• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Rogue waves for the (2+1)-dimensional Myrzakulov–Lakshmanan-IV equation on a periodic background

    2024-05-09 05:19:20XiaoHuiWangandZhaqilao
    Communications in Theoretical Physics 2024年4期

    Xiao-Hui Wang and Zhaqilao

    1 College of Mathematics Science,Inner Mongolia Normal University,Hohhot 010022,China

    2 Laboratory of Infinite-dimensional Hamiltonian System and Its algorithm Application,Hohhot 010022,China

    3 Center for Applied Mathematical Science,Inner Mongolia,Hohhot 010022,China

    Abstract In this paper,the rogue wave solutions of the (2+1)-dimensional Myrzakulov–Lakshmanan(ML)-IV equation,which is described by five component nonlinear evolution equations,are studied on a periodic background.By using the Jacobian elliptic function expansion method,the Darboux transformation (DT) method and the nonlinearization of the Lax pair,two kinds of rogue wave solutions which are expressed by Jacobian elliptic functions dn and cn,are obtained.The relationship between these five kinds of potential is summarized systematically.Firstly,the periodic rogue wave solution of one potential is obtained,and then the periodic rogue wave solutions of the other four potentials are obtained directly.The solutions we find present the dynamic phenomena of higher-order nonlinear wave equations.

    Keywords: rogue waves on a periodic background,(2+1)-dimensional Myrzakulov–Lakshmanan-IV equation,Darboux transformation,Jacobian elliptic function

    1.Introduction

    A rogue wave is a strange wave with an extremely large amplitude.It usually occurs in the ocean,coming from nowhere and disappearing without a trace,which can lead to a deadly disaster[1,2].However,there is currently no effective method available to accurately forecast the rogue waves in advance.Therefore,the study of rogue waves is necessary and relevant [3,4].In recent years,more and more attention has been paid to rogue periodic waves generated on the background of Jacobian elliptic periodic waves.In 2018,Chen and Pelinovsky established a method for calculating such rogue periodic waves based on the precise description of the periodic and aperiodicial characteristic functions of the the Ablowitz–Kaup–Newell–Segur (AKNS) spectrum.They combined the method of the nonlinearization of the Lax pair with the Darboux transformation to obtain the rogue periodic wave of the focused nonlinear Schr?dinger (NLS) equation[5].Then,rogue wave on a periodic background of the modified Korteweg–de Vries (mKdV) equation [6,7],Ito equation [8],fourth-,fifth-,sixth-,seven-order NLS equation[9–12],the sine-Gordon equation [13],and the Hirota equation [14,15] has been studied similarly.In recent years,the same method has been used to study the (2+1) dimensional nonlinear evolution equation [16,17].

    As a model of nonlinear partial differential equations,integrable spin systems are important because of their applicability in many scientific fields.They give rise to important applications in applied magnetism [18] and nanophysics [19].The Landau–Lifshitz–Gilbert (LLG) equation[20] in ferromagnetism and Landau–Lifshitz–Gilbert–Slonczewski (LLGS) equation [19] in spin transfer nanomagnetic multilayers are some of the fundamental equations that play a crucial role in understanding various physical properties of magnetic materials and the development of new technological innovations,like microwave generation using the spin transfer effect [21].The continuum limit of the Heisenberg ferromagnetic spin system and its various generalizations give rise to some of the important integrable spin systems in (1+1)dimensions [22,23].They are also intimately related to the nonlinear Schr?dinger family of equations through geometrical (or Lakshmanan equivalence or L-equivalence) and gauge equivalence concepts and these systems often admit magnetic soliton solutions.Moreover,the system is closely related to the well-known NLS equation[24].R Myrzakulov,G K Mamyrbekova and others mainly presented convincing studies of the integral (2+1)-dimensional spin model with self-compatibility potential,namely the ML-II,III,and IV equations [25].In this paper,we study the (2+1)-dimensional ML-IV equation,which has the following form:

    whereZ=.

    The gauge equivalent counterpart of the ML-IV equation takes the form:

    where ‘*’ is the complex conjugate,q(x,y,t),p(x,y,t) are complex functions,v(x,y,t),w(x,y,t),η(x,y,t) are real functions,and ω,?1,?2are arbitrary constants.Here,τ=±1 represents two different cases of the ML-IV equation.To be precise,τ=1 and τ=–1 mean that the ML-IV equation has an attractive interaction and repulsive interaction respectively.

    In [26],the soliton,breather,rogue wave and DT of (2)were researched.Its modulational instability and mixed solution have also been studied [27].Based on (2),which has a variety of parameter selections,these parameters will produce abundant reduction results.When ?1=0,?2=1,p=0,η=0,(2) can reduce to the (2+1)-dimensional complex mKdV equation,in which multi-soliton and periodic solutions have been studied via DT[28,29].The rogue periodic waves of the (2+1)-dimensional complex mKdV equation have also been studied [30].If we choose ?1=1,?2=0,p=0,η=0,(2)can reduce to the(2+1)-dimensional NLS equation,its DT,soliton,breather,abundant rogue wave shapes,rational and semi-rational solutions and the dynamic process have been investigated[31–33].In[34],the author especially studied the lump and rogue wave solutions based on a periodic background in a Heisenberg ferromagnetic spin chain.As far as we know,there are few studies on the rogue periodic waves of (2+1)-dimensional ML-IV equation.Thus,this will become the main content of our next research.

    In this work,we mainly construct the rogue periodic wave solutions for the (2+1)-dimensional ML-IV equation.In section 2,we give the Lax pairs and classical Darboux transformation of (2).In section 3,we give the periodic traveling wave solutions.In section 4,we describe the eigenvalues based on the results of the nonlinearization of the Lax pair.In section 5,we obtain the periodic and non-periodic wave solutions of(2).In section 6,the expression and figures of the rogue periodic wave solutions are given.In section 7,we give some conclusions.

    2.The Lax pair and Darboux transformation

    (2) has the Lax pair in the form

    where λ is a complex spectral parameter.The zero curvature equationUt-Vx-(2?1λ+4?2λ2)Uy+[U,V]=0 gives rise to (2).According to [26],the elementary Darboux transformation of (2) can be redefined as

    3.Two families of periodic solutions

    In order to construct the periodic wave solutions of (2),we suppose the complex periodic wave solutions in the form

    where ξ=x-c1y-c2t,ζ=x-b1y-b2t,Q(ξ) is a real periodic function andc1,c2,b1,b2are real constants.It is also easy to find that |q|2=qq*=Q2.

    Substituting equations (6) into (2) yields a fifth-order nonlinear ordinary differential equation,in which it is difficult to obtain exact solutions.However,the fifth-order nonlinear ordinary differential equation can be simplified to a first-order nonlinear ordinary differential equation by means of the Jacobian elliptic function expansion approach[35].Then,we finally obtain two families of periodic solutions for(2),which are expressed by Jacobian elliptic functions dn and cn as

    where ξ=x-c1y-c2t,k?(0,1)is the elliptic modulus and equations (7)–(8) satisfy the following two elliptic equation:

    wherea0anda1are two real constants.As for the dn-function solution,we takea0=2-k2anda1=k2-1.As for the cnfunction solution,we takea0=2k2-1 anda1=k2(1-k2)on the other side.

    4.Squared periodic eigenfunctions of Lax pair

    In this section,we introduce the Bargmann constraint[36–38]to make the nonlinearization of the Lax pair (3)–(4).Considering the following Bargmann constraint

    whereφ=is a non-zero solution of the Lax pair(3)–(4) with λ=λ1.

    Substituting (10) into (3),we obtain a finite-dimensional Hamiltonian system as

    For the Hamiltonian system (11) and (12),there are two conserved integrals

    whereH0,H1is constant with respect toxandH=H1-.

    Considering equations (10) and (13) together,we have

    Some other constraints with λ1=α+iβ can be referred from [4]

    where α,β are the real and imaginary parts of λ1.Substituting(6)into(16),it is easy to notice that the left-hand side of(16)is 2iQ2,which yields

    Substituting (6) into (17)–(18)and comparing them with the two equations in (9),we have

    According to the second equation in (19),we have two cases asβ=orβ≠withH1=4β2-3β+.

    Case 1.Whenβ=,that isH0=0,then the expression ofa0,a1can be simplified as

    As a result ofa1=<0,we discuss the dn-periodic backgroundQ(ξ)=dn (ξ;k).Based on the above analysis,we haveH1=,α2=.TheH1and λ1=α+iβ are expressed by the elliptic modulusk.That is to say,the eigenvalues of the Lax pair have two pairs of complex values λ1±in the right half-plane and-λ1±in the left half-plane.

    Case 2.Whenβ≠,then the expression ofa0,a1will become

    As a result ofa1>0,we discussQ(ξ)=kcn (ξ;k).The eigenvalue for λ1in the first quadrant can be given as

    and there also exist some other eigenvalues with -λ1,in other quadrants.

    5.Periodic and non-periodic solutions of the Lax pair

    In this section,we firstly give the definitions of the squared periodic eigenfunctions of the Lax pair (3)–(4) and obtain various relationships between the solutions of the Lax pair(3)–(4)on the background of the Jacobian elliptic functions dn and cn respectively.Then,we introduce a function θ(x,y,t) to establish a connection between periodic solutions and nonperiodic solutions for the Lax pair(3)–(4).Therefore,the chief aim of this section is to find out the expression of θ(x,y,t).

    Based on (10),(13) and (15),we have

    Due toq(x,y,t)=Q(ξ)eiζ,we take

    Substituting (6) and (26) into (25) yields

    According to (28) with λ1=λ±,we findare real.Also,because=Q=dn (ξ;k)>0,we finally determine that Φ1and Φ2are real so that the first equation of(29) can be rewritten as

    As for the cn-function solutionQ(ξ)=kcn (ξ;k)in(20),we already know thatH0=2β-1,H1=4β2-3β+,H=β(2β-1) and.Therefore,equation (28) can be rewritten as

    Equations (12) and (14) yield (∣φ1∣2+∣φ2∣2)2=1-k2+∣q∣2.If we consider the positive square root,we have

    so we obtain

    We choose roots of the relation

    According to (32) and (35),we have

    According to (24) and (27),we have

    Here,we introduce a function θ(x,y,t).Let us make an assumption thatis the periodic solution of the Lax pair (3)–(4) with λ=λ1,andis the second linearly independent solution of the Lax pair (3)–(4) with the same λ=λ1,where ψ1and ψ2are non-periodic solutions and have the following forms

    where θ=θ(x,y,t) is a function to be determined.

    Using (38) and (3) yields

    Using (26),we rewrite (39) as

    Substituting (28) into (40) yields

    Integrating (41) yields

    where θ0(y,t) is an undetermined integral constant ofy,t.

    If we substitute(38)into(4),a rather complex expression for θtwill be derived,which is difficult to deal with.By using the Jacobian elliptic function expansion method to simplify,we get

    In order to determine the form of θ,we suppose that

    Based on the equations (43)–(46),the differential equation about χ becomes

    where χ can be rewritten as

    where

    We finally arrive at the expression of θ(x,y,t) as

    6.Rogue waves on the periodic background

    Proposition.The periodic rogue wave solutions ofw(x,y,t),v(x,y,t),p(x,y,t),η(x,y,t)are related to the periodic rogue wave solutions ofq(x,y,t) as follows

    6.1.Rogue waves on the dn-periodic background

    In order to construct the rogue waves of(2)on the dn-periodic background,we apply one-fold Darboux transformation (5)to the Jacobian elliptic function dn,take the seed solution asq=Q(ξ)eiζand choose the eigenvalueλ1=λ+=in (35).Substituting=defined by (22) and (38) into the one-fold DT formula,we construct the rogue wave solution of equation(2)on the dn-periodic background as

    Figure 1. Three-dimensional plots of the rogue waves on the dn-periodic background,with k=0.5,?1=1,?2=1,ω=2, b1=1,c1=,b2=3,c2=2,τ=1 t=0.

    with

    where Δ0is defined in (44).

    According to the relation in the proposition,the rogue dn-periodic waves of the other four potentials can be obtained.

    It is evident from figure 1 that the periodic rogue waves of the (2+1) dimensional ML-IV equation are mainly linear rogue waves.Figures 1 and 3 illustrate the rogue dn-periodic waves fork=0.5 andk=0.99,we find that the amplitude of rogue periodic waves reaches a maximum value at their origin.The corresponding two dimensional plots are presented in figures 2 and 4.In these figures,with the increase of the elliptic modulusk,the amplitude of the rogue periodic waves also increases.Moreover,we can see from figures 2 and 4 that the amplitudes of the rogue periodic waves of the five potentials are different,η(x,y,t)is the largest,q(x,y,t)is the smallest,and the frequencies of the periodic background waves ofq(x,y,t),w(x,y,t),v(x,y,t),p(x,y,t),and η(x,y,t) are also different.When the range of fixedtis between 0 and 10,it can be observed that theq(x,y,t),w(x,y,t),v(x,y,t)periodic wave speed and the shape of the periodic wave remain consistent,while thep(x,y,t),η(x,y,t)periodic background wave shows an irregular periodic amplitude.It has the same property whenkis equal to 0.99.When the values ofc1,c2,b1andb2are changed,the frequency of the periodic background wave will change accordingly.

    6.2.Rogue waves on the cn-periodic background

    In order to construct the rogue waves of(2)on the cn-periodic background,we apply the one-fold Darboux transformation(5)to the Jacobian elliptic function cn,take the seed solution asq=Q(ξ)ei(ζ)and choose the complex eigenvalueλ1=λ±=in (24).Substituting=defined by (38) into (5) and using(41),(43) and (45),we obtain the rogue wave solution of (2)on the cn-periodic background as

    Figure 2. Transverse plots of the rogue waves on the dn-periodic background,with k=0.5,?1=1,?2=1,ω=2,b1=1,c1=,b2=3,c2=2,τ=1 t-axis.

    Figure 3. Three-dimensional plots of the rogue waves on the dn-periodic background,with k=0.99,?1=1,?2=1,ω=2,b1=1,c1=,b2=3,c2=2,τ=1 t=0.

    Figure 4. Transverse plots of the rogue waves on the dn-periodic background,with k=0.99,?1=1,?2=1,ω=2,b1=1,c1=,b2=3,c2=2,τ=1 t-axis.

    Figure 5. Three-dimensional plots of the rogue waves on the cn-periodic background,with k=0.5,?1=1,?2=1,ω=2,b1=1,c1=,b2=3,c2=2,τ=1 t=0.

    with

    Figure 6. Transverse plots of the rogue waves on the cn-periodic background,with k=0.5,?1=1,?2=1,ω=2,b1=1,c1=,b2=3,c2=2,τ=1 t-axis.

    Figure 7. Three-dimensional plots of the rogue waves on the cn-periodic background,with k=0.99,?1=1,?2=1,ω=2,b1=1,c1=,b2=3,c2=2,τ=1,t=0.

    Figures 5 and 7 illustrate the rogue cn-periodic waves fork=0.5 andk=0.99,we find that the amplitude of the rogue periodic waves reach a maximum value at their origin.The corresponding two dimensional plots are presented in figures 6 and 8.In these figures,with the increase of the elliptic modulusk,the amplitude of the rogue periodic wave also increases.Moreover,we can see from figures 6 and 8 that the amplitudes of the rogue periodic waves of the five potentials are different,η(x,y,t) is the largest,q(x,y,t) is the smallest,and the frequencies of the periodic background waves ofq(x,y,t),w(x,y,t),v(x,y,t),p(x,y,t),and η(x,y,t)are also different.When the range of fixedtis between 0 and 10,it can be observed that theq(x,y,t),w(x,y,t),v(x,y,t) periodic wave speed and the shape of the periodic wave remain consistent,while thep(x,y,t),η(x,y,t) periodic background wave shows an irregular periodic amplitude.Different from the dn-background,whenkis equal to 0.5,the amplitude ofp(x,y,t),η(x,y,t)periodic background wave changes significantly.It has the same property whenkis equal to 0.99.When the values ofc1,c2,b1andb2are changed,the frequency of the periodic background wave will change accordingly.

    Figure 8. Transverse plot of the rogue waves on the cn-periodic background,with k=0.99,?1=1,?2=1,ω=2,b1=1,c1=,b2=3,c2=2,τ=1 t-axis.

    7.Conclusion

    In this paper,we constructed rogue wave solutions of(2+1)-dimensional ML-IV equation on the elliptic dn-and cn-periodic background.Using the nonlinearization of Lax pair,we have determined the eigenvalues and squared eigenfunctions that correspond to the elliptic traveling wave solutions of(2+1)-dimensional ML-IV equation.After that,we gave the non-periodic solution of the Lax pair under the same eigenvalue.Compared with the existing research,the periodic rogue wave solutions studied in this paper mainly present the state of linear rogue waves.Firstly,under the premise of the same elliptic mode,the periodic rogue wave solution with different potential is analyzed.When the elliptic modulus changes,the linear solitons will also change.These results have considerable significance when exploring other highdimensional generalized integrable equations in the future.However,all the research results are still under the framework of AKNS system.In the future,we expect to apply the method in this paper to other spectral problems and expand the periodic background to other Jacobian elliptic functions.We hope that our research results can provide some implications for rogue wave phenomena in the field of nonlinear physics.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (Grant No.12 361 052),the Natural Science Foundation of Inner Mongolia Autonomous Region,China (Grant Nos.2020LH01010,2022ZD05),the Program for Innovative Research Team in Universities of Inner Mongolia Autonomous Region (Grant No.NMGIRT2414),the Fundamental Research Funds for the Inner Mongolia Normal University,China (Grant No.2022JBTD007),and the Key Laboratory of Infinite-dimensional Hamiltonian System and Its Algorithm Application (Inner Mongolia Normal University),and the Ministry of Education (Grant Nos.2023KFZR01,2023KFZR02).

    X H Wang:Methodology,writing—original draft,software,visualization,data curation.Zhaqilao:Conceptualization,formal analysis,writing—review and editing,supervision,project administration,funding acquisition.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    国产男人的电影天堂91| 国产高清国产精品国产三级| 欧美精品亚洲一区二区| 精品一区二区三卡| 亚洲欧美精品自产自拍| 亚洲国产欧美在线一区| 咕卡用的链子| 男人舔女人的私密视频| 欧美黄色片欧美黄色片| 1024视频免费在线观看| 国产高清videossex| 欧美性长视频在线观看| 在线观看一区二区三区激情| 免费观看av网站的网址| 亚洲国产欧美在线一区| 色婷婷久久久亚洲欧美| 青春草视频在线免费观看| 欧美激情高清一区二区三区| 国产男人的电影天堂91| 热99国产精品久久久久久7| 久久精品国产a三级三级三级| 成年人免费黄色播放视频| 在线观看免费日韩欧美大片| 欧美日韩视频高清一区二区三区二| 久久人人爽人人片av| 日韩欧美一区视频在线观看| 欧美在线一区亚洲| 国产人伦9x9x在线观看| 性色av一级| 国产91精品成人一区二区三区 | 国产欧美日韩精品亚洲av| 亚洲人成电影观看| 人人澡人人妻人| 又紧又爽又黄一区二区| 亚洲成av片中文字幕在线观看| 亚洲欧美精品自产自拍| 一级片'在线观看视频| 午夜日韩欧美国产| 亚洲av成人不卡在线观看播放网 | 别揉我奶头~嗯~啊~动态视频 | 中文字幕亚洲精品专区| 波野结衣二区三区在线| 又大又黄又爽视频免费| 天天躁日日躁夜夜躁夜夜| 久久精品国产a三级三级三级| 亚洲成色77777| 国产成人精品在线电影| 大码成人一级视频| 国产黄色视频一区二区在线观看| 国产淫语在线视频| 大型av网站在线播放| 91麻豆av在线| 国产精品免费视频内射| 国产成人一区二区在线| 欧美日韩成人在线一区二区| av天堂久久9| 亚洲欧美日韩另类电影网站| 久久久久精品人妻al黑| 老司机午夜十八禁免费视频| 激情五月婷婷亚洲| 咕卡用的链子| 一级a爱视频在线免费观看| 一区二区三区激情视频| 老司机靠b影院| 亚洲欧美色中文字幕在线| 亚洲av美国av| 看免费成人av毛片| 日韩av不卡免费在线播放| 狠狠婷婷综合久久久久久88av| 久久精品久久久久久噜噜老黄| 我的亚洲天堂| 亚洲欧美清纯卡通| 国产精品久久久久久精品古装| 亚洲国产精品国产精品| 精品人妻在线不人妻| 99re6热这里在线精品视频| 午夜福利免费观看在线| 男的添女的下面高潮视频| 婷婷色综合大香蕉| 大片电影免费在线观看免费| 久久青草综合色| 国产精品熟女久久久久浪| 婷婷成人精品国产| 午夜影院在线不卡| 黄色视频不卡| 久久免费观看电影| 国产97色在线日韩免费| 久久 成人 亚洲| 日韩一区二区三区影片| 99re6热这里在线精品视频| 日本午夜av视频| 日日爽夜夜爽网站| 国产一区有黄有色的免费视频| 亚洲欧美一区二区三区黑人| 成人18禁高潮啪啪吃奶动态图| 激情视频va一区二区三区| 精品少妇黑人巨大在线播放| 一级毛片 在线播放| 老司机深夜福利视频在线观看 | 51午夜福利影视在线观看| 国产一区亚洲一区在线观看| 国产黄色视频一区二区在线观看| 久久av网站| 亚洲天堂av无毛| 亚洲欧美日韩高清在线视频 | 国产无遮挡羞羞视频在线观看| 久久久久精品人妻al黑| 精品久久蜜臀av无| 好男人视频免费观看在线| 国产日韩欧美亚洲二区| 黄频高清免费视频| 2018国产大陆天天弄谢| 老汉色∧v一级毛片| 国产欧美亚洲国产| 国产成人免费观看mmmm| 亚洲五月色婷婷综合| 深夜精品福利| 一二三四在线观看免费中文在| 久久人人爽人人片av| 在线观看国产h片| 午夜久久久在线观看| 免费一级毛片在线播放高清视频 | 男女午夜视频在线观看| 女人久久www免费人成看片| 久久99精品国语久久久| 亚洲免费av在线视频| 久久久久久久精品精品| 亚洲精品一区蜜桃| 亚洲精品自拍成人| av一本久久久久| 天堂俺去俺来也www色官网| 19禁男女啪啪无遮挡网站| 久久这里只有精品19| 久久精品亚洲熟妇少妇任你| 另类亚洲欧美激情| 久久这里只有精品19| 在现免费观看毛片| 免费在线观看完整版高清| 亚洲人成电影免费在线| 老司机在亚洲福利影院| 亚洲中文av在线| 亚洲成国产人片在线观看| 精品福利观看| 日韩熟女老妇一区二区性免费视频| e午夜精品久久久久久久| 丝袜脚勾引网站| 欧美黄色片欧美黄色片| 日韩中文字幕视频在线看片| 97精品久久久久久久久久精品| 黄片小视频在线播放| 操出白浆在线播放| 国产精品一区二区精品视频观看| 国产免费现黄频在线看| 啦啦啦在线观看免费高清www| 精品少妇一区二区三区视频日本电影| 免费高清在线观看日韩| 亚洲欧洲精品一区二区精品久久久| 国产一级毛片在线| 久久精品国产亚洲av高清一级| 欧美精品av麻豆av| 日本91视频免费播放| 日韩av不卡免费在线播放| 黄色怎么调成土黄色| 精品亚洲成a人片在线观看| 人成视频在线观看免费观看| 日日爽夜夜爽网站| 国产欧美日韩一区二区三 | 亚洲美女黄色视频免费看| 好男人视频免费观看在线| 国产精品香港三级国产av潘金莲 | 精品亚洲成a人片在线观看| 伊人亚洲综合成人网| 黄色a级毛片大全视频| 午夜免费成人在线视频| 久久精品亚洲av国产电影网| 中文字幕精品免费在线观看视频| 99国产精品免费福利视频| 色婷婷av一区二区三区视频| 国产精品99久久99久久久不卡| 在线天堂中文资源库| 人人妻人人澡人人看| 老司机亚洲免费影院| 人妻一区二区av| 国产成人91sexporn| 国产精品99久久99久久久不卡| 在线天堂中文资源库| 狂野欧美激情性xxxx| 亚洲五月色婷婷综合| 90打野战视频偷拍视频| 亚洲国产av新网站| svipshipincom国产片| 一级,二级,三级黄色视频| 免费久久久久久久精品成人欧美视频| 五月天丁香电影| 国产在线观看jvid| 亚洲国产精品一区二区三区在线| 亚洲色图 男人天堂 中文字幕| 亚洲国产av新网站| 午夜久久久在线观看| 亚洲欧美清纯卡通| 欧美亚洲日本最大视频资源| 国产主播在线观看一区二区 | 精品第一国产精品| 秋霞在线观看毛片| 国产欧美日韩一区二区三 | 波野结衣二区三区在线| 亚洲欧美成人综合另类久久久| 91精品伊人久久大香线蕉| 黑人巨大精品欧美一区二区蜜桃| 国产在线免费精品| 国产欧美日韩综合在线一区二区| 免费一级毛片在线播放高清视频 | 亚洲欧洲国产日韩| 久久人人爽人人片av| 天天添夜夜摸| 国产高清videossex| 午夜免费成人在线视频| 中文字幕另类日韩欧美亚洲嫩草| 黄色片一级片一级黄色片| 在线观看免费视频网站a站| 久久亚洲精品不卡| 国产成人欧美| 两个人免费观看高清视频| 国产精品一区二区在线观看99| 制服诱惑二区| 成人18禁高潮啪啪吃奶动态图| 一边摸一边做爽爽视频免费| 久久久欧美国产精品| 欧美日韩成人在线一区二区| 久久精品亚洲av国产电影网| 精品久久蜜臀av无| 亚洲欧美中文字幕日韩二区| 国产精品久久久人人做人人爽| 麻豆av在线久日| 国产片内射在线| 免费在线观看影片大全网站 | 久久精品亚洲av国产电影网| 黄色a级毛片大全视频| 一级黄色大片毛片| 亚洲人成网站在线观看播放| 看十八女毛片水多多多| 欧美日韩福利视频一区二区| 国产成人精品久久二区二区免费| 悠悠久久av| 久久毛片免费看一区二区三区| 亚洲七黄色美女视频| √禁漫天堂资源中文www| 又紧又爽又黄一区二区| 国产成人精品久久二区二区91| 日本av手机在线免费观看| 极品少妇高潮喷水抽搐| 国产国语露脸激情在线看| 精品福利观看| 大话2 男鬼变身卡| 咕卡用的链子| 午夜福利免费观看在线| 国产av国产精品国产| h视频一区二区三区| 亚洲欧美成人综合另类久久久| 日韩一区二区三区影片| 久久天躁狠狠躁夜夜2o2o | 午夜免费男女啪啪视频观看| 亚洲成人免费电影在线观看 | 久久99精品国语久久久| 亚洲av电影在线观看一区二区三区| 99热全是精品| 丝袜喷水一区| 亚洲人成77777在线视频| bbb黄色大片| 精品少妇内射三级| 国产野战对白在线观看| 99香蕉大伊视频| 亚洲欧美精品综合一区二区三区| 男女下面插进去视频免费观看| 在线观看免费高清a一片| 1024香蕉在线观看| 欧美另类一区| 亚洲精品久久成人aⅴ小说| 桃花免费在线播放| 久久精品国产a三级三级三级| 久久九九热精品免费| 丝袜脚勾引网站| 欧美日韩亚洲综合一区二区三区_| xxxhd国产人妻xxx| 亚洲成人国产一区在线观看 | 91精品三级在线观看| 多毛熟女@视频| 欧美av亚洲av综合av国产av| 国产成人免费观看mmmm| 国产深夜福利视频在线观看| 国产欧美日韩综合在线一区二区| 啦啦啦啦在线视频资源| 一区二区三区精品91| 欧美人与性动交α欧美软件| 99精国产麻豆久久婷婷| 脱女人内裤的视频| 精品少妇黑人巨大在线播放| 欧美日韩视频高清一区二区三区二| 久久久精品免费免费高清| 一本—道久久a久久精品蜜桃钙片| 999久久久国产精品视频| 大香蕉久久成人网| 国产精品免费视频内射| 男女边摸边吃奶| 超碰成人久久| 久久人妻熟女aⅴ| netflix在线观看网站| 岛国毛片在线播放| 国产av国产精品国产| 亚洲男人天堂网一区| 欧美中文综合在线视频| 一区福利在线观看| 午夜久久久在线观看| 欧美精品高潮呻吟av久久| 久久这里只有精品19| 亚洲国产欧美日韩在线播放| 美女主播在线视频| 久久久久久久大尺度免费视频| 欧美日韩成人在线一区二区| 一区二区三区激情视频| 亚洲人成电影观看| 久久久精品区二区三区| 国产成人影院久久av| 热99国产精品久久久久久7| 精品国产一区二区三区久久久樱花| 在线观看免费高清a一片| 久久精品国产亚洲av涩爱| 国产成人啪精品午夜网站| 精品人妻一区二区三区麻豆| 久久久久久亚洲精品国产蜜桃av| 免费黄频网站在线观看国产| 亚洲色图 男人天堂 中文字幕| 午夜91福利影院| av有码第一页| 久久国产精品人妻蜜桃| tube8黄色片| 黄色片一级片一级黄色片| 免费在线观看影片大全网站 | 国产精品99久久99久久久不卡| 在线看a的网站| 最近手机中文字幕大全| 精品免费久久久久久久清纯 | 国产色视频综合| 一级黄片播放器| 国产女主播在线喷水免费视频网站| 久久精品亚洲熟妇少妇任你| 国产成人精品无人区| 老司机亚洲免费影院| 天堂中文最新版在线下载| 婷婷色综合www| 成在线人永久免费视频| 国产在视频线精品| 免费观看人在逋| 丰满少妇做爰视频| 成年美女黄网站色视频大全免费| 欧美国产精品va在线观看不卡| 久久人妻熟女aⅴ| 又黄又粗又硬又大视频| 高清黄色对白视频在线免费看| 欧美国产精品va在线观看不卡| 天堂中文最新版在线下载| 欧美人与性动交α欧美软件| 男女下面插进去视频免费观看| 色婷婷久久久亚洲欧美| 老鸭窝网址在线观看| 国产精品久久久久久精品电影小说| 国产成人精品无人区| 国产片特级美女逼逼视频| 亚洲欧美精品自产自拍| a 毛片基地| a级毛片在线看网站| 亚洲精品一卡2卡三卡4卡5卡 | 视频区图区小说| 久久久久久久大尺度免费视频| 中文字幕人妻熟女乱码| 黑人巨大精品欧美一区二区蜜桃| 七月丁香在线播放| 国产又爽黄色视频| 亚洲欧洲日产国产| 熟女av电影| 青春草亚洲视频在线观看| 熟女av电影| 天堂8中文在线网| 国产精品二区激情视频| 国产1区2区3区精品| 久久久国产精品麻豆| 精品卡一卡二卡四卡免费| 国产男女超爽视频在线观看| 欧美 亚洲 国产 日韩一| 一级毛片黄色毛片免费观看视频| 女性被躁到高潮视频| 国产成人精品无人区| 午夜激情av网站| 视频在线观看一区二区三区| 热re99久久精品国产66热6| 欧美成狂野欧美在线观看| 国产成人欧美| 日韩制服骚丝袜av| 午夜免费观看性视频| 午夜激情久久久久久久| 国产欧美日韩一区二区三 | av电影中文网址| 国产伦人伦偷精品视频| 精品福利观看| 大香蕉久久成人网| 999久久久国产精品视频| 亚洲国产av新网站| 日本欧美视频一区| 久久久久精品国产欧美久久久 | 黄色视频不卡| 国语对白做爰xxxⅹ性视频网站| 丝袜美腿诱惑在线| a级毛片黄视频| 视频在线观看一区二区三区| 美女视频免费永久观看网站| 极品人妻少妇av视频| 亚洲国产毛片av蜜桃av| 丰满人妻熟妇乱又伦精品不卡| 国产一卡二卡三卡精品| 高清不卡的av网站| 肉色欧美久久久久久久蜜桃| 一二三四在线观看免费中文在| 只有这里有精品99| 自线自在国产av| 最新在线观看一区二区三区 | 少妇人妻 视频| 亚洲国产精品国产精品| 大片电影免费在线观看免费| 尾随美女入室| 国产成人精品久久二区二区免费| 亚洲欧美一区二区三区黑人| 99热全是精品| 18禁黄网站禁片午夜丰满| 91成人精品电影| 欧美日韩亚洲国产一区二区在线观看 | 免费少妇av软件| 免费av中文字幕在线| 亚洲成人国产一区在线观看 | 欧美xxⅹ黑人| 一边摸一边做爽爽视频免费| 国产国语露脸激情在线看| 丝袜喷水一区| 国产视频首页在线观看| 国产一区二区激情短视频 | 爱豆传媒免费全集在线观看| 亚洲欧美精品综合一区二区三区| 欧美激情极品国产一区二区三区| 成人18禁高潮啪啪吃奶动态图| 丝瓜视频免费看黄片| 成人手机av| 久久国产精品影院| 国产精品一国产av| 97在线人人人人妻| 2018国产大陆天天弄谢| 在线精品无人区一区二区三| 天天躁日日躁夜夜躁夜夜| 欧美在线一区亚洲| 国产精品久久久久久精品古装| 亚洲国产av影院在线观看| 亚洲第一av免费看| 成人18禁高潮啪啪吃奶动态图| 国产在线免费精品| 欧美精品啪啪一区二区三区 | 操出白浆在线播放| 日本欧美视频一区| 久久人人爽av亚洲精品天堂| 老司机影院毛片| 老司机亚洲免费影院| 国产精品国产三级专区第一集| 飞空精品影院首页| 日韩大片免费观看网站| kizo精华| 中文字幕高清在线视频| 亚洲黑人精品在线| 美女视频免费永久观看网站| 一本色道久久久久久精品综合| 精品人妻在线不人妻| 91老司机精品| 黑丝袜美女国产一区| 午夜激情av网站| 麻豆国产av国片精品| 精品人妻一区二区三区麻豆| 国产片内射在线| 国产一区二区激情短视频 | avwww免费| 9色porny在线观看| 成在线人永久免费视频| 久久国产精品影院| 精品国产一区二区久久| 午夜福利乱码中文字幕| 啦啦啦中文免费视频观看日本| 免费观看人在逋| 久久人人爽人人片av| 亚洲av成人精品一二三区| 国产精品香港三级国产av潘金莲 | 国产亚洲精品久久久久5区| 亚洲五月色婷婷综合| bbb黄色大片| 日韩电影二区| 啦啦啦中文免费视频观看日本| 成年美女黄网站色视频大全免费| 在线观看www视频免费| 免费不卡黄色视频| 久久毛片免费看一区二区三区| 中文字幕av电影在线播放| 男女免费视频国产| 另类精品久久| av又黄又爽大尺度在线免费看| 亚洲av美国av| 高清欧美精品videossex| 视频在线观看一区二区三区| 欧美+亚洲+日韩+国产| 国产激情久久老熟女| 久久久久精品人妻al黑| 色婷婷久久久亚洲欧美| 观看av在线不卡| 国产免费又黄又爽又色| 啦啦啦中文免费视频观看日本| 日本a在线网址| 亚洲精品在线美女| 爱豆传媒免费全集在线观看| 亚洲成av片中文字幕在线观看| 亚洲精品国产av成人精品| 只有这里有精品99| 一个人免费看片子| 色视频在线一区二区三区| 性色av乱码一区二区三区2| 天堂俺去俺来也www色官网| 桃花免费在线播放| 深夜精品福利| 日本欧美国产在线视频| 国产熟女午夜一区二区三区| 日韩电影二区| 在线观看免费高清a一片| 伊人亚洲综合成人网| 男人舔女人的私密视频| 黑人猛操日本美女一级片| 日韩,欧美,国产一区二区三区| 久久久久网色| 最黄视频免费看| 男女无遮挡免费网站观看| 丁香六月欧美| a级毛片在线看网站| 黑人巨大精品欧美一区二区蜜桃| 亚洲精品国产色婷婷电影| 午夜福利免费观看在线| 久久人人爽人人片av| 两人在一起打扑克的视频| 亚洲精品一二三| 亚洲精品国产av成人精品| 如日韩欧美国产精品一区二区三区| 午夜影院在线不卡| 日日爽夜夜爽网站| 日韩人妻精品一区2区三区| 好男人电影高清在线观看| √禁漫天堂资源中文www| 波野结衣二区三区在线| 亚洲三区欧美一区| 久久久久视频综合| 黄色视频不卡| 一二三四在线观看免费中文在| 日韩一卡2卡3卡4卡2021年| 熟女av电影| 老司机深夜福利视频在线观看 | 真人做人爱边吃奶动态| 中国美女看黄片| 国产野战对白在线观看| 精品少妇久久久久久888优播| 人成视频在线观看免费观看| 老熟女久久久| av天堂久久9| 久久人妻熟女aⅴ| 午夜视频精品福利| 久久久精品94久久精品| 欧美日韩综合久久久久久| 妹子高潮喷水视频| 亚洲综合色网址| 视频区欧美日本亚洲| 国产日韩欧美视频二区| 大码成人一级视频| 成人免费观看视频高清| 99热全是精品| 精品欧美一区二区三区在线| 女人久久www免费人成看片| 久久人人爽人人片av| 中文字幕色久视频| 捣出白浆h1v1| 久久国产精品影院| 18禁裸乳无遮挡动漫免费视频| 久久鲁丝午夜福利片| 亚洲欧美精品综合一区二区三区| 十分钟在线观看高清视频www| 99国产精品免费福利视频| 777久久人妻少妇嫩草av网站| 免费不卡黄色视频| 老汉色av国产亚洲站长工具| 国产精品一区二区精品视频观看| 一级毛片 在线播放| 看免费成人av毛片| 久久人人爽人人片av| 大码成人一级视频| 色94色欧美一区二区| 热re99久久精品国产66热6| 亚洲精品国产一区二区精华液| 国产高清不卡午夜福利| 老司机靠b影院| 亚洲精品国产色婷婷电影| 51午夜福利影视在线观看| 天天躁夜夜躁狠狠躁躁| 精品第一国产精品| 精品福利永久在线观看| 咕卡用的链子| 欧美日韩一级在线毛片| 亚洲视频免费观看视频| 免费日韩欧美在线观看|