• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Theoretical study of the nonlinear forceloading control in single-molecule stretching experiments

    2024-05-09 05:19:58XingyuQiZilongGuoShiminLeandHuChen
    Communications in Theoretical Physics 2024年4期

    Xingyu Qi ,Zilong Guo ,Shimin Le and Hu Chen

    1 Research Institute for Biomimetics and Soft Matter,Fujian Provincial Key Lab for Soft Functional Materials Research,Department of Physics,Xiamen University,Xiamen 361005,China

    2 Center of Biomedical Physics,Wenzhou Institute,University of Chinese Academy of Sciences,Wenzhou 325000,China

    Abstract Force spectrum measurements with constant loading rates are widely used in single-molecule manipulation experiments to study the mechanical stability and force response of biomolecules.Force-dependent transition rates can be obtained from the transition force distribution,but it is limited to the force range with non-zero force distribution.Although constant loading rate control can be realized with magnetic tweezers,the loading rate range is limited due to the slow movement of permanent magnets.Non-linear exponential and exponential squared force loading functions are more feasible in magnetic tweezers,while there is no theoretical result available for these two kinds of non-linear force loading functions.In this study,we solved the unfolding process of a protein following Bell’s model under nonlinear exponential and exponential squared force loading functions,which offer a broader range of unfolding force distribution compared to the traditional constant loading rate experiments.Furthermore,we derived two force loading functions,which can produce uniform unfolding force distribution.This research contributes fundamental equations for the analysis of experimental data obtained through single-molecule manipulation under nonlinear force loading controls,paving the way for the use of nonlinear force control in magnetic tweezer experiments.

    Keywords: single-molecule manipulation,magnetic tweezers,force loading,transition rates,force distribution

    1.Introduction

    The relationship between mechanical force and the structural transitions of biomolecules has always been a focus in biophysical and mechanobiology researches.Over the years,single-molecule manipulation experiments have emerged as an important technique to measure the mechanical stability and force response of biomolecules[1–9].In single-molecule manipulation experiments,the force-dependent conformation transition rates of biomolecules are the most important data to be measured [10].The force range is always desired to be as wide as possible since it is important to reveal the detailed information of the underlying free-energy landscape,which determines the dynamic properties of biomolecules [11].

    Constant loading rates and constant pulling speeds are usually applied in magnetic tweezers (MT) and atomic force microscopy (AFM)/optical tweezers (OT) experiments,respectively [1–9].These measurements have provided kinetic parameters of various molecular systems [3–6].In the case of constant loading rate in MT experiments,the unfolding force of proteins can be derived as an analytical equation for biomolecules following Bell’s model.The equation can be used to fit the experimental data to obtain kinetic parameters such as unfolding distance and zeroforce unfolding rate [12,13].On the other hand,constant pulling speed experiments using AFM and OT can generate an average loading rate within a certain range.Although not very strict,the same analysis method can be used to obtain the kinetic properties [1].

    Figure 1. Schematic diagram of magnetic tweezers setup.(a)The force exerted on a protein molecule by a magnetic bead within the magnetic field of the double magnets.(b)The relationship between the force F and the distance d between the magnets and the paramagnetic bead is assumed to be F(d)=200 exp (-3d)pN,where d is in units of millimeters.

    However,a significant limitation with the constant loading rate method is that the extracted force-dependent transition rates are confined to limited force range with nonzero force distribution.To obtain transition rates over a large force range,different loading rates with orders of magnitude difference usually need to be applied [14].Force is approximately an exponential function of the distance between permanent magnets and the sample in MT [figure 1].Therefore,the magnets need to move nonlinearly to obtain a constant loading rate with an initial fast speed,which makes the mechanical control complex and limits the range of loading rate feasible in MT [15].

    Another experimental strategy is to measure the waiting time of transitions at a series of constant forces.At forces with slow transitions,the stability of the equipment is crucial for the measurement.MT has the advantage of stability for longtime measurements over AFM and OT [3,7].On the other hand,if the transition is very fast,the process of the force jumping will give a dead time of measurement,which limits the fastest measurable transition rate [16].

    In this study,we venture beyond the traditional realm of constant loading rate or constant force measurements and study the consequence of nonlinear force-loading controls.First,we derived the unfolding force distribution under exponential or exponential squared force-loading functions for Bell’s model.Second,a theoretical force versus time function was derived to render a uniform unfolding force distribution.By integrating traditional methods with innovative nonlinear force control,accurate unfolding rates can be achieved over a broader force range to enhance the efficiency of single-molecule manipulation experiments.

    2.Model and methods

    2.1.Force-dependent unfolding rate ku(F)

    We conventionally conceptualize the unfolding of a protein as a process of overcoming a free-energy barrier[17,18].As the barrier height is affected by the stretching force,the unfolding ratekuis dependent on stretching forceF.In this study,we suppose that the unfolding transition of a protein follows Bell’s model,whose force-dependent unfolding rate is given by [12],

    wherek0denotes the zero-force unfolding rate,xuthe unfolding distance,i.e.the distance between the native state and transition state,β=1/kBT,kBthe Boltzmann constant andTthe absolute temperature.In this study,unless otherwise specified,we set parametersk0=0.005 s-1andxu=2 nm.

    2.2.Force-loading function F(t)

    The force-loading function,F(t),defines the forceFas a function of timet.The linear force-loading function:

    whereF0denotes the initial force andrthe loading rate.Two kinds of nonlinear force-loading functions under scrutiny are the exponential function:

    and the exponential squared function:

    wherev0anda0are parameters determining how fast the force increases.

    The double exponential function has been used to fit the force as a function of distancedbetween the magnets and the sample[15].In this study,for simplicity,we suppose that the force in magnetic tweezers is an exponential functionF(d)=200 exp (-3d)pN,withdin units of millimeters[figure 1].

    2.3.Simulation to obtain unfolding force distribution P(F)

    Given the known force-dependent unfolding rateku(F) of a protein and the force-loading functionF(t),the unfolding process can be simulated using a Monte Carlo simulator[19].The initial state of the protein is its native state N.The entire simulation process is coarse-grained into a random event chain with a time interval of Δtper frame.The probability of the protein unfolding in each frame isku(F)Δt.When the protein molecule unfolds,the simulation stops,and the unfolding force is recorded.The unfolding force distributionP(F)can be obtained by the statistical histogram of unfolding forces from multiple repeated simulations.

    2.4.Relationship between F(t),ku(F) and P(F)

    From the knownku(F) andF(t),P(F) can also be derived analytically or numerically.Since the initial state is native state N,the survival probability of N stateS(t) obeys the differential equation:

    with initial conditionS(0)=1,and

    Therefore,P(F) is given by equation:

    In single-molecule manipulation experiments,we controlF(t) and measureP(F),and analyze the data to obtainku(F)with equation [23]:

    The unfolding force distribution is usually obtained as discrete values from a statistical histogram.The Dudko–Hummer–Szabo equation elucidates the relationship between the histogram of the unfolding force andku(F) [20]:

    In this study,derivations were performed usingWolfram Mathematica12.1 software for complex analytical calculations.

    3.Results

    3.1.Comparison of force distributions under linear and nonlinear force-loading

    First,we study the force distributions of two kinds of nonlinear force-loading,exponential function and exponential squared function,in comparison with that of linear forceloading with a constant loading rate.We set the force-loading curves of the exponential function with parametersF0=1 pN andv0=0.7 s-1,exponential squared function with parametersF0=1 pN anda0=0.06 s-2,and linear function with parametersF0=1 pN andr=8 pN·s-1[figure 2(c)].The parameters are set to have unfolding forces at similar values,under Bell’s model with default parameters.It was observed that,compared to the linear force-loading,the exponential and exponential squared functions spend more time at lower forces and reach a faster instantaneous loading rate at higher forces.

    We calculated the velocity profile of magnetsvmag(t)[figure 2(a)],and the trajectory of magnetsdmag(t)[figure 2(b)] in the MT setup for these three types ofF(t).Under linear force-loading,the magnets move with drastically changing velocity,especially with high velocity and high acceleration at lower forces.The motion of the magnets under the exponential force-loading is slower with constant velocity.Under the exponential squared force-loading,the magnets move with constant acceleration.Therefore,the exponential force-loading offers a more user-friendly control,requiring only motion with uniform velocity.

    Furthermore,we examined the unfolding force distributionsP(F) under these three types of force-loading.We derived the formula forP(F) and performed numerical calculations [figures 3(a)–(c)].Based on equation (5),the unfolding force distribution for the linear force-loading function (2) is given by,

    The unfolding force distribution for the exponential force function (3) is given by,

    where Ei(x) represents the exponential integral function:

    For the exponential squared force function,we cannot derive the analytical formula of unfolding force distribution,while the numerical solution can be obtained.

    Figure 2. Linear force-loading and two nonlinear force-loading schemes.The plots illustrate the linear force-loading Flinear(t)=1+8t (in black)with a constant loading rate of 8 pN·s-1,the exponential force-loading function Fexp(t)=exp (0.7t)pN(in red)and the exponential squared force-loading function Fexp2(t)=exp (0.06t2)pN (in blue).The velocity of magnets (a),the distance between the magnets and the sample (b),and force (c) are shown as functions of time for three types of force-loading schemes.

    We conducted numerical calculations of the probability density of unfolding force for different parameters.For each of the three force functions,three sets of parameters were used to calculate unfolding force distributionsP(F)[figures 3(a)–(c)].The parameters for the red curve are the same as in figure 2.

    Under linear force-loading,it was observed that the shape ofP(F) remains essentially the same across different loading rates,with the most probable unfolding forceincreasing with the loading rate [figure 3(a)].Similarly,for both exponential and exponential squared force functions,the most probable unfolding forcesincrease with the parametersv0ora0[figures 3(b) and (c)].

    For the linear force-loading,the Bell–Evans formula provides the relationship between the most probable unfolding forceand the loading rater[13]:

    which gives:

    We computed the relationship between the most probable unfolding forceand the force-loading parameterv0under Bell’s model for the exponential force function:

    whose solution is expressed with a LambertWfunctionWk(z)[24]:

    Figure 3. The unfolding force distribution for linear force-loading and two nonlinear force-loading schemes following Bell’s model.(a)The unfolding force distributions under linear force-loading with constant loading rates r=0.8 (black),8 (red) and 80 (blue) pN·s-1.(b) The unfolding force distributions for the exponential force-loading function with parameters v0=0.07(black),0.7(red)and 7(blue)s-1.(c)The unfolding force distributions for the exponential squared force-loading function with parameters a0=0.006(black),0.06(red)and 0.6(blue)s-2.(d) The relationship between the most probable force and loading rate r under linear force-loading.The square dots are derived from the numerical data in figure(a),and the black line represents the theoretical relationship.(e)The relationship between the most probable force and parameter v0 for the exponential force-loading.The square dots are derived from numerical data in (b),and the black line represents the theoretical relationship.(f) The relationship between the most probable force and parameter a0 for the exponential squared force-loading.The square dots are derived from numerical data in (c).

    When dealing exclusively with real numbers,it suffices to considerW-1andW0.Here,W-1corresponds to the maxima in the unfolding force distribution profile,whileW0corresponds to the minima.According to the probability distribution[figure 3(b)],the smaller solutionW0corresponds to a local minimum of the probability distribution function,consistent with the upward trend in probability at lower forces observed in the exponential force-loading.

    We plotted the analytical relationships [figures 3(d)–(f)]of the most probable forceF*with the force-loading parameters (equations (12) and (14)) and compared them with specific points of the most probable force derived from the numerical probability distributionP(F)[figures 3(a)–(c)].It is concluded thatF*derived numerically for the linear forceloading and exponential force-loading curves are consistent with the predictions of analytical equations (12) and (14)[figures 3(d)–(e)].

    For the case of an exponential squared force-loading,the unfolding probability distributionPexp2(F) resists simplification,and the most probable unfolding forceis challenging to calculate.Although no specific analytical expression has been derived,the scatter plot from the numerical method suggests thatis also approximately a linear function of the logarithm ofa0.

    Figure 4. Under Bell’s model,when the forces involved in protein unfolding events are approximately similar,we present a comparative graph of the theoretical probability density P(F)distributions for unfolding events under linear,exponential and exponential squared force-loading.The specific force functions are Flinear(t)=1+8t (in black), Fexp(t)=exp (0.7t)pN (in red) and Fexp2(t)=exp (0.06t2)pN (in blue).The three curves in the graph represent the numerical solutions for the theoretical probability density P(F),calculated using these three force curves F(t) and typical protein molecular properties,with 1000 equidistant numerical solutions for each curve.

    At lower forces,both the exponential and exponential squared force functions show more unfolding events,especially the exponential squared force-loading,which exhibits a pronounced upward trend at very low forces.This phenomenon is more evident when the force-loading parameters (v0ora0) are small,which is related to the longer duration these functions spend at lower forces.

    3.2.Practicality comparison of exponential force functions

    Our focus was directed towards the study of exponential force functions,due to their ease of implementation in magnetic tweezers setups.We compared the unfolding events obtained under constant loading rate,exponential loading and exponential squared loading conditions [figure 4].The force curves for these three conditions are as shown in figure 2(c).The peak distributions of unfolding events for all three forceloading functions are closely aligned (around 14 pN).At lower forces,the exponential and exponential squared functions exhibit more unfolding events,especially the exponential squared function,which shows a pronounced upward trend at very low forces.The upward trend observed in the probability density curves is not always present.Through analytical derivation,we found that under the exponential force-loading,the occurrence of a local minimum requires the exponential function parameterF0to be sufficiently small(preferably less than 1/βxu),andv0to satisfy the inequalityv0>k0e2.Moreover,the probability density curves for the exponential and exponential squared force-loading functions appear flatter.For example,the probability at 2.5 pN differs by approximately a factor of 10.Under the exponential function,the magnets in our setup required only a uniform motion and remained at low speeds over an extended period [figure 2(a)],offering mechanical stability far surpassing that under the constant loading rate.Thus,the exponential force-loading function not only facilitates easier implementation in experimental setups but also fully meets the requirements for standard measurements of protein unfolding events.

    3.3.Derivation of F(t) to generate uniform P(F)

    According to the Dudko–Hummer–Szabo equation,ku(F)can be obtained in the force range with a non-zero histogram,and the relative error depends on the counts of unfolding events in each bin.Therefore,we raise the question:what kind of forceloading function can generate a uniformly distributedF?With uniformly distributedF,the rate of change of survival probability is proportional to the rate of change ofF:

    whereC0is a proportionality constant,and

    Combining equations (1),(15) and (16),we derived the following relationship:

    wheret(F) is the inverse function ofF(t),andF0andt0are constants of integration that incorporate the constantC0and the force range with uniform distribution [Appendix].

    Directly deriving the expression forF(t) is challenging.Therefore,F(t) is obtained using the numerical method.The exponential integral Ei(x) diverges asx→0,and its inverse function has multiple-value regions.Consequently,F(t) theoretically possesses two distinct solutions satisfying the equation;one solution ofF1(t) increases with time,while the other solutionF2(t) decreases with time [figure 5(a)].

    Having obtainedF1(t) andF2(t) force curves that can uniformly distribute the unfolding force within the range of 1–21 pN through equation(17),we tested the unfolding force distributions of protein under this force-loading via Monte Carlo simulation [figures 5(b)–(c)],which are significantly flatter than the unfolding force distributions under linear force-loading[figure 5(d)].UnderF1(t)orF2(t)force-loading,the unfolding force distributions cover our range of interest(1–21 pN)and are nearly flat,fulfilling the initial assumption.

    InF1(t) orF2(t) force-loading curves,the absolute value of the slope is exceptionally high,specifically during the late phase of the monotonically increasing curveF1(t) and the early phases of the monotonically decreasing curveF2(t)[figure 5(a)].Insufficient density of sampling data points in single-molecule manipulation experiment setups can lead to significant precision loss.Under the monotonically decreasingF2(t)force-loading,there is a steeper slope at the beginning of the experiment and a more extended duration of low force at the end of the experiment.In addition,starting from a high force is not easy to control in magnetic tweezers experiments.Therefore,onlyF1(t) might be practical in real experiments.

    Figure 5. Visualization of the force curves for force-loading F1/2(t)that can uniformly distribute the unfolding force and linear force-loading.Histogram of simulated unfolding events with respect to force under these conditions.(a)The force curves observed in the range of 1–21 pN generated by proteins with typical attributes.The red and blue curves represent monotonically increasing and decreasing forces,respectively,generated using the inverse function of equation (17).Black curve represents the traditional constant force-loading of 8 pN·s-1.(b)Histogram of unfolding force under F1(t) force-loading,simulated with a Monte Carlo model based on Bell’s model for protein unfolding rates.Simulation,divided into ten groups of 500 force-application experiments each,presents the average (histogram height) and standard deviation (error bars) across these groups.(c) Similar to the above,but tested under the condition of F2(t) force-loading.(d) Similar to the above,but tested under the condition of a constant force-loading of 8 pN·s-1.

    4.Summary and discussion

    Theoretically,the force-loading functionF(t),forcedependent transition rateku(F) and unfolding force distributionP(F) are interdependent.With two of them known,the third can be obtained.In single-molecule manipulation experiments,we setF(t),measureP(F) and analyze the data to obtainku(F).

    In traditional single-molecule manipulation experiments,linear force-loading with a constant loading rate is the most popular approach.Constant force measurement can be considered as zero loading rate,which gives the transition rate at a specific force.In this study,we have explored several typical nonlinear force-loading methods.The force of magnetic tweezers is almost an exponential function of the distance between the magnets and the sample.Consequently,we analyzed the distribution of protein unfolding forces under exponential and exponential squared force-loading functions,corresponding to the movements of magnets with constant velocity and constant acceleration,respectively.We found that the obtained force distribution is broader compared to constant loading rate measurements,providing unfolding rates across a larger force range.

    We found that exponential force-loading provides an additional advantage when it is used in magnetic tweezers.Under similar forces,the motion of the magnet using exponential force-loading involves slower velocities and smaller accelerations compared to the constant loading rate.This offers greater mechanical stability for the experimental apparatus.On the other hand,with the same limitation of velocity and acceleration,exponential force-loading can cover a larger range of dynamic measurements,which is important since it reveals the more detailed free-energy landscape of biomolecules.

    In addition,we have conducted theoretical analyses with the premise of uniformly distributed unfolding force across a certain force range.We have derived the force functionF(t)under Bell’s model to meet this expectation.Surprisingly,we discovered a force curve that decreases monotonically over time and also meets our expectation of uniform force distribution.Although it might be not very practical in experiments since we do not knowku(F) in advance,as the first trial to derive force functionF(t) with knownku(F) andP(F),this demonstrates that there are two solutions ofF(t)that both satisfy the requirements.

    In magnetic tweezers experiments,the extension of molecule is obtained from the position of the magnetic bead.When the fluctuation of the extension is much smaller than the unfolding step size,the unfolding event can be identified accurately.Force is only determined by the distance between the permanent magnets and the sample.Therefore,the uncertainty of unfolding force is affected by the synchronization of the camera and the position reading of the motorized stage that moves magnets in the setup.Fortunately,the uncertainty of the unfolding force for each unfolding event is usually much smaller than the distribution range of the unfolding forces.Therefore,noise of both force and extension will not affect the application of our theoretical results in magnetic tweezers experiments.

    Acknowledgments

    This research project was supported by the National Natural Science Foundation of China (Grant Nos.12174322 to HC,12204124 to ZG,32271367 and 12204389 to SL),the 111 project (Grant No.B16029) and the Research Fund of Wenzhou Institute.

    Appendix: Derivation of nonlinear F(t) for uniform P(F) under Bell’s model

    This section gives the derivation procedures of equation(17).With uniformP(F),equation (15) and the following two equations:

    are equivalent,whereF0,C1andC2are constants of integration.These equations essentially state thatS(t)andF(t)are linearly related at any time.By inserting equation (A1) into Bell’s model (1),we get:

    whereC3is a constant of integration.After transformation,we obtain:

    Let us define:

    Substituting equation (A4) into equation (A3) yields:

    Moreover,considering the expression for Ei (equation (10)),we can determine that,

    Thus,it can be concluded that,

    Integrating both sides results in the following:

    whereC4is a constant of integration.After simplification,we have:

    whereC5is another constant of integration.Substituting with equation (A4),we obtain:

    After further simplification,we obtain equation (17).

    少妇人妻精品综合一区二区 | 久久久久久国产a免费观看| netflix在线观看网站| 国产高清视频在线观看网站| 亚洲电影在线观看av| 亚洲精品456在线播放app | 国产黄色小视频在线观看| 亚洲美女黄片视频| av专区在线播放| 日韩 亚洲 欧美在线| 国内毛片毛片毛片毛片毛片| 国产精品福利在线免费观看| 国产亚洲精品久久久久久毛片| 特大巨黑吊av在线直播| 少妇裸体淫交视频免费看高清| 午夜福利在线在线| 91狼人影院| 校园人妻丝袜中文字幕| 免费电影在线观看免费观看| 少妇人妻一区二区三区视频| 亚洲午夜理论影院| 亚洲av熟女| 精品人妻视频免费看| 国产伦一二天堂av在线观看| 精品人妻一区二区三区麻豆 | 大又大粗又爽又黄少妇毛片口| 97热精品久久久久久| 日日撸夜夜添| 亚洲成人久久性| 国产成人一区二区在线| 老司机午夜福利在线观看视频| av女优亚洲男人天堂| 18禁黄网站禁片午夜丰满| 亚洲欧美日韩高清专用| 亚洲精品色激情综合| 午夜福利高清视频| 午夜日韩欧美国产| 国产久久久一区二区三区| 亚洲四区av| 午夜精品久久久久久毛片777| 久久午夜福利片| 久久久久久伊人网av| 91久久精品电影网| 色尼玛亚洲综合影院| 亚洲性夜色夜夜综合| 日韩欧美一区二区三区在线观看| 国产精品久久久久久亚洲av鲁大| 女同久久另类99精品国产91| 国产欧美日韩精品一区二区| 人妻少妇偷人精品九色| 国产成人福利小说| 欧美bdsm另类| 全区人妻精品视频| 国产精品乱码一区二三区的特点| 91精品国产九色| 三级毛片av免费| 有码 亚洲区| 在线免费观看的www视频| 久久欧美精品欧美久久欧美| 一区二区三区激情视频| 日日夜夜操网爽| 少妇人妻精品综合一区二区 | 最近中文字幕高清免费大全6 | 少妇熟女aⅴ在线视频| 国产在视频线在精品| 午夜激情福利司机影院| 极品教师在线免费播放| 国产免费av片在线观看野外av| 两个人的视频大全免费| 午夜福利高清视频| 一进一出抽搐gif免费好疼| 在线播放无遮挡| 国产av一区在线观看免费| 国产亚洲精品久久久com| 欧美性猛交黑人性爽| 一a级毛片在线观看| 亚洲av中文av极速乱 | 亚洲天堂国产精品一区在线| 好男人在线观看高清免费视频| 69人妻影院| 亚洲性久久影院| 久久国产精品人妻蜜桃| 午夜久久久久精精品| 国产成人aa在线观看| 少妇裸体淫交视频免费看高清| 亚洲av.av天堂| 午夜影院日韩av| 亚洲最大成人中文| 美女被艹到高潮喷水动态| 男人狂女人下面高潮的视频| 97热精品久久久久久| 露出奶头的视频| 热99在线观看视频| 亚洲电影在线观看av| 欧美日韩国产亚洲二区| 老女人水多毛片| 91狼人影院| 亚洲欧美日韩东京热| 亚洲天堂国产精品一区在线| 在现免费观看毛片| 熟女人妻精品中文字幕| 18禁黄网站禁片午夜丰满| 男人狂女人下面高潮的视频| 级片在线观看| 亚洲中文日韩欧美视频| 不卡一级毛片| 婷婷色综合大香蕉| 国产女主播在线喷水免费视频网站 | 国产欧美日韩精品亚洲av| 99热网站在线观看| 一级黄色大片毛片| 两性午夜刺激爽爽歪歪视频在线观看| 成人综合一区亚洲| 真实男女啪啪啪动态图| 久久久色成人| 久久6这里有精品| 男女之事视频高清在线观看| 精华霜和精华液先用哪个| 国产精品人妻久久久久久| 九九爱精品视频在线观看| 啦啦啦啦在线视频资源| a在线观看视频网站| 97超视频在线观看视频| 亚洲国产精品sss在线观看| 免费在线观看影片大全网站| 日韩国内少妇激情av| 日本熟妇午夜| 少妇丰满av| 国产精品精品国产色婷婷| 最近中文字幕高清免费大全6 | 亚洲天堂国产精品一区在线| 久久久久国内视频| 露出奶头的视频| 欧美一区二区精品小视频在线| 国产伦在线观看视频一区| 国产精品电影一区二区三区| 最近在线观看免费完整版| 色精品久久人妻99蜜桃| 欧美黑人欧美精品刺激| 2021天堂中文幕一二区在线观| 亚洲经典国产精华液单| 免费一级毛片在线播放高清视频| 亚洲精品乱码久久久v下载方式| 免费看av在线观看网站| 精品一区二区三区视频在线| 亚洲精华国产精华精| 日韩av在线大香蕉| 欧美日韩乱码在线| 久久精品影院6| 亚洲一级一片aⅴ在线观看| 男女下面进入的视频免费午夜| 日韩欧美国产一区二区入口| 国内少妇人妻偷人精品xxx网站| 两个人的视频大全免费| 国产精品电影一区二区三区| 久久精品国产鲁丝片午夜精品 | 成人二区视频| 色综合站精品国产| 日本与韩国留学比较| 美女大奶头视频| 国产一区二区三区av在线 | 在线看三级毛片| 亚洲精品久久国产高清桃花| 久久久久国内视频| 亚洲精华国产精华精| 别揉我奶头~嗯~啊~动态视频| 男插女下体视频免费在线播放| 69av精品久久久久久| 日日干狠狠操夜夜爽| 亚洲欧美日韩卡通动漫| 舔av片在线| 俄罗斯特黄特色一大片| 亚洲欧美日韩无卡精品| 琪琪午夜伦伦电影理论片6080| 久久午夜福利片| 日韩 亚洲 欧美在线| 老司机福利观看| 国产色爽女视频免费观看| 内射极品少妇av片p| 免费无遮挡裸体视频| 国产视频一区二区在线看| 波多野结衣高清无吗| 热99在线观看视频| 超碰av人人做人人爽久久| 99riav亚洲国产免费| 亚洲欧美精品综合久久99| 美女被艹到高潮喷水动态| 91狼人影院| 国产免费男女视频| 欧美三级亚洲精品| 国产一区二区三区av在线 | 欧美日韩乱码在线| 99久久无色码亚洲精品果冻| 男女视频在线观看网站免费| 18禁黄网站禁片午夜丰满| 麻豆av噜噜一区二区三区| 国产av一区在线观看免费| 中出人妻视频一区二区| 中文字幕久久专区| 国产黄片美女视频| 老熟妇仑乱视频hdxx| 在线观看一区二区三区| 色吧在线观看| 欧美性猛交╳xxx乱大交人| 午夜福利在线观看吧| 别揉我奶头~嗯~啊~动态视频| 日本在线视频免费播放| 成人永久免费在线观看视频| 国产精品一区二区性色av| 国产蜜桃级精品一区二区三区| 亚洲一级一片aⅴ在线观看| 国国产精品蜜臀av免费| 日本爱情动作片www.在线观看 | 亚洲av第一区精品v没综合| 国产成人aa在线观看| 国产精品一区二区免费欧美| 欧美三级亚洲精品| 久久中文看片网| 欧美日韩精品成人综合77777| 麻豆国产97在线/欧美| 97热精品久久久久久| 国产久久久一区二区三区| 亚洲av中文字字幕乱码综合| 黄色日韩在线| 精品人妻视频免费看| 一夜夜www| 一区二区三区免费毛片| xxxwww97欧美| 日日夜夜操网爽| 欧美区成人在线视频| 午夜a级毛片| 九色成人免费人妻av| 夜夜爽天天搞| 午夜精品在线福利| 99热这里只有精品一区| 特级一级黄色大片| 免费在线观看影片大全网站| 无遮挡黄片免费观看| 久久精品国产清高在天天线| 嫩草影院精品99| 亚洲熟妇中文字幕五十中出| 亚洲精品国产成人久久av| 亚洲av日韩精品久久久久久密| 岛国在线免费视频观看| 欧美xxxx性猛交bbbb| 级片在线观看| 亚洲性久久影院| 国产女主播在线喷水免费视频网站 | 亚洲一级一片aⅴ在线观看| 我要看日韩黄色一级片| 国产精品久久久久久av不卡| 男人的好看免费观看在线视频| 别揉我奶头~嗯~啊~动态视频| 国产中年淑女户外野战色| av在线老鸭窝| 黄色一级大片看看| 我的老师免费观看完整版| 搡女人真爽免费视频火全软件 | 日本熟妇午夜| 国产精品98久久久久久宅男小说| 久久这里只有精品中国| 欧美性猛交黑人性爽| 美女 人体艺术 gogo| 真实男女啪啪啪动态图| 精品一区二区三区视频在线观看免费| 亚洲美女黄片视频| 国产精品日韩av在线免费观看| 少妇猛男粗大的猛烈进出视频 | 老师上课跳d突然被开到最大视频| 国产伦在线观看视频一区| 精品福利观看| 亚洲乱码一区二区免费版| 日韩强制内射视频| 在现免费观看毛片| 久久国产精品人妻蜜桃| 欧美精品啪啪一区二区三区| 日韩精品有码人妻一区| 色在线成人网| 欧美性猛交黑人性爽| 国产欧美日韩一区二区精品| 校园春色视频在线观看| 啦啦啦韩国在线观看视频| 国产亚洲精品久久久久久毛片| 亚洲综合色惰| 欧美激情在线99| 久久人妻av系列| 99久久久亚洲精品蜜臀av| 免费电影在线观看免费观看| 日本a在线网址| 麻豆国产av国片精品| 亚洲人成网站高清观看| av天堂中文字幕网| 丰满人妻一区二区三区视频av| 亚洲精品影视一区二区三区av| 国产久久久一区二区三区| 亚洲三级黄色毛片| 老司机深夜福利视频在线观看| 老熟妇仑乱视频hdxx| 精品久久久久久久久av| 久久久色成人| 国产色婷婷99| 91久久精品电影网| 色综合亚洲欧美另类图片| 亚洲va在线va天堂va国产| 国产久久久一区二区三区| 国产亚洲精品综合一区在线观看| 精品一区二区三区人妻视频| 精品久久久久久,| 黄色视频,在线免费观看| 久久亚洲真实| 日本黄色片子视频| 欧美日本视频| 欧美一区二区精品小视频在线| 变态另类丝袜制服| 久久精品国产亚洲网站| 少妇的逼水好多| 日韩人妻高清精品专区| 深夜精品福利| 免费观看的影片在线观看| 欧美一级a爱片免费观看看| 在线天堂最新版资源| 国产黄a三级三级三级人| 男人的好看免费观看在线视频| 色尼玛亚洲综合影院| 内射极品少妇av片p| 他把我摸到了高潮在线观看| 一个人免费在线观看电影| 性欧美人与动物交配| 伊人久久精品亚洲午夜| 日本五十路高清| 亚洲av熟女| 非洲黑人性xxxx精品又粗又长| 亚洲国产日韩欧美精品在线观看| 亚洲精品在线观看二区| 欧美激情在线99| 色尼玛亚洲综合影院| 男女啪啪激烈高潮av片| 日本免费a在线| 亚洲人成网站在线播| 亚洲性久久影院| 国产av在哪里看| 亚洲国产精品成人综合色| 在线播放国产精品三级| 全区人妻精品视频| 国国产精品蜜臀av免费| 老司机午夜福利在线观看视频| 欧美激情久久久久久爽电影| 国产蜜桃级精品一区二区三区| 嫩草影院入口| 日韩欧美在线二视频| 国产白丝娇喘喷水9色精品| 日韩中字成人| 一级毛片久久久久久久久女| 女的被弄到高潮叫床怎么办 | 91麻豆精品激情在线观看国产| 真人一进一出gif抽搐免费| 啦啦啦观看免费观看视频高清| 成年女人看的毛片在线观看| 九九热线精品视视频播放| 干丝袜人妻中文字幕| .国产精品久久| 一进一出好大好爽视频| 18禁裸乳无遮挡免费网站照片| 国产欧美日韩精品一区二区| 日韩欧美国产一区二区入口| 国产精品自产拍在线观看55亚洲| 老司机福利观看| 日本-黄色视频高清免费观看| 久久久久久国产a免费观看| 亚洲精品日韩av片在线观看| 搡老熟女国产l中国老女人| 午夜福利18| 国产亚洲av嫩草精品影院| 天堂av国产一区二区熟女人妻| 日日啪夜夜撸| 最近最新免费中文字幕在线| 联通29元200g的流量卡| 久久人人精品亚洲av| 最近最新免费中文字幕在线| 成人综合一区亚洲| 国产 一区精品| 在线观看美女被高潮喷水网站| 蜜桃亚洲精品一区二区三区| 国语自产精品视频在线第100页| 亚洲国产欧洲综合997久久,| 色视频www国产| 国产精品98久久久久久宅男小说| 欧美日韩中文字幕国产精品一区二区三区| 国产精品久久电影中文字幕| 99久久久亚洲精品蜜臀av| 欧美日韩乱码在线| 亚洲av成人精品一区久久| 12—13女人毛片做爰片一| 亚洲性夜色夜夜综合| 特大巨黑吊av在线直播| 午夜福利高清视频| 嫩草影院新地址| 免费在线观看日本一区| 午夜福利欧美成人| 中亚洲国语对白在线视频| 色尼玛亚洲综合影院| 12—13女人毛片做爰片一| 嫩草影院新地址| 国产久久久一区二区三区| 99视频精品全部免费 在线| 国产精品日韩av在线免费观看| 免费在线观看成人毛片| .国产精品久久| 国产欧美日韩精品亚洲av| 欧洲精品卡2卡3卡4卡5卡区| 99久久精品热视频| 久久精品国产亚洲av天美| 亚洲成人久久性| 日韩av在线大香蕉| 久久久久免费精品人妻一区二区| 亚洲自偷自拍三级| 如何舔出高潮| 精品人妻偷拍中文字幕| 欧美成人一区二区免费高清观看| 乱码一卡2卡4卡精品| 午夜福利在线观看免费完整高清在 | 十八禁网站免费在线| 午夜激情福利司机影院| 少妇的逼水好多| www.色视频.com| 国产精品美女特级片免费视频播放器| av福利片在线观看| 天堂动漫精品| 日本撒尿小便嘘嘘汇集6| 91在线观看av| 欧美精品国产亚洲| 久99久视频精品免费| 欧美+日韩+精品| 久久中文看片网| 99热6这里只有精品| 波野结衣二区三区在线| 亚洲av一区综合| 免费黄网站久久成人精品| 久久香蕉精品热| 九九热线精品视视频播放| 级片在线观看| av天堂在线播放| 性色avwww在线观看| 亚洲无线观看免费| 精品乱码久久久久久99久播| 欧美丝袜亚洲另类 | 精品免费久久久久久久清纯| 联通29元200g的流量卡| 色综合亚洲欧美另类图片| 麻豆av噜噜一区二区三区| 亚洲午夜理论影院| 婷婷六月久久综合丁香| 亚洲国产色片| 亚洲色图av天堂| 成年女人永久免费观看视频| 内地一区二区视频在线| 欧美+亚洲+日韩+国产| 精品99又大又爽又粗少妇毛片 | 黄片wwwwww| 久久久久九九精品影院| 欧美人与善性xxx| 天堂√8在线中文| 亚洲第一电影网av| 精品国产三级普通话版| 女人被狂操c到高潮| 国产高清视频在线播放一区| 少妇猛男粗大的猛烈进出视频 | 国产综合懂色| 自拍偷自拍亚洲精品老妇| 欧美色视频一区免费| 久久精品国产亚洲av涩爱 | 黄色丝袜av网址大全| 国内少妇人妻偷人精品xxx网站| 听说在线观看完整版免费高清| 99热这里只有是精品50| 成人国产麻豆网| 亚洲人成伊人成综合网2020| 熟女电影av网| 亚洲av熟女| 国产精品野战在线观看| 亚洲精品国产成人久久av| 免费av观看视频| 国产精品三级大全| 淫妇啪啪啪对白视频| 99久久精品热视频| 一卡2卡三卡四卡精品乱码亚洲| 波野结衣二区三区在线| 观看美女的网站| 免费一级毛片在线播放高清视频| 91麻豆精品激情在线观看国产| 中出人妻视频一区二区| 婷婷精品国产亚洲av在线| 国产淫片久久久久久久久| 女同久久另类99精品国产91| 热99re8久久精品国产| 波野结衣二区三区在线| 欧美在线一区亚洲| 国产精品国产高清国产av| av在线天堂中文字幕| 国产综合懂色| 日韩欧美一区二区三区在线观看| 美女高潮的动态| 最好的美女福利视频网| 狂野欧美白嫩少妇大欣赏| 国产精品一区二区性色av| 毛片女人毛片| 国产精品98久久久久久宅男小说| 亚洲国产精品成人综合色| 国内精品一区二区在线观看| 亚洲七黄色美女视频| 91在线观看av| 欧美精品国产亚洲| 精品久久久久久久久久免费视频| 欧美黑人欧美精品刺激| 国产精品永久免费网站| 3wmmmm亚洲av在线观看| 婷婷丁香在线五月| 成人三级黄色视频| 久久99热6这里只有精品| 99久久久亚洲精品蜜臀av| 亚洲四区av| 永久网站在线| 午夜免费激情av| 一区二区三区激情视频| 高清毛片免费观看视频网站| 国产免费男女视频| 丰满乱子伦码专区| 午夜日韩欧美国产| 亚洲内射少妇av| 免费观看精品视频网站| 亚洲18禁久久av| 亚洲在线自拍视频| 日本精品一区二区三区蜜桃| 午夜精品一区二区三区免费看| 欧美精品国产亚洲| 观看免费一级毛片| 久久久久久久久久黄片| 在线播放国产精品三级| 国产蜜桃级精品一区二区三区| 亚洲男人的天堂狠狠| 亚洲美女视频黄频| 亚洲国产精品久久男人天堂| 国产免费av片在线观看野外av| 精品午夜福利视频在线观看一区| 美女免费视频网站| 最新在线观看一区二区三区| 亚洲成人久久性| 狂野欧美白嫩少妇大欣赏| 日本五十路高清| 久久午夜亚洲精品久久| 日本-黄色视频高清免费观看| 91久久精品国产一区二区成人| 波野结衣二区三区在线| 69av精品久久久久久| 亚洲最大成人中文| 日韩欧美免费精品| 欧美人与善性xxx| 日韩强制内射视频| 亚洲精华国产精华液的使用体验 | 国产欧美日韩一区二区精品| 男女啪啪激烈高潮av片| 亚洲欧美激情综合另类| 精品人妻1区二区| 夜夜夜夜夜久久久久| av中文乱码字幕在线| 亚洲人成伊人成综合网2020| 日本色播在线视频| 九九爱精品视频在线观看| 国产精品福利在线免费观看| 国产单亲对白刺激| 亚洲成人中文字幕在线播放| 欧美另类亚洲清纯唯美| 少妇丰满av| 99久久成人亚洲精品观看| 亚洲自偷自拍三级| 黄色欧美视频在线观看| 国产亚洲91精品色在线| 亚洲中文日韩欧美视频| 一个人免费在线观看电影| 亚洲,欧美,日韩| 日本a在线网址| 国产精品一区二区三区四区免费观看 | 国产老妇女一区| 一本一本综合久久| 亚洲精品一卡2卡三卡4卡5卡| 性插视频无遮挡在线免费观看| 国产探花极品一区二区| 日韩av在线大香蕉| 99视频精品全部免费 在线| 国产淫片久久久久久久久| 欧美+亚洲+日韩+国产| 欧美色欧美亚洲另类二区| 亚洲成人精品中文字幕电影| 亚洲av不卡在线观看| 国产精品,欧美在线| 真实男女啪啪啪动态图| 88av欧美| 欧美一级a爱片免费观看看| 国产高清视频在线观看网站| 赤兔流量卡办理| 美女xxoo啪啪120秒动态图| 伦精品一区二区三区| 久久午夜福利片| 精品一区二区三区人妻视频| 一级黄片播放器| 国产私拍福利视频在线观看| 亚洲va日本ⅴa欧美va伊人久久| 人妻少妇偷人精品九色| 国产精品一及| 日日摸夜夜添夜夜添av毛片 | 欧美高清成人免费视频www| 我要搜黄色片| 伦理电影大哥的女人| 性插视频无遮挡在线免费观看| 久久香蕉精品热|