• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Rogue waves for the (2+1)-dimensional Myrzakulov–Lakshmanan-IV equation on a periodic background

    2024-05-09 05:19:20XiaoHuiWangandZhaqilao
    Communications in Theoretical Physics 2024年4期

    Xiao-Hui Wang and Zhaqilao

    1 College of Mathematics Science,Inner Mongolia Normal University,Hohhot 010022,China

    2 Laboratory of Infinite-dimensional Hamiltonian System and Its algorithm Application,Hohhot 010022,China

    3 Center for Applied Mathematical Science,Inner Mongolia,Hohhot 010022,China

    Abstract In this paper,the rogue wave solutions of the (2+1)-dimensional Myrzakulov–Lakshmanan(ML)-IV equation,which is described by five component nonlinear evolution equations,are studied on a periodic background.By using the Jacobian elliptic function expansion method,the Darboux transformation (DT) method and the nonlinearization of the Lax pair,two kinds of rogue wave solutions which are expressed by Jacobian elliptic functions dn and cn,are obtained.The relationship between these five kinds of potential is summarized systematically.Firstly,the periodic rogue wave solution of one potential is obtained,and then the periodic rogue wave solutions of the other four potentials are obtained directly.The solutions we find present the dynamic phenomena of higher-order nonlinear wave equations.

    Keywords: rogue waves on a periodic background,(2+1)-dimensional Myrzakulov–Lakshmanan-IV equation,Darboux transformation,Jacobian elliptic function

    1.Introduction

    A rogue wave is a strange wave with an extremely large amplitude.It usually occurs in the ocean,coming from nowhere and disappearing without a trace,which can lead to a deadly disaster[1,2].However,there is currently no effective method available to accurately forecast the rogue waves in advance.Therefore,the study of rogue waves is necessary and relevant [3,4].In recent years,more and more attention has been paid to rogue periodic waves generated on the background of Jacobian elliptic periodic waves.In 2018,Chen and Pelinovsky established a method for calculating such rogue periodic waves based on the precise description of the periodic and aperiodicial characteristic functions of the the Ablowitz–Kaup–Newell–Segur (AKNS) spectrum.They combined the method of the nonlinearization of the Lax pair with the Darboux transformation to obtain the rogue periodic wave of the focused nonlinear Schr?dinger (NLS) equation[5].Then,rogue wave on a periodic background of the modified Korteweg–de Vries (mKdV) equation [6,7],Ito equation [8],fourth-,fifth-,sixth-,seven-order NLS equation[9–12],the sine-Gordon equation [13],and the Hirota equation [14,15] has been studied similarly.In recent years,the same method has been used to study the (2+1) dimensional nonlinear evolution equation [16,17].

    As a model of nonlinear partial differential equations,integrable spin systems are important because of their applicability in many scientific fields.They give rise to important applications in applied magnetism [18] and nanophysics [19].The Landau–Lifshitz–Gilbert (LLG) equation[20] in ferromagnetism and Landau–Lifshitz–Gilbert–Slonczewski (LLGS) equation [19] in spin transfer nanomagnetic multilayers are some of the fundamental equations that play a crucial role in understanding various physical properties of magnetic materials and the development of new technological innovations,like microwave generation using the spin transfer effect [21].The continuum limit of the Heisenberg ferromagnetic spin system and its various generalizations give rise to some of the important integrable spin systems in (1+1)dimensions [22,23].They are also intimately related to the nonlinear Schr?dinger family of equations through geometrical (or Lakshmanan equivalence or L-equivalence) and gauge equivalence concepts and these systems often admit magnetic soliton solutions.Moreover,the system is closely related to the well-known NLS equation[24].R Myrzakulov,G K Mamyrbekova and others mainly presented convincing studies of the integral (2+1)-dimensional spin model with self-compatibility potential,namely the ML-II,III,and IV equations [25].In this paper,we study the (2+1)-dimensional ML-IV equation,which has the following form:

    whereZ=.

    The gauge equivalent counterpart of the ML-IV equation takes the form:

    where ‘*’ is the complex conjugate,q(x,y,t),p(x,y,t) are complex functions,v(x,y,t),w(x,y,t),η(x,y,t) are real functions,and ω,?1,?2are arbitrary constants.Here,τ=±1 represents two different cases of the ML-IV equation.To be precise,τ=1 and τ=–1 mean that the ML-IV equation has an attractive interaction and repulsive interaction respectively.

    In [26],the soliton,breather,rogue wave and DT of (2)were researched.Its modulational instability and mixed solution have also been studied [27].Based on (2),which has a variety of parameter selections,these parameters will produce abundant reduction results.When ?1=0,?2=1,p=0,η=0,(2) can reduce to the (2+1)-dimensional complex mKdV equation,in which multi-soliton and periodic solutions have been studied via DT[28,29].The rogue periodic waves of the (2+1)-dimensional complex mKdV equation have also been studied [30].If we choose ?1=1,?2=0,p=0,η=0,(2)can reduce to the(2+1)-dimensional NLS equation,its DT,soliton,breather,abundant rogue wave shapes,rational and semi-rational solutions and the dynamic process have been investigated[31–33].In[34],the author especially studied the lump and rogue wave solutions based on a periodic background in a Heisenberg ferromagnetic spin chain.As far as we know,there are few studies on the rogue periodic waves of (2+1)-dimensional ML-IV equation.Thus,this will become the main content of our next research.

    In this work,we mainly construct the rogue periodic wave solutions for the (2+1)-dimensional ML-IV equation.In section 2,we give the Lax pairs and classical Darboux transformation of (2).In section 3,we give the periodic traveling wave solutions.In section 4,we describe the eigenvalues based on the results of the nonlinearization of the Lax pair.In section 5,we obtain the periodic and non-periodic wave solutions of(2).In section 6,the expression and figures of the rogue periodic wave solutions are given.In section 7,we give some conclusions.

    2.The Lax pair and Darboux transformation

    (2) has the Lax pair in the form

    where λ is a complex spectral parameter.The zero curvature equationUt-Vx-(2?1λ+4?2λ2)Uy+[U,V]=0 gives rise to (2).According to [26],the elementary Darboux transformation of (2) can be redefined as

    3.Two families of periodic solutions

    In order to construct the periodic wave solutions of (2),we suppose the complex periodic wave solutions in the form

    where ξ=x-c1y-c2t,ζ=x-b1y-b2t,Q(ξ) is a real periodic function andc1,c2,b1,b2are real constants.It is also easy to find that |q|2=qq*=Q2.

    Substituting equations (6) into (2) yields a fifth-order nonlinear ordinary differential equation,in which it is difficult to obtain exact solutions.However,the fifth-order nonlinear ordinary differential equation can be simplified to a first-order nonlinear ordinary differential equation by means of the Jacobian elliptic function expansion approach[35].Then,we finally obtain two families of periodic solutions for(2),which are expressed by Jacobian elliptic functions dn and cn as

    where ξ=x-c1y-c2t,k?(0,1)is the elliptic modulus and equations (7)–(8) satisfy the following two elliptic equation:

    wherea0anda1are two real constants.As for the dn-function solution,we takea0=2-k2anda1=k2-1.As for the cnfunction solution,we takea0=2k2-1 anda1=k2(1-k2)on the other side.

    4.Squared periodic eigenfunctions of Lax pair

    In this section,we introduce the Bargmann constraint[36–38]to make the nonlinearization of the Lax pair (3)–(4).Considering the following Bargmann constraint

    whereφ=is a non-zero solution of the Lax pair(3)–(4) with λ=λ1.

    Substituting (10) into (3),we obtain a finite-dimensional Hamiltonian system as

    For the Hamiltonian system (11) and (12),there are two conserved integrals

    whereH0,H1is constant with respect toxandH=H1-.

    Considering equations (10) and (13) together,we have

    Some other constraints with λ1=α+iβ can be referred from [4]

    where α,β are the real and imaginary parts of λ1.Substituting(6)into(16),it is easy to notice that the left-hand side of(16)is 2iQ2,which yields

    Substituting (6) into (17)–(18)and comparing them with the two equations in (9),we have

    According to the second equation in (19),we have two cases asβ=orβ≠withH1=4β2-3β+.

    Case 1.Whenβ=,that isH0=0,then the expression ofa0,a1can be simplified as

    As a result ofa1=<0,we discuss the dn-periodic backgroundQ(ξ)=dn (ξ;k).Based on the above analysis,we haveH1=,α2=.TheH1and λ1=α+iβ are expressed by the elliptic modulusk.That is to say,the eigenvalues of the Lax pair have two pairs of complex values λ1±in the right half-plane and-λ1±in the left half-plane.

    Case 2.Whenβ≠,then the expression ofa0,a1will become

    As a result ofa1>0,we discussQ(ξ)=kcn (ξ;k).The eigenvalue for λ1in the first quadrant can be given as

    and there also exist some other eigenvalues with -λ1,in other quadrants.

    5.Periodic and non-periodic solutions of the Lax pair

    In this section,we firstly give the definitions of the squared periodic eigenfunctions of the Lax pair (3)–(4) and obtain various relationships between the solutions of the Lax pair(3)–(4)on the background of the Jacobian elliptic functions dn and cn respectively.Then,we introduce a function θ(x,y,t) to establish a connection between periodic solutions and nonperiodic solutions for the Lax pair(3)–(4).Therefore,the chief aim of this section is to find out the expression of θ(x,y,t).

    Based on (10),(13) and (15),we have

    Due toq(x,y,t)=Q(ξ)eiζ,we take

    Substituting (6) and (26) into (25) yields

    According to (28) with λ1=λ±,we findare real.Also,because=Q=dn (ξ;k)>0,we finally determine that Φ1and Φ2are real so that the first equation of(29) can be rewritten as

    As for the cn-function solutionQ(ξ)=kcn (ξ;k)in(20),we already know thatH0=2β-1,H1=4β2-3β+,H=β(2β-1) and.Therefore,equation (28) can be rewritten as

    Equations (12) and (14) yield (∣φ1∣2+∣φ2∣2)2=1-k2+∣q∣2.If we consider the positive square root,we have

    so we obtain

    We choose roots of the relation

    According to (32) and (35),we have

    According to (24) and (27),we have

    Here,we introduce a function θ(x,y,t).Let us make an assumption thatis the periodic solution of the Lax pair (3)–(4) with λ=λ1,andis the second linearly independent solution of the Lax pair (3)–(4) with the same λ=λ1,where ψ1and ψ2are non-periodic solutions and have the following forms

    where θ=θ(x,y,t) is a function to be determined.

    Using (38) and (3) yields

    Using (26),we rewrite (39) as

    Substituting (28) into (40) yields

    Integrating (41) yields

    where θ0(y,t) is an undetermined integral constant ofy,t.

    If we substitute(38)into(4),a rather complex expression for θtwill be derived,which is difficult to deal with.By using the Jacobian elliptic function expansion method to simplify,we get

    In order to determine the form of θ,we suppose that

    Based on the equations (43)–(46),the differential equation about χ becomes

    where χ can be rewritten as

    where

    We finally arrive at the expression of θ(x,y,t) as

    6.Rogue waves on the periodic background

    Proposition.The periodic rogue wave solutions ofw(x,y,t),v(x,y,t),p(x,y,t),η(x,y,t)are related to the periodic rogue wave solutions ofq(x,y,t) as follows

    6.1.Rogue waves on the dn-periodic background

    In order to construct the rogue waves of(2)on the dn-periodic background,we apply one-fold Darboux transformation (5)to the Jacobian elliptic function dn,take the seed solution asq=Q(ξ)eiζand choose the eigenvalueλ1=λ+=in (35).Substituting=defined by (22) and (38) into the one-fold DT formula,we construct the rogue wave solution of equation(2)on the dn-periodic background as

    Figure 1. Three-dimensional plots of the rogue waves on the dn-periodic background,with k=0.5,?1=1,?2=1,ω=2, b1=1,c1=,b2=3,c2=2,τ=1 t=0.

    with

    where Δ0is defined in (44).

    According to the relation in the proposition,the rogue dn-periodic waves of the other four potentials can be obtained.

    It is evident from figure 1 that the periodic rogue waves of the (2+1) dimensional ML-IV equation are mainly linear rogue waves.Figures 1 and 3 illustrate the rogue dn-periodic waves fork=0.5 andk=0.99,we find that the amplitude of rogue periodic waves reaches a maximum value at their origin.The corresponding two dimensional plots are presented in figures 2 and 4.In these figures,with the increase of the elliptic modulusk,the amplitude of the rogue periodic waves also increases.Moreover,we can see from figures 2 and 4 that the amplitudes of the rogue periodic waves of the five potentials are different,η(x,y,t)is the largest,q(x,y,t)is the smallest,and the frequencies of the periodic background waves ofq(x,y,t),w(x,y,t),v(x,y,t),p(x,y,t),and η(x,y,t) are also different.When the range of fixedtis between 0 and 10,it can be observed that theq(x,y,t),w(x,y,t),v(x,y,t)periodic wave speed and the shape of the periodic wave remain consistent,while thep(x,y,t),η(x,y,t)periodic background wave shows an irregular periodic amplitude.It has the same property whenkis equal to 0.99.When the values ofc1,c2,b1andb2are changed,the frequency of the periodic background wave will change accordingly.

    6.2.Rogue waves on the cn-periodic background

    In order to construct the rogue waves of(2)on the cn-periodic background,we apply the one-fold Darboux transformation(5)to the Jacobian elliptic function cn,take the seed solution asq=Q(ξ)ei(ζ)and choose the complex eigenvalueλ1=λ±=in (24).Substituting=defined by (38) into (5) and using(41),(43) and (45),we obtain the rogue wave solution of (2)on the cn-periodic background as

    Figure 2. Transverse plots of the rogue waves on the dn-periodic background,with k=0.5,?1=1,?2=1,ω=2,b1=1,c1=,b2=3,c2=2,τ=1 t-axis.

    Figure 3. Three-dimensional plots of the rogue waves on the dn-periodic background,with k=0.99,?1=1,?2=1,ω=2,b1=1,c1=,b2=3,c2=2,τ=1 t=0.

    Figure 4. Transverse plots of the rogue waves on the dn-periodic background,with k=0.99,?1=1,?2=1,ω=2,b1=1,c1=,b2=3,c2=2,τ=1 t-axis.

    Figure 5. Three-dimensional plots of the rogue waves on the cn-periodic background,with k=0.5,?1=1,?2=1,ω=2,b1=1,c1=,b2=3,c2=2,τ=1 t=0.

    with

    Figure 6. Transverse plots of the rogue waves on the cn-periodic background,with k=0.5,?1=1,?2=1,ω=2,b1=1,c1=,b2=3,c2=2,τ=1 t-axis.

    Figure 7. Three-dimensional plots of the rogue waves on the cn-periodic background,with k=0.99,?1=1,?2=1,ω=2,b1=1,c1=,b2=3,c2=2,τ=1,t=0.

    Figures 5 and 7 illustrate the rogue cn-periodic waves fork=0.5 andk=0.99,we find that the amplitude of the rogue periodic waves reach a maximum value at their origin.The corresponding two dimensional plots are presented in figures 6 and 8.In these figures,with the increase of the elliptic modulusk,the amplitude of the rogue periodic wave also increases.Moreover,we can see from figures 6 and 8 that the amplitudes of the rogue periodic waves of the five potentials are different,η(x,y,t) is the largest,q(x,y,t) is the smallest,and the frequencies of the periodic background waves ofq(x,y,t),w(x,y,t),v(x,y,t),p(x,y,t),and η(x,y,t)are also different.When the range of fixedtis between 0 and 10,it can be observed that theq(x,y,t),w(x,y,t),v(x,y,t) periodic wave speed and the shape of the periodic wave remain consistent,while thep(x,y,t),η(x,y,t) periodic background wave shows an irregular periodic amplitude.Different from the dn-background,whenkis equal to 0.5,the amplitude ofp(x,y,t),η(x,y,t)periodic background wave changes significantly.It has the same property whenkis equal to 0.99.When the values ofc1,c2,b1andb2are changed,the frequency of the periodic background wave will change accordingly.

    Figure 8. Transverse plot of the rogue waves on the cn-periodic background,with k=0.99,?1=1,?2=1,ω=2,b1=1,c1=,b2=3,c2=2,τ=1 t-axis.

    7.Conclusion

    In this paper,we constructed rogue wave solutions of(2+1)-dimensional ML-IV equation on the elliptic dn-and cn-periodic background.Using the nonlinearization of Lax pair,we have determined the eigenvalues and squared eigenfunctions that correspond to the elliptic traveling wave solutions of(2+1)-dimensional ML-IV equation.After that,we gave the non-periodic solution of the Lax pair under the same eigenvalue.Compared with the existing research,the periodic rogue wave solutions studied in this paper mainly present the state of linear rogue waves.Firstly,under the premise of the same elliptic mode,the periodic rogue wave solution with different potential is analyzed.When the elliptic modulus changes,the linear solitons will also change.These results have considerable significance when exploring other highdimensional generalized integrable equations in the future.However,all the research results are still under the framework of AKNS system.In the future,we expect to apply the method in this paper to other spectral problems and expand the periodic background to other Jacobian elliptic functions.We hope that our research results can provide some implications for rogue wave phenomena in the field of nonlinear physics.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (Grant No.12 361 052),the Natural Science Foundation of Inner Mongolia Autonomous Region,China (Grant Nos.2020LH01010,2022ZD05),the Program for Innovative Research Team in Universities of Inner Mongolia Autonomous Region (Grant No.NMGIRT2414),the Fundamental Research Funds for the Inner Mongolia Normal University,China (Grant No.2022JBTD007),and the Key Laboratory of Infinite-dimensional Hamiltonian System and Its Algorithm Application (Inner Mongolia Normal University),and the Ministry of Education (Grant Nos.2023KFZR01,2023KFZR02).

    X H Wang:Methodology,writing—original draft,software,visualization,data curation.Zhaqilao:Conceptualization,formal analysis,writing—review and editing,supervision,project administration,funding acquisition.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    婷婷亚洲欧美| 俺也久久电影网| 亚洲欧美精品综合久久99| 在线国产一区二区在线| 久久久久久人人人人人| 男女床上黄色一级片免费看| 久久天躁狠狠躁夜夜2o2o| 久久久国产成人精品二区| 丁香六月欧美| 1000部很黄的大片| 亚洲国产欧洲综合997久久,| 久久性视频一级片| 夜夜躁狠狠躁天天躁| 亚洲av五月六月丁香网| 美女大奶头视频| 国产一区二区三区在线臀色熟女| 女警被强在线播放| 国产精品电影一区二区三区| 两个人的视频大全免费| 床上黄色一级片| 久久性视频一级片| 亚洲人成网站高清观看| 欧美三级亚洲精品| 欧美黑人欧美精品刺激| 一本一本综合久久| 久久国产精品人妻蜜桃| 国产极品精品免费视频能看的| 黄色女人牲交| 久久天躁狠狠躁夜夜2o2o| www.精华液| 国产精品国产高清国产av| 午夜福利18| 国产精品精品国产色婷婷| 18禁黄网站禁片午夜丰满| 免费观看精品视频网站| 老汉色∧v一级毛片| 丰满人妻一区二区三区视频av | 亚洲七黄色美女视频| 精品一区二区三区四区五区乱码| 99国产精品99久久久久| 人人妻,人人澡人人爽秒播| 亚洲精品美女久久久久99蜜臀| 麻豆av在线久日| 成人18禁在线播放| 在线a可以看的网站| av欧美777| 亚洲精品中文字幕一二三四区| 欧美丝袜亚洲另类 | 69av精品久久久久久| 国产成人欧美在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 丁香欧美五月| 国产成人精品久久二区二区91| 狂野欧美激情性xxxx| 欧美乱码精品一区二区三区| 丁香欧美五月| 天天躁日日操中文字幕| 国产高清videossex| 婷婷精品国产亚洲av| 色噜噜av男人的天堂激情| 一夜夜www| 少妇的丰满在线观看| 成人永久免费在线观看视频| 国产成人系列免费观看| 两个人视频免费观看高清| 亚洲欧美精品综合久久99| 久久久久国产精品人妻aⅴ院| 91av网一区二区| а√天堂www在线а√下载| 国产成人欧美在线观看| 亚洲av五月六月丁香网| 国产精品,欧美在线| 俺也久久电影网| 国产精品一区二区免费欧美| 我的老师免费观看完整版| 国产黄a三级三级三级人| 好男人在线观看高清免费视频| 99热精品在线国产| ponron亚洲| 一二三四社区在线视频社区8| 美女cb高潮喷水在线观看 | 免费高清视频大片| 麻豆国产av国片精品| 亚洲在线自拍视频| 色哟哟哟哟哟哟| 久久精品影院6| 一本一本综合久久| 国产伦精品一区二区三区四那| 人妻夜夜爽99麻豆av| 国产欧美日韩精品亚洲av| 男人和女人高潮做爰伦理| 免费观看精品视频网站| 亚洲专区中文字幕在线| 久久精品综合一区二区三区| 亚洲人成伊人成综合网2020| 老司机深夜福利视频在线观看| 精品久久久久久,| 国产精品精品国产色婷婷| 国产亚洲欧美98| 搞女人的毛片| 男人舔女人下体高潮全视频| 亚洲精华国产精华精| 国产精品久久电影中文字幕| av福利片在线观看| 欧美黄色片欧美黄色片| 国产精品美女特级片免费视频播放器 | 一区二区三区国产精品乱码| 神马国产精品三级电影在线观看| 日本免费a在线| 成人三级做爰电影| av天堂中文字幕网| 99热只有精品国产| 99在线视频只有这里精品首页| 日韩大尺度精品在线看网址| 国内少妇人妻偷人精品xxx网站 | 免费在线观看视频国产中文字幕亚洲| 国产精品亚洲一级av第二区| 精品国产美女av久久久久小说| 90打野战视频偷拍视频| 最近在线观看免费完整版| 国产精品野战在线观看| av中文乱码字幕在线| 舔av片在线| 国产69精品久久久久777片 | 高清毛片免费观看视频网站| 久久人妻av系列| 一a级毛片在线观看| 国产黄a三级三级三级人| 黄频高清免费视频| 久久精品人妻少妇| 国产野战对白在线观看| 又粗又爽又猛毛片免费看| 最新在线观看一区二区三区| 亚洲成av人片免费观看| 97超级碰碰碰精品色视频在线观看| 成人亚洲精品av一区二区| 亚洲欧美日韩高清在线视频| 色老头精品视频在线观看| 国产野战对白在线观看| 巨乳人妻的诱惑在线观看| 露出奶头的视频| 国产真实乱freesex| xxx96com| 婷婷精品国产亚洲av| 中文字幕人成人乱码亚洲影| 久久中文字幕人妻熟女| 成人av在线播放网站| 91老司机精品| 中文亚洲av片在线观看爽| 搡老岳熟女国产| 黄色视频,在线免费观看| 久久久国产成人免费| 两个人看的免费小视频| 香蕉久久夜色| 人人妻,人人澡人人爽秒播| 国产黄a三级三级三级人| 一本一本综合久久| 两个人看的免费小视频| 欧美日韩瑟瑟在线播放| 亚洲熟女毛片儿| 波多野结衣高清无吗| 亚洲av美国av| 中文字幕熟女人妻在线| 午夜免费激情av| 色视频www国产| 日日夜夜操网爽| 日韩成人在线观看一区二区三区| 午夜福利视频1000在线观看| 亚洲中文日韩欧美视频| 国产成人系列免费观看| 香蕉丝袜av| 18禁美女被吸乳视频| 好看av亚洲va欧美ⅴa在| 丁香六月欧美| 99久久综合精品五月天人人| 国产精品亚洲av一区麻豆| 亚洲午夜精品一区,二区,三区| 亚洲18禁久久av| 久久这里只有精品19| 久久久久国产精品人妻aⅴ院| 亚洲av美国av| 性欧美人与动物交配| av天堂中文字幕网| 最近视频中文字幕2019在线8| 午夜福利成人在线免费观看| 亚洲专区中文字幕在线| 欧美成人一区二区免费高清观看 | 久久亚洲精品不卡| 最近在线观看免费完整版| 特级一级黄色大片| 久久久水蜜桃国产精品网| 国产麻豆成人av免费视频| 又黄又爽又免费观看的视频| 久久精品综合一区二区三区| 国产高清videossex| 亚洲av成人不卡在线观看播放网| 亚洲精华国产精华精| 精品久久久久久久人妻蜜臀av| av国产免费在线观看| 后天国语完整版免费观看| 国产免费男女视频| 天堂动漫精品| 欧美中文综合在线视频| 婷婷精品国产亚洲av在线| 男女视频在线观看网站免费| 看黄色毛片网站| 亚洲国产精品999在线| 欧美乱妇无乱码| 国产午夜精品论理片| 亚洲,欧美精品.| 最新在线观看一区二区三区| av在线蜜桃| 成人午夜高清在线视频| 国产精品野战在线观看| 国产私拍福利视频在线观看| 欧美丝袜亚洲另类 | 久久这里只有精品19| 变态另类成人亚洲欧美熟女| 综合色av麻豆| 亚洲天堂国产精品一区在线| 美女免费视频网站| 热99re8久久精品国产| 欧美日韩精品网址| 精品久久久久久久毛片微露脸| 亚洲国产精品久久男人天堂| av中文乱码字幕在线| 亚洲五月婷婷丁香| 亚洲av五月六月丁香网| 亚洲av日韩精品久久久久久密| 国产久久久一区二区三区| 日韩免费av在线播放| 亚洲五月天丁香| 中文字幕高清在线视频| 五月玫瑰六月丁香| 欧美国产日韩亚洲一区| 美女大奶头视频| 国产淫片久久久久久久久 | 99久国产av精品| 淫妇啪啪啪对白视频| 色播亚洲综合网| 少妇裸体淫交视频免费看高清| 亚洲欧美一区二区三区黑人| 精品免费久久久久久久清纯| 青草久久国产| 成人高潮视频无遮挡免费网站| 亚洲国产欧洲综合997久久,| 亚洲精品乱码久久久v下载方式 | 他把我摸到了高潮在线观看| 国产成人av教育| 一级黄色大片毛片| 一个人免费在线观看电影 | 日日干狠狠操夜夜爽| 国产av麻豆久久久久久久| 91av网站免费观看| 欧美一级a爱片免费观看看| 一a级毛片在线观看| 非洲黑人性xxxx精品又粗又长| 在线a可以看的网站| 免费观看人在逋| 国产欧美日韩精品一区二区| 1024香蕉在线观看| 日韩欧美在线二视频| 波多野结衣高清无吗| a在线观看视频网站| 国产精品乱码一区二三区的特点| 欧美性猛交黑人性爽| 黄色丝袜av网址大全| 少妇人妻一区二区三区视频| 国产成人av教育| 欧美三级亚洲精品| 亚洲精品久久国产高清桃花| 欧美日韩瑟瑟在线播放| 在线观看美女被高潮喷水网站 | 美女cb高潮喷水在线观看 | av女优亚洲男人天堂 | 亚洲人成伊人成综合网2020| 99视频精品全部免费 在线 | 国产精品美女特级片免费视频播放器 | 12—13女人毛片做爰片一| 日韩免费av在线播放| av欧美777| 丝袜人妻中文字幕| 男女那种视频在线观看| 成年版毛片免费区| 91麻豆精品激情在线观看国产| 毛片女人毛片| 国产精品电影一区二区三区| av中文乱码字幕在线| 男女视频在线观看网站免费| 亚洲av片天天在线观看| 天堂√8在线中文| 午夜久久久久精精品| 国产精品久久久av美女十八| 日本撒尿小便嘘嘘汇集6| 一区二区三区高清视频在线| 国产亚洲精品久久久com| 一个人看的www免费观看视频| 午夜亚洲福利在线播放| 国产成+人综合+亚洲专区| 欧美一区二区国产精品久久精品| 国产激情欧美一区二区| 床上黄色一级片| 日本一本二区三区精品| 免费av毛片视频| 校园春色视频在线观看| 国产不卡一卡二| bbb黄色大片| 久久久久久久久中文| 日本黄大片高清| 国产v大片淫在线免费观看| 午夜精品在线福利| 国产高清videossex| 999久久久国产精品视频| 我要搜黄色片| 久久人妻av系列| 久久久久亚洲av毛片大全| 嫩草影院入口| 欧美乱色亚洲激情| 欧美午夜高清在线| 成年免费大片在线观看| 国产精品一区二区精品视频观看| 国产欧美日韩精品亚洲av| 美女高潮的动态| 9191精品国产免费久久| 久久久久免费精品人妻一区二区| 91av网一区二区| 亚洲国产欧美一区二区综合| 夜夜躁狠狠躁天天躁| 此物有八面人人有两片| 69av精品久久久久久| 精品久久久久久久久久免费视频| 日本五十路高清| 日韩高清综合在线| 亚洲欧美精品综合一区二区三区| 中国美女看黄片| 亚洲av五月六月丁香网| 久久天躁狠狠躁夜夜2o2o| 精品福利观看| 国模一区二区三区四区视频 | 亚洲性夜色夜夜综合| 国产av麻豆久久久久久久| 亚洲精品美女久久久久99蜜臀| 两个人看的免费小视频| 亚洲熟妇中文字幕五十中出| 美女被艹到高潮喷水动态| 亚洲av成人av| 一级毛片女人18水好多| 国产精品日韩av在线免费观看| 在线播放国产精品三级| 国产精品98久久久久久宅男小说| 国产久久久一区二区三区| 欧美高清成人免费视频www| 好男人电影高清在线观看| 国产av不卡久久| 在线看三级毛片| 国内精品一区二区在线观看| 国产欧美日韩精品亚洲av| 亚洲第一欧美日韩一区二区三区| 不卡一级毛片| 18禁美女被吸乳视频| 天堂网av新在线| 国内揄拍国产精品人妻在线| 国产av一区在线观看免费| 国产精品久久久人人做人人爽| 美女扒开内裤让男人捅视频| 亚洲美女视频黄频| 国内久久婷婷六月综合欲色啪| 国产蜜桃级精品一区二区三区| 丰满人妻熟妇乱又伦精品不卡| 国产精品久久久人人做人人爽| www.熟女人妻精品国产| 亚洲av美国av| 国产av麻豆久久久久久久| 国产一区二区激情短视频| 免费在线观看日本一区| 淫秽高清视频在线观看| 欧美乱码精品一区二区三区| 狠狠狠狠99中文字幕| 欧美日韩瑟瑟在线播放| 午夜福利在线观看吧| 国产精品1区2区在线观看.| 国产精品久久视频播放| 国产极品精品免费视频能看的| 一本一本综合久久| 好男人电影高清在线观看| 在线免费观看不下载黄p国产 | 国产成人一区二区三区免费视频网站| 国产三级在线视频| 成人三级做爰电影| 欧美午夜高清在线| 免费观看精品视频网站| 精品久久久久久久毛片微露脸| 欧美日本视频| 黄频高清免费视频| 老熟妇乱子伦视频在线观看| 嫁个100分男人电影在线观看| 午夜福利在线观看免费完整高清在 | 99久久精品热视频| 99久国产av精品| www日本黄色视频网| 免费看日本二区| 国产精品香港三级国产av潘金莲| 中文在线观看免费www的网站| 岛国视频午夜一区免费看| 淫妇啪啪啪对白视频| 日韩三级视频一区二区三区| 日日摸夜夜添夜夜添小说| 麻豆国产97在线/欧美| 日日夜夜操网爽| 亚洲av日韩精品久久久久久密| 国产精品1区2区在线观看.| 在线观看午夜福利视频| 成年女人看的毛片在线观看| 国产麻豆成人av免费视频| av天堂在线播放| www国产在线视频色| av欧美777| 中文字幕最新亚洲高清| 波多野结衣高清作品| 免费在线观看日本一区| 国产精品精品国产色婷婷| 99国产精品一区二区三区| 色播亚洲综合网| 久久香蕉精品热| 欧美成狂野欧美在线观看| 欧美一区二区精品小视频在线| 可以在线观看的亚洲视频| 日韩欧美国产一区二区入口| 久久久久国产一级毛片高清牌| 久久精品aⅴ一区二区三区四区| 日韩欧美国产在线观看| 亚洲精品国产精品久久久不卡| 9191精品国产免费久久| cao死你这个sao货| 国产午夜福利久久久久久| 免费观看的影片在线观看| 欧美一区二区精品小视频在线| 亚洲欧美激情综合另类| 午夜a级毛片| 色综合欧美亚洲国产小说| 国产一区二区在线观看日韩 | 一级毛片女人18水好多| 国产精品精品国产色婷婷| 国内精品一区二区在线观看| 美女cb高潮喷水在线观看 | 欧美另类亚洲清纯唯美| 香蕉av资源在线| 淫妇啪啪啪对白视频| 欧美日韩中文字幕国产精品一区二区三区| 久久伊人香网站| 国产主播在线观看一区二区| 国产精品一区二区免费欧美| 中文字幕熟女人妻在线| 欧美日韩精品网址| 国产欧美日韩一区二区精品| 亚洲乱码一区二区免费版| 又爽又黄无遮挡网站| 婷婷六月久久综合丁香| 久久久精品大字幕| 久久这里只有精品19| 国产高清视频在线观看网站| 99久久精品国产亚洲精品| 12—13女人毛片做爰片一| 国产亚洲精品久久久com| 日韩国内少妇激情av| 天堂√8在线中文| 久久久久久久久免费视频了| 国产精品一及| 久久午夜综合久久蜜桃| 97人妻精品一区二区三区麻豆| 操出白浆在线播放| 国产亚洲精品久久久久久毛片| 哪里可以看免费的av片| 亚洲色图av天堂| 国产av一区在线观看免费| 伦理电影免费视频| 成人特级黄色片久久久久久久| 亚洲欧美日韩无卡精品| 欧美成人一区二区免费高清观看 | 91av网站免费观看| 精品99又大又爽又粗少妇毛片 | 亚洲专区中文字幕在线| 夜夜爽天天搞| 久久人妻av系列| 亚洲欧美日韩无卡精品| 禁无遮挡网站| 免费看日本二区| 身体一侧抽搐| 亚洲av熟女| 人妻丰满熟妇av一区二区三区| 人人妻人人澡欧美一区二区| 亚洲精品中文字幕一二三四区| 最新美女视频免费是黄的| 日韩人妻高清精品专区| 亚洲欧美日韩卡通动漫| 天堂网av新在线| 久久人人精品亚洲av| 国产麻豆成人av免费视频| 亚洲 欧美 日韩 在线 免费| 国内毛片毛片毛片毛片毛片| 高清在线国产一区| 男女午夜视频在线观看| 午夜福利视频1000在线观看| 国产熟女xx| 国产精品一区二区三区四区久久| 免费在线观看成人毛片| 亚洲 欧美 日韩 在线 免费| 99国产精品一区二区蜜桃av| 国产1区2区3区精品| 男女做爰动态图高潮gif福利片| 操出白浆在线播放| 国产午夜福利久久久久久| 母亲3免费完整高清在线观看| 欧美乱码精品一区二区三区| 老汉色av国产亚洲站长工具| www国产在线视频色| 12—13女人毛片做爰片一| 亚洲成av人片免费观看| 国产精品久久久久久久电影 | 国产一区二区三区在线臀色熟女| 校园春色视频在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 一区二区三区国产精品乱码| 国产主播在线观看一区二区| 午夜激情福利司机影院| 老司机深夜福利视频在线观看| 亚洲国产欧美人成| 中文字幕久久专区| 国产一区二区在线av高清观看| 婷婷精品国产亚洲av| 国产三级黄色录像| 日韩欧美国产在线观看| 搡老岳熟女国产| 精品熟女少妇八av免费久了| 成年女人看的毛片在线观看| 18禁美女被吸乳视频| 亚洲av成人一区二区三| 色吧在线观看| www国产在线视频色| 一区二区三区高清视频在线| 制服丝袜大香蕉在线| 色尼玛亚洲综合影院| 一区二区三区高清视频在线| 亚洲国产精品成人综合色| 精品国内亚洲2022精品成人| 国产精品一及| 亚洲第一电影网av| 日韩 欧美 亚洲 中文字幕| 成年女人毛片免费观看观看9| 欧美+亚洲+日韩+国产| 午夜精品久久久久久毛片777| 一区二区三区激情视频| 又大又爽又粗| 精品福利观看| cao死你这个sao货| 国产午夜精品论理片| 淫秽高清视频在线观看| 一级毛片精品| 国产成人福利小说| 人妻丰满熟妇av一区二区三区| 亚洲av免费在线观看| 日本一本二区三区精品| 美女黄网站色视频| 午夜久久久久精精品| 亚洲激情在线av| 久久久久久久久免费视频了| 99精品欧美一区二区三区四区| 欧美中文综合在线视频| 黄色女人牲交| 欧美日本视频| 久久久久九九精品影院| 男女午夜视频在线观看| 91老司机精品| 51午夜福利影视在线观看| 两个人的视频大全免费| 熟女少妇亚洲综合色aaa.| 琪琪午夜伦伦电影理论片6080| 婷婷精品国产亚洲av| xxxwww97欧美| 欧美黄色片欧美黄色片| 天天一区二区日本电影三级| 熟女人妻精品中文字幕| 久久这里只有精品中国| 在线国产一区二区在线| 丝袜人妻中文字幕| 精品久久久久久,| 中文字幕久久专区| a级毛片在线看网站| 久久欧美精品欧美久久欧美| 国产 一区 欧美 日韩| 偷拍熟女少妇极品色| 精品国产超薄肉色丝袜足j| 久久久久国产一级毛片高清牌| 日韩三级视频一区二区三区| 老司机在亚洲福利影院| 免费在线观看亚洲国产| 欧美黄色片欧美黄色片| 国产毛片a区久久久久| 国产美女午夜福利| 美女黄网站色视频| 日韩精品中文字幕看吧| 老司机午夜十八禁免费视频| 久久中文看片网| 亚洲在线自拍视频| 九色成人免费人妻av| 日日摸夜夜添夜夜添小说| 亚洲美女黄片视频| 五月伊人婷婷丁香| 精品久久蜜臀av无| 色噜噜av男人的天堂激情| 国产成人欧美在线观看| 亚洲成人精品中文字幕电影| 欧美3d第一页| 久久久国产欧美日韩av| 国产精品亚洲av一区麻豆|