxx性猛交bbbb| h日本视频在线播放| 国产主播在线观看一区二区| 亚洲精华国产精华精| av黄色大香蕉| ponron亚洲| 噜噜噜噜噜久久久久久91| 欧美3d第一页| 国产精品98久久久久久宅男小说| 久久久成人免费电影| 一本一本综合久久| 午夜免费男女啪啪视频观看 | 可以在线观看毛片的网站| 成人毛片a级毛片在线播放| 淫秽高清视频在线观看| 麻豆av噜噜一区二区三区| 欧美绝顶高潮抽搐喷水| 亚洲成人中文字幕在线播放| 中国美女看黄片| 日韩大尺度精品在线看网址| 此物有八面人人有两片| 午夜亚洲福利在线播放| 欧美成人免费av一区二区三区| 白带黄色成豆腐渣| 亚洲国产欧洲综合997久久,| bbb黄色大片| 伊人久久精品亚洲午夜| 一级a爱片免费观看的视频| 久久6这里有精品| 最近最新中文字幕大全电影3| 亚洲 国产 在线| 国内毛片毛片毛片毛片毛片| 麻豆精品久久久久久蜜桃| 成人特级黄色片久久久久久久| 九色成人免费人妻av| 久久99热6这里只有精品| 国产精品乱码一区二三区的特点| 成人国产麻豆网| 午夜老司机福利剧场| 亚洲精华国产精华液的使用体验 | 一进一出抽搐gif免费好疼| 免费大片18禁| 日韩欧美国产在线观看| 国产精品一区二区性色av| 最近视频中文字幕2019在线8| 亚洲人成网站在线播| 日本与韩国留学比较| av女优亚洲男人天堂| 国产白丝娇喘喷水9色精品| 哪里可以看免费的av片| 成人鲁丝片一二三区免费| 日本成人三级电影网站| 久久人人爽人人爽人人片va| 99热这里只有是精品在线观看| 尾随美女入室| 欧美bdsm另类| www.www免费av| 窝窝影院91人妻| 国产av在哪里看| 一个人观看的视频www高清免费观看| 最新在线观看一区二区三区| 变态另类成人亚洲欧美熟女| 午夜a级毛片| 亚洲av一区综合| 成人二区视频| .国产精品久久| 成年女人永久免费观看视频| 如何舔出高潮| 国产一区二区三区视频了| 18禁在线播放成人免费| 久久精品国产鲁丝片午夜精品 | 成人国产麻豆网| 亚洲欧美清纯卡通| 成人永久免费在线观看视频| 美女高潮喷水抽搐中文字幕| 国产中年淑女户外野战色| av福利片在线观看| 有码 亚洲区| 人妻久久中文字幕网| 两性午夜刺激爽爽歪歪视频在线观看| 丰满人妻一区二区三区视频av| 人妻少妇偷人精品九色| 日韩,欧美,国产一区二区三区 | 国产精品爽爽va在线观看网站| 亚洲avbb在线观看| 亚洲 国产 在线| 男女视频在线观看网站免费| av专区在线播放| 国产精品av视频在线免费观看| 国产美女午夜福利| 麻豆成人av在线观看| 欧美一区二区国产精品久久精品| 成人鲁丝片一二三区免费| 亚洲成人免费电影在线观看| 男女边吃奶边做爰视频| 亚洲欧美日韩高清专用| 人人妻人人看人人澡| 一级a爱片免费观看的视频| 免费观看的影片在线观看| 99久久精品一区二区三区| 亚洲美女视频黄频| 99在线视频只有这里精品首页| 特级一级黄色大片| 亚洲18禁久久av| 久久草成人影院| av福利片在线观看| 国产男人的电影天堂91| 97超级碰碰碰精品色视频在线观看| 欧美激情久久久久久爽电影| 哪里可以看免费的av片| 国产v大片淫在线免费观看| 国产精品98久久久久久宅男小说| 国产亚洲91精品色在线| 91麻豆av在线| 免费在线观看影片大全网站| 丝袜美腿在线中文| 午夜日韩欧美国产| 国产91精品成人一区二区三区| 麻豆精品久久久久久蜜桃| 成年女人看的毛片在线观看| 69人妻影院| 成人精品一区二区免费| 精品一区二区免费观看| 两人在一起打扑克的视频| 亚洲成人免费电影在线观看| 亚洲av第一区精品v没综合| 国产欧美日韩精品一区二区| 国产蜜桃级精品一区二区三区| 麻豆av噜噜一区二区三区| 国产精品国产高清国产av| 国产一区二区激情短视频|