• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Differences between two methods to derive a nonlinear Schr?dinger equation and their application scopes

    2024-02-29 09:19:02YuXiChen陳羽西HengZhang張恒andWenShanDuan段文山
    Chinese Physics B 2024年2期
    關(guān)鍵詞:張恒文山

    Yu-Xi Chen(陳羽西), Heng Zhang(張恒), and Wen-Shan Duan(段文山)

    College of Physics and Electronic Engineering,Northwest Normal University,Lanzhou 730070,China

    Keywords: dusty plasmas,nonlinear waves,particle-in-cell simulation

    1.Introduction

    Wave phenomena are a very common physical phenomenon that exist in many different systems, ranging from microscopic to macroscopic scales, from molecules to astronomical bodies.[1–6]Typical examples include plasma waves,[7–23]optical communications,[24–27]collective motion of particles in granular matter,[28,29]optical and acoustic wave phenomena in Bose–Einstein condensates,[30–36]etc.

    Wave phenomena can be divided into two types: linear waves and nonlinear waves.The nonlinear waves usually can be approximately described by KdV equation[37–43]and NLSE.[44–50]These two equations can describe many different types of nonlinear wave phenomena.

    It is worth noting that there are multiple methods available to obtain NLSE, such as the reductive perturbation method,[51–53]Krylov–Bogoliubov–Mitropolsky (KBM)method,[54–56]canonical transformation method,[57]inverse scattering transform method,[58]and so on.

    The present paper is focused on two different methods to obtain the NLSE:One is to indirectly derive the NLSE,which is first to derive a KdV equation and then derive the NLSE step by step from the KdV equation,[59–64]while the other is to directly derive the NLSE from the original equation.[44–50,65,66]Although both methods can describe nonlinear waves, it is currently unknown whether the nonlinear waves described by these two methods are the same and which method is more accurate.Therefore,this is a problem that requires further study.

    We investigated this problem based on dusty plasma and obtained the following results: First, the dispersion relation and group velocity of the envelope waves obtained by the two methods are different.Second,we used PIC numerical simulation method[67–74]to verify the two methods and found that both methods are correct for small amplitude envelope waves.Third, we investigated the dependence of wave amplitude on the perturbation parameterεε′for the first method and the dependence of wave amplitude on the perturbation parameterεfor the second method.The perturbation parameterε′actually stands for the quantity of ?fd/fd0,where ?fdrepresents the perturbed amplitude of the perturbations, whilefd0represent its corresponding amplitude at equilibrium state.For small amplitude, ?fd/fd0is small enough, i.e.,ε′is small enough.The parameterεactually stands for the quantity ofλD/λ,whereλDrepresent the Debye length,whileλrepresents the wavelength of the envelope waves.For long wave length approximation,εis small enough.[70,73–76]Our results show that as the perturbation parameters increases,the envelope waves amplitude gradually increases.In addition, we found that as the envelope wave amplitude increases,the deviation between numerical and analytical results gradually increases.We determined the applicable scope of each method based on the deviation between numerical and analytical results and found that the method of directly deriving NLSE from the original equations has a wider applicable scope than that of step-by-step deriving NLSE from KdV equation.Lastly,we investigated the dependence of envelope width on wave amplitude numerically and analytically.

    2.Theoretical model

    We now study dust acoustic waves in two-temperatureion dusty plasma which contain negatively charged dust particles, free electrons, and two different kinds of free ions.One kind of ions is high-temperature, while the other is lowtemperature.Charge neutrality condition at equilibrium isnil0+nih0=Zd0nd0+ne0, wherenα0is the number density of unperturbed particles of speciesα.α=il,ih,e,and d represent the low-temperature ion, the high-temperature ion, the free electron,and the dust particles,respectively.Zd0is the unperturbed number of charges residing on the dust grain measured in the unit of electron charge.Suppose that the dusty plasma is unmagnetized and collisionless.We now consider one-dimensional dust acoustic wave propagating in thexdirection.The dimensionless equations of motion of the system can be given as follows:[77]

    wherendandudrefer to the number density and the velocity of dust fluid.φis the electrostatic potential.γ′=γTd/Zd0Teff.ne=νesβ1φ,nil=μle-sφ, andnih=μhe-sβ2φare the number densities of electrons,lower temperature ions,and higher temperature ions respectively,ν=ne0/(Zd0nd0),μl =nil0/(Zd0nd0),μh=nih0/(Zd0nd0),β1=Til/Te,β2=Til/Tih, ands= 1/(vβ1+μ1+μhβ2).Te,Til,Tih, andTdare the temperatures of the electrons, the low temperature ions,the high temperature ions,and the dust particles respectively.Teffis the effective temperature which satisfy 1/Teff=(ne0/Te+nil0/Til+nih0/Tih)/Zd0nd0.

    All physical quantities in Eqs.(1)–(3) are normalized ones.They are normalized as follows:ndis normalized bynd0,nil,nih, andneare all byZd0nd0,ZdbyZd0,xby the Debye lengthλD=(kBε0Teff/nd0Zd0e2)2,tby the inverse of dust plasma frequencyω-1=(ε0md/nd0Zd02e2)1/2,udby the dust-acoustic speedcd=(kBzd0Teff/md)1/2,φbykBTeff/e,kBis boltzmann constant,ε0is vacuum permittivity.[77]

    3.Derivation of NLSE for the system

    To study nonlinear waves in a nonlinear system, two main methods are commonly used.One is to derive a KdV equation for localized waves using the reductive perturbation technique in the limit of small but finite amplitude and long wavelength.[37–43]The other method is to derive an NLSE when there are background waves present.[44–50]

    There are also two different methods to derive an NLSE.One method involves first deriving a KdV equation and then obtaining an NLSE from the KdV equation.[59–64]The other method is to derive the NLSE from the original equation of motion,[44–50,65,66]for example, by obtaining an NLSE from hydrodynamical equations.A fundamental question is whether the NLSE and its solutions obtained from these two different methods are the same, and which one is more accurate.This paper aims to address these questions.

    3.1.Derivation of NLSE from the CKdV equation

    In this section, we will derive the NLSE from a coupled KdV (CKdV) equation for this system.Then we will compare its solutions with numerical results.Additionally,we will discuss the application scope of the analytical solution.

    First, we derive a CKdV equation.By using the following expansionsξ=ε′(x-v0t),τ=ε′3t,nd=1+ε′2nd1+ε′4nd2+···,ud=ε′2ud1+ε′4ud2+···,andφ=ε′2φ1+ε′4φ2+···,whereε′is a small parameter,v0is the velocity of the dust acoustic KdV solitary waves.We then can obtainnd1=-φ1,ud1=-v0φ1,v02=1+γ′,and the KdV equation

    Generally,we can use the KdV equation to approximately describe nonlinear waves in dusty plasmas.However, when the coefficients in the KdV equation are zero, the equation is no longer applicable.To address this specific condition of nonlinear wave behavior, we derived a new equation called the CKdV equation.The CKdV equation is an extension of the KdV equation that overcomes the limitation of zero coefficients.These coefficients can be tuned according to specific physical conditions, allowing the CKdV equation to more accurately describe the nonlinear wave in dusty plasmas,including phenomena that cannot be covered by the KdV equation.[77]whereX=ε(ξ-Vτ),T=ε2τ,Vis the group velocity.Substituting Eq.(6)into the CKdV equation of Eq.(5),we obtain the dispersion relationω=-Bk3,group velocityV=-3Bk2,φ(1,0)=0,φ(1,l)=0 for|l|>1,φ(2,2)=(A/6Bk2)[φ(1,1)]2,φ(2,0)=(A/V)|φ(1,1)|2and NLSE as follows:

    whereP=-3Bk,Q=(A2/6Bk)-Ck.For an NLSE, whenPQ>0, the equation possesses bright envelope soliton solutions.Conversely,whenPQ<0,the equation possesses dark envelope soliton solutions.

    In the present paper,we only consider the case ofPQ>0,i.e.,bright envelope soliton solutions.For this case,there are modulation instability which has been well studied in the previous investigations.[78–81]Therefore,in this paper,we do not do further research on modulation instability.Then,the envelope wave solution of Eq.(7)is as follows:

    3.2.Derivation of NLSE from original hydrodynamical equations

    In this section, we will use a different method for deriving the NLSE from the hydrodynamical equations given in Eqs.(1)–(3).We will also compare the numerical results with the analytical ones.Moreover, we will infer the application scope of the analytical solution.Later,we will also provide a comparison between the two methods employed for deriving the NLSE.

    We use the following transformations

    whereξ=ε(x-Vt),τ=ε2t,Vis the group velocity.Substituting these expansions into Eqs.(1)–(3), we haven(1,1)=-(k2/ω2)φ(1,1),u(1,1)=-(k/ω)φ(1,1),and the dispersion relationω2=k2/(k2+1),n(1,l)=u(1,l)=φ(1,l)=0 when|l|>1,n(1,0)=u(1,0)=φ(1,0)=0,the group velocity

    It is noted from Eq.(14)that the group velocity and phase velocity expressions in the laboratory coordinates are as follows:VG=V+cgε,VP=(ω+εKV+ε2?)/(k+εK).Relations among physical quantities aren=1-(k2/ω2)φ(x,t),u=-(k/ω)φ(x,t).

    4.Comparisons between two different envelope waves obtained from two different methods

    We have obtained two different expressions for envelope nonlinear waves, given by Eqs.(9) and (14), which were obtained from two different methods.One method involved first deriving a CKdV equation and then obtaining the NLSE,while the other method involved directly obtaining the NLSE from the hydrodynamical equations.

    In this section, we will compare the differences between the two solutions and identify the differences.Additionally,we will determine the application scope of the two methods.

    4.1.Comparisons the dispersion relation and the group velocity of the two methods

    Firstly,in order to understand the differences in the envelope waves obtained from the two methods,we compared the dispersion relation and the group velocity of the two methods in Figs.1(a)and 1(b),respectively.

    Fig.1.(a) The dispersion relation obtained from two different methods.(b) The group velocity of the envelope wave obtained from two methods.

    As shown in Fig.1,two different methods have significant different behaviors for dispersion relation and group velocity.The wave frequency of the envelope wave obtained by the first method is smaller than that obtained by the second method for the same wave number.Moreover, the frequencies increase with the increase of the wave number.The group velocity of the envelope wave obtained by the first method is larger than that obtained by the second method for the same wave number.These results suggest that the envelope wave obtained by the two methods are significantly different.The purpose of the present paper is to verify the correctness of these two different methods.If both the two methods are correct, we will further compare the two methods and determine their respective application scope.

    4.2.Comparisons the numerical results and the analytical result between two methods

    In this section, we aim to compare the differences between the two solutions using the PIC numerical method,and then determine the application scope of each solution.

    4.2.1.Particle-in-cell method

    Particle-in-cell (PIC) simulation is commonly used for numerical work in plasma physics and particle dynamics because it provides an effective way to model the behavior of charged particles in a self-consistent electromagnetic field.PIC simulations are particularly well-suited for studying phenomena such as plasma waves,particle acceleration,and interactions between particles and fields.So, we use PIC method to simulate the envelope waves in this paper.

    During the simulation process, the dust grains are represented by a limited number of “super-particles” (SPs), while both electrons and ions are treated as Boltzmann-distributed fluids.Each SP is assigned a weight factor, denoted byS,which represents the number of real particles it represents.Initially, the SPs are uniformly distributed in the simulation space,and their initial weight parameters S and velocities are determined from the initial conditions.[69,70]

    To carry out the simulation,the simulation region is partitioned into several grid cells using the PIC method.As the dust particles move along their trajectories,they constantly exchange information with the background grid.At each time step,the positions and velocities of the SPs are weighted to all the grids,allowing for the calculation of the charge densityρg(or electric current densityJg).Once the charge densityρgis obtained, numerical solutions of either Maxwell’s equations(for the electromagnetic model) or the Poisson–Boltzmann equation (for the electrostatic model) are used to derive the electric field at each grid.In the electrostatic model,the magnetic field is assumed to be zero.[71–73]

    Subsequently,the electric field imposed on each SP is determined, driving each SP according to Newton’s equation.This equation can be numerically solved using the leap-frog algorithm.Finally,the new positions and velocities of each SP are determined,and the simulation process repeats until completion.The summary of a computational cycle of the PIC method is shown in Fig.2.[71,72]

    Fig.2.The summary of a computational cycle of the PIC method.

    4.2.2.The initial conditions for the numerical simulation of the envelope wave

    The simulation parameters we use are as follows:the spatial step is ?x=0.5, the time step is ?t=0.01, the number of grid cells isNx= 30000, the number of super particles contained in per cell is 100, the total length of thexaxis isLx=?xNx,x0=3000.We choose periodic boundary conditions.The other parameters areTe= 5 eV,Til= 0.3 eV,Tih=5 eV,Td=200 K,Zd0=1000,nd0=1.0×1012m-3,nil0=1.0×1014m-3,nih0=1.0×1015m-3,k=0.1,K=0.1,a=1.

    The initial conditions of the first method are given from Eq.(9)as follows:

    The initial conditions of the second method are given from Eq.(14)as follows:

    4.2.3.Comparisons between two methods

    Figure 3 displays the envelope wave obtained by the first method at different timetthrough PIC numerical simulations.The numerical results exhibit excellent agreement with the analytical solutions derived from Eq.(9),as shown in Fig.4.

    Fig.3.The PIC simulation results of the first method at different time t=0,t=2555.59/ω-1,t=5111.18/ω-1,where εε′=0.01,A=0.37.

    Likewise,the numerical results of the envelope wave obtained by the second method at different timetis shown in Fig.5.The numerical results obtained through PIC simulations also show good agreement with the analytical solutions derived from Eq.(14),as depicted in Fig.6.

    Fig.4.The comparisons between PIC simulation results and the analytical ones of the first method at different time t =0,t =2555.59/ω-1,t=5111.18/ω-1,where εε′=0.01,A=0.37.

    It is evident from Figs.3 and 4 that the analytical result of the envelope wave obtained by the first method seems valid,as the numerical results show that it can propagate stably.This suggests that the NLSE obtained by the first method is correct.Similarly,figures 5 and 6 indicate that the analytical result of the envelope wave obtained by the second method is also valid,and therefore,the NLSE obtained by the second method is correct as well.

    While figures 4 and 6 show good agreement between the numerical and analytical results for both methods, it is unclear if this agreement holds for larger amplitude (φm) envelope waves.In order to understand it,we compare the numerical results with that of the analytical ones for larger amplitude waves for both cases by varying the parameter ofεsinceεindirectly stands for the wave amplitude (It is noted from Eqs.(9) and (11) that the amplitudes of the envelope waves contain the parameter ofε), while keeping the other parameters constants.

    Fig.5.The PIC simulation results of the second method at different time t=0,t=2537.59/ω-1,t=5075.19/ω-1,where ε =0.01.

    Fig.6.The comparisons between PIC simulation results and the analytical ones of the second method at different time t=0,t=2537.59/ω-1,t=5075.19/ω-1,where ε =0.01.

    Fig.7.The comparisons between PIC simulation results and the analytical ones at different time t,where φm=0.005.(a)The result of the first method.(b)The result of the second method.

    The waveforms for the numerical and analytical results of the different amplitude envelope waves at different time for two different methods are shown in Figs.7 (φm=0.005), 8(φm=0.015), and 9 (φm=0.025).By examining these figures, we can determine whether the numerical and analytical results are in good agreement for larger amplitude envelope waves.Notice from Figs.7 and 8 that both the numerical and analytical results are in good agreement for larger amplitude waves.However,in Fig.9,the difference between the numerical and analytical results is more obvious for both methods.It appears that as the amplitude of the envelope wave increases the differences between the numerical results and analytical ones become more pronounced.

    To gain further insight into the differences between the PIC numerical results and the analytical ones for both methods,we present the dependence of the wave amplitude(φm)onεε′orεfor the two cases in Fig.11.It can be observed from Fig.11,that the amplitude of the envelope wave increases with increasing ofεε′orε.Asεε′orεincreases,i.e.,wave amplitude increases, the differences between the analytical results and the numerical ones obtained from both methods become larger.In other word, the analytical results are valid if the amplitude is small enough.Based on these results, the application scope of both methods can be determined from Fig.10.Specifically,the first method can be applied whenφm<0.01,while the second method can be applied whenφm<0.015.

    Fig.8.The comparisons between PIC simulation results and the analytical ones at different time t,where φm=0.015.(a)The result of the first method.(b)The result of the second method.

    Fig.9.The comparisons between PIC simulation results and the analytical ones at different time t,where φm=0.025.(a)The result of the first method.(b)The result of the second method.

    Fig.10.Comparisons between the numerical results and the analytical ones.(a)The dependence of the wave amplitude(φm)on the parameter εε′ for the first methods.(b) The dependence of the wave amplitude(φm)on the parameter ε for the second methods.

    Fig.11.Comparisons between the numerical results and the analytical ones of the dependence of the width of envelope waves on the wave amplitude: (a)for the first method and(b)for the second method.

    To further understand the differences between the two methods, the dependence of the width of the envelope waves(W)on the wave amplitude(φm)is shown numerically and analytically in Fig.11.It seems from Fig.11 that the deviation of the wave width between the analytical results and the numerical ones of the first method is obvious when the wave amplitude is larger than 0.01, while the deviation of the second method is still not significant even when the wave amplitude is around 0.02.Therefore, the application scope of the envelope wave obtained from the second method is wider than that from the first method.

    5.Discussion and conclusion

    The present paper chooses a dusty plasma as an example to numerically and analytically study the differences between two different methods of obtaining NLSE.It is found that the envelope waves from the two methods have different dispersion relations, different group velocities.Specifically,the wave frequency of the first method is lower than that of the second one for the same wave number,while the group velocity of the first method is larger than that of the second method for the same wave number.It is noted that the two methods are completely different.

    Additionally, the application scopes of two different methods are shown.The results indicate that the application scope of the envelope wave obtained from the second method is wider than that of the first method.It is suggest that both methods to derive NLSE are correct in the regime of their application scope.In other words, if the amplitude of the envelope solitary wave is smaller that a critical values(the critical values are different for two different methods), the analytical results are valuable to describe the real solutions of the envelopes waves.If the amplitude of the envelope solitary wave is larger than this critical value,the neglected higher order terms in deriving the NLSE play an important role which should not be neglected.

    In conclusion,although both methods are valuable within the range of their respective application scopes,the two envelope wave solutions obtained from the two different methods are completely different.For other systems,both methods may also be used to derive the NLSE and obtain an envelope wave or other nonlinear waves such as Rogue waves,but their solutions are possibly different.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos.11965019 and 42004131) and the Foundation of Gansu Educational Committee (Grant No.2022QB-178).

    猜你喜歡
    張恒文山
    詩與象
    保證書
    詩與學(xué)
    Investigation of the confinement of high energy non-neutral proton beam in a bent magnetic mirror
    Penguins Are in Danger
    Particle-in-cell simulation of ion-acoustic solitary waves in a bounded plasma?
    文竹
    文山肉丁
    幼兒100(2018年32期)2018-12-05 05:24:26
    山歌唱文山
    民族音樂(2017年6期)2017-04-19 02:18:19
    霧和霾的十大區(qū)別
    地理教育(2015年12期)2015-12-07 11:58:30
    少妇裸体淫交视频免费看高清 | 精品卡一卡二卡四卡免费| 国产亚洲欧美在线一区二区| 一本综合久久免费| 日韩大码丰满熟妇| 他把我摸到了高潮在线观看| 成人特级黄色片久久久久久久| 国产高清国产精品国产三级| 在线看a的网站| 午夜福利视频在线观看免费| 法律面前人人平等表现在哪些方面| 久久久久精品人妻al黑| 国产在线一区二区三区精| 中文亚洲av片在线观看爽 | 日韩大码丰满熟妇| 一本一本久久a久久精品综合妖精| 午夜福利欧美成人| 欧美在线黄色| av中文乱码字幕在线| 国产亚洲精品久久久久久毛片 | 亚洲欧美一区二区三区黑人| 国产精品自产拍在线观看55亚洲 | 少妇裸体淫交视频免费看高清 | 18禁美女被吸乳视频| 人妻 亚洲 视频| tube8黄色片| 91成人精品电影| 色在线成人网| 色在线成人网| 久久亚洲精品不卡| 久久亚洲精品不卡| 乱人伦中国视频| 日韩精品免费视频一区二区三区| 999精品在线视频| 丰满饥渴人妻一区二区三| 岛国在线观看网站| 50天的宝宝边吃奶边哭怎么回事| 一区二区三区精品91| 久久中文看片网| 人妻 亚洲 视频| 午夜免费观看网址| 91麻豆精品激情在线观看国产 | av有码第一页| 国产一区有黄有色的免费视频| 悠悠久久av| 丝瓜视频免费看黄片| 不卡一级毛片| 国产高清视频在线播放一区| 午夜福利欧美成人| 少妇被粗大的猛进出69影院| 动漫黄色视频在线观看| 亚洲精品久久午夜乱码| 精品卡一卡二卡四卡免费| 午夜福利影视在线免费观看| 国产精品乱码一区二三区的特点 | 国产淫语在线视频| 国产精品国产av在线观看| 国产不卡av网站在线观看| 99精国产麻豆久久婷婷| av福利片在线| 久久久久精品国产欧美久久久| 国产精品电影一区二区三区 | 久久香蕉国产精品| 中亚洲国语对白在线视频| 十八禁人妻一区二区| 久久久久视频综合| av国产精品久久久久影院| 中文亚洲av片在线观看爽 | 成人国语在线视频| 大片电影免费在线观看免费| 啦啦啦在线免费观看视频4| 一本大道久久a久久精品| 9色porny在线观看| 亚洲精品国产色婷婷电影| 国产精品免费大片| 色尼玛亚洲综合影院| tocl精华| 成年人黄色毛片网站| 中文欧美无线码| 久久精品亚洲av国产电影网| 亚洲一区二区三区欧美精品| а√天堂www在线а√下载 | 新久久久久国产一级毛片| 超碰成人久久| 99国产精品一区二区蜜桃av | 婷婷精品国产亚洲av在线 | 女人高潮潮喷娇喘18禁视频| 91九色精品人成在线观看| 高清欧美精品videossex| 精品国产国语对白av| 亚洲欧美精品综合一区二区三区| 免费看a级黄色片| 人妻一区二区av| 亚洲av熟女| 99久久精品国产亚洲精品| 精品国内亚洲2022精品成人 | 久久精品国产亚洲av香蕉五月 | 下体分泌物呈黄色| 国产精品久久久av美女十八| 国产亚洲精品久久久久5区| 日韩有码中文字幕| 日日爽夜夜爽网站| 12—13女人毛片做爰片一| 国产真人三级小视频在线观看| 99国产精品一区二区三区| 欧美日韩成人在线一区二区| 大型av网站在线播放| 超色免费av| 一个人免费在线观看的高清视频| 亚洲美女黄片视频| 丰满迷人的少妇在线观看| 国产区一区二久久| 精品免费久久久久久久清纯 | 国产xxxxx性猛交| 精品国产一区二区三区四区第35| 一进一出好大好爽视频| 女人久久www免费人成看片| 亚洲精品中文字幕一二三四区| 日韩人妻精品一区2区三区| 在线观看免费日韩欧美大片| 19禁男女啪啪无遮挡网站| 天天添夜夜摸| 满18在线观看网站| 麻豆国产av国片精品| 久久久国产成人免费| 午夜精品久久久久久毛片777| 亚洲一区二区三区欧美精品| 免费在线观看黄色视频的| 在线观看免费午夜福利视频| 亚洲欧美激情综合另类| 在线观看日韩欧美| 国产精品亚洲av一区麻豆| 超色免费av| a在线观看视频网站| 久99久视频精品免费| 国产精品久久视频播放| 免费在线观看亚洲国产| 人人澡人人妻人| a级毛片黄视频| 丝瓜视频免费看黄片| 久久久水蜜桃国产精品网| 男人的好看免费观看在线视频 | 久久九九热精品免费| 亚洲av日韩在线播放| 日韩一卡2卡3卡4卡2021年| av一本久久久久| 色婷婷久久久亚洲欧美| 久久久久久久国产电影| 亚洲成人国产一区在线观看| 大型av网站在线播放| 国产区一区二久久| av国产精品久久久久影院| 国产麻豆69| 久久中文字幕人妻熟女| 久久香蕉激情| 亚洲精品久久午夜乱码| 欧美日韩av久久| 国产主播在线观看一区二区| 国产有黄有色有爽视频| 大香蕉久久成人网| 久久久国产成人精品二区 | 国产精品成人在线| 久99久视频精品免费| 国产精品九九99| 中国美女看黄片| 久久草成人影院| 久久国产精品人妻蜜桃| 韩国av一区二区三区四区| 女人被躁到高潮嗷嗷叫费观| 亚洲 国产 在线| 少妇 在线观看| 三上悠亚av全集在线观看| 精品人妻1区二区| 欧美日本中文国产一区发布| 在线观看免费日韩欧美大片| 亚洲人成伊人成综合网2020| 欧美大码av| 窝窝影院91人妻| 无限看片的www在线观看| 涩涩av久久男人的天堂| 国产免费现黄频在线看| 午夜福利在线观看吧| 久久久国产成人精品二区 | 久久久久久久精品吃奶| 国产麻豆69| 一级毛片女人18水好多| 久久久久久免费高清国产稀缺| 国产精品久久久人人做人人爽| 国产成人精品无人区| 国产亚洲欧美精品永久| 亚洲色图av天堂| 精品一区二区三卡| 男女之事视频高清在线观看| 免费观看a级毛片全部| 日日夜夜操网爽| 精品少妇一区二区三区视频日本电影| 国产亚洲av高清不卡| 黄片小视频在线播放| tocl精华| 啦啦啦在线免费观看视频4| 三上悠亚av全集在线观看| 国产精品一区二区在线观看99| 久久久国产成人免费| 亚洲欧美日韩高清在线视频| 黄网站色视频无遮挡免费观看| av天堂在线播放| 91麻豆精品激情在线观看国产 | 极品教师在线免费播放| 国产成人免费观看mmmm| 一本大道久久a久久精品| 精品久久久久久,| 国产伦人伦偷精品视频| 久久久国产成人精品二区 | 男男h啪啪无遮挡| 三上悠亚av全集在线观看| 日本精品一区二区三区蜜桃| 男人操女人黄网站| av一本久久久久| 建设人人有责人人尽责人人享有的| 日韩成人在线观看一区二区三区| 啦啦啦 在线观看视频| 18在线观看网站| 精品午夜福利视频在线观看一区| 伦理电影免费视频| 国产精品99久久99久久久不卡| 韩国精品一区二区三区| 亚洲av日韩精品久久久久久密| 别揉我奶头~嗯~啊~动态视频| 国产高清videossex| 老司机在亚洲福利影院| 国产蜜桃级精品一区二区三区 | 国产成人av激情在线播放| 日韩中文字幕欧美一区二区| 久久精品国产清高在天天线| 久久精品国产亚洲av高清一级| 亚洲一区高清亚洲精品| 精品国产美女av久久久久小说| 99国产综合亚洲精品| 午夜老司机福利片| 王馨瑶露胸无遮挡在线观看| 波多野结衣av一区二区av| а√天堂www在线а√下载 | 91字幕亚洲| 日韩欧美三级三区| 欧美色视频一区免费| 欧美日韩国产mv在线观看视频| 新久久久久国产一级毛片| 久久99一区二区三区| 欧洲精品卡2卡3卡4卡5卡区| 热99国产精品久久久久久7| 久久精品国产亚洲av香蕉五月 | 日韩免费高清中文字幕av| 国产成人系列免费观看| 国产精品 国内视频| 久久人人爽av亚洲精品天堂| 欧美 日韩 精品 国产| 在线天堂中文资源库| 免费在线观看黄色视频的| 成人永久免费在线观看视频| 天天影视国产精品| 99riav亚洲国产免费| 国产日韩一区二区三区精品不卡| 在线十欧美十亚洲十日本专区| 在线视频色国产色| 精品福利永久在线观看| 成人18禁在线播放| 国产一区二区三区视频了| 俄罗斯特黄特色一大片| 日本撒尿小便嘘嘘汇集6| 色老头精品视频在线观看| 亚洲成av片中文字幕在线观看| 又大又爽又粗| 人妻丰满熟妇av一区二区三区 | 久久久国产精品麻豆| 亚洲成a人片在线一区二区| 欧美 亚洲 国产 日韩一| 巨乳人妻的诱惑在线观看| 欧美在线一区亚洲| 黄色丝袜av网址大全| 一进一出抽搐gif免费好疼 | tocl精华| 久久国产亚洲av麻豆专区| videos熟女内射| 免费人成视频x8x8入口观看| 久久ye,这里只有精品| 一区二区三区激情视频| 天堂动漫精品| 99热国产这里只有精品6| 国产成+人综合+亚洲专区| 亚洲精品中文字幕在线视频| 日本精品一区二区三区蜜桃| 黄色片一级片一级黄色片| 欧美日韩精品网址| www.999成人在线观看| 日本vs欧美在线观看视频| 国产亚洲av高清不卡| 亚洲熟妇熟女久久| 大码成人一级视频| 女同久久另类99精品国产91| 国产男女超爽视频在线观看| 亚洲欧洲精品一区二区精品久久久| 超碰成人久久| 久久久国产欧美日韩av| 免费观看人在逋| 欧美国产精品一级二级三级| 日本黄色视频三级网站网址 | 自拍欧美九色日韩亚洲蝌蚪91| 色播在线永久视频| 丰满饥渴人妻一区二区三| 亚洲精品av麻豆狂野| 色在线成人网| 欧美日韩成人在线一区二区| 亚洲 欧美一区二区三区| 久久久精品区二区三区| 视频区欧美日本亚洲| 精品午夜福利视频在线观看一区| 窝窝影院91人妻| 少妇 在线观看| 色播在线永久视频| 欧美日韩亚洲高清精品| 两个人免费观看高清视频| 精品熟女少妇八av免费久了| 国产精品偷伦视频观看了| 午夜免费鲁丝| 天天影视国产精品| tocl精华| 热99国产精品久久久久久7| 国产精品国产av在线观看| 亚洲人成电影观看| 看片在线看免费视频| 婷婷精品国产亚洲av在线 | 一二三四社区在线视频社区8| 日韩大码丰满熟妇| 久久精品亚洲精品国产色婷小说| 亚洲专区中文字幕在线| 高清黄色对白视频在线免费看| 国产精品欧美亚洲77777| 一区二区三区激情视频| 19禁男女啪啪无遮挡网站| 欧美丝袜亚洲另类 | 久久久国产成人免费| 国产精品电影一区二区三区 | 一区二区三区精品91| 成人18禁在线播放| 一进一出抽搐gif免费好疼 | 亚洲视频免费观看视频| 一级片免费观看大全| 91大片在线观看| 飞空精品影院首页| 久久人妻熟女aⅴ| 国内久久婷婷六月综合欲色啪| 精品高清国产在线一区| 国产精品久久久久成人av| 熟女少妇亚洲综合色aaa.| 成人特级黄色片久久久久久久| 91精品三级在线观看| 国产97色在线日韩免费| 久久人妻av系列| 老熟妇仑乱视频hdxx| 亚洲中文av在线| 精品久久久久久电影网| 黑人巨大精品欧美一区二区mp4| 午夜福利在线免费观看网站| 人人澡人人妻人| 精品一品国产午夜福利视频| 99热网站在线观看| 老熟妇仑乱视频hdxx| 满18在线观看网站| 黑人欧美特级aaaaaa片| 精品电影一区二区在线| 国产成人精品久久二区二区91| av天堂久久9| 免费黄频网站在线观看国产| 欧美日韩福利视频一区二区| 老熟妇乱子伦视频在线观看| 久久人妻福利社区极品人妻图片| 精品第一国产精品| 涩涩av久久男人的天堂| 久久精品成人免费网站| 久久国产亚洲av麻豆专区| 久久亚洲精品不卡| av片东京热男人的天堂| 国产无遮挡羞羞视频在线观看| 国产一区二区激情短视频| svipshipincom国产片| 悠悠久久av| 久久天躁狠狠躁夜夜2o2o| 91老司机精品| 亚洲成人免费av在线播放| 国产精品久久久久久人妻精品电影| 老司机午夜福利在线观看视频| 高清欧美精品videossex| 黄色女人牲交| 日本wwww免费看| 又紧又爽又黄一区二区| 91成年电影在线观看| 国产精品 欧美亚洲| 天天躁夜夜躁狠狠躁躁| 亚洲av熟女| 丁香六月欧美| 亚洲国产看品久久| 精品无人区乱码1区二区| 变态另类成人亚洲欧美熟女 | 亚洲情色 制服丝袜| 久久国产精品男人的天堂亚洲| 久久香蕉激情| 麻豆乱淫一区二区| 亚洲九九香蕉| 亚洲色图综合在线观看| 久久久国产欧美日韩av| 啦啦啦免费观看视频1| 久久久精品国产亚洲av高清涩受| 两性午夜刺激爽爽歪歪视频在线观看 | 视频区欧美日本亚洲| 亚洲av第一区精品v没综合| 搡老乐熟女国产| 国产精品久久久av美女十八| 久久精品国产亚洲av高清一级| 男男h啪啪无遮挡| 嫩草影视91久久| 午夜福利在线观看吧| 咕卡用的链子| 中文字幕人妻丝袜一区二区| 亚洲av第一区精品v没综合| 久久久久精品国产欧美久久久| 国产精品久久久久久精品古装| 男女下面插进去视频免费观看| 国产高清videossex| 十八禁高潮呻吟视频| 如日韩欧美国产精品一区二区三区| 国产在视频线精品| 国产一卡二卡三卡精品| 欧美丝袜亚洲另类 | 日本a在线网址| 法律面前人人平等表现在哪些方面| 一本综合久久免费| avwww免费| 欧美亚洲 丝袜 人妻 在线| 精品一区二区三区av网在线观看| 韩国精品一区二区三区| 久久中文字幕人妻熟女| 国产一区在线观看成人免费| 成年人午夜在线观看视频| 日韩成人在线观看一区二区三区| 国产精品九九99| 国产成人av教育| 亚洲 欧美一区二区三区| 成人特级黄色片久久久久久久| 一级a爱片免费观看的视频| 日韩视频一区二区在线观看| 午夜老司机福利片| 精品国内亚洲2022精品成人 | www.精华液| 在线观看66精品国产| 人妻一区二区av| 操出白浆在线播放| netflix在线观看网站| 日韩成人在线观看一区二区三区| 叶爱在线成人免费视频播放| 99久久综合精品五月天人人| 成年版毛片免费区| 人妻 亚洲 视频| 国产黄色免费在线视频| 男女高潮啪啪啪动态图| av免费在线观看网站| www.999成人在线观看| 日本撒尿小便嘘嘘汇集6| 亚洲午夜精品一区,二区,三区| 久久精品aⅴ一区二区三区四区| 最近最新免费中文字幕在线| 黄色怎么调成土黄色| 精品人妻1区二区| 欧美精品人与动牲交sv欧美| 黑人欧美特级aaaaaa片| 国产在线一区二区三区精| 久久精品国产亚洲av高清一级| 亚洲第一欧美日韩一区二区三区| 9191精品国产免费久久| 成年动漫av网址| 一区在线观看完整版| 91九色精品人成在线观看| 国产高清激情床上av| 在线观看免费日韩欧美大片| 亚洲成人手机| 欧美黑人精品巨大| 99精品久久久久人妻精品| 国产精品乱码一区二三区的特点 | 精品国产一区二区久久| 国产亚洲精品一区二区www | 99久久国产精品久久久| 国产在视频线精品| 精品乱码久久久久久99久播| 99热网站在线观看| 久久久久国产精品人妻aⅴ院 | 夜夜夜夜夜久久久久| 九色亚洲精品在线播放| 亚洲中文av在线| 国产男女内射视频| 精品一区二区三区视频在线观看免费 | av片东京热男人的天堂| 亚洲专区国产一区二区| 成人亚洲精品一区在线观看| 大片电影免费在线观看免费| 久久婷婷成人综合色麻豆| 中文字幕另类日韩欧美亚洲嫩草| 国产成人啪精品午夜网站| 欧美日韩亚洲高清精品| 亚洲av第一区精品v没综合| 亚洲情色 制服丝袜| 亚洲国产精品sss在线观看 | 精品亚洲成国产av| 亚洲精华国产精华精| 亚洲av片天天在线观看| 国产精品国产av在线观看| 精品一区二区三区四区五区乱码| 欧美日韩瑟瑟在线播放| 国产午夜精品久久久久久| 校园春色视频在线观看| 大型黄色视频在线免费观看| 中亚洲国语对白在线视频| 精品国产国语对白av| 1024香蕉在线观看| 首页视频小说图片口味搜索| 国产一区二区三区视频了| 69av精品久久久久久| 男男h啪啪无遮挡| 国产视频一区二区在线看| 国产有黄有色有爽视频| 亚洲欧美日韩高清在线视频| 国产一区在线观看成人免费| 免费在线观看黄色视频的| 成年版毛片免费区| 成在线人永久免费视频| 最近最新中文字幕大全电影3 | 人人澡人人妻人| 99re在线观看精品视频| 午夜老司机福利片| 亚洲精品在线美女| 夜夜爽天天搞| 91九色精品人成在线观看| www.999成人在线观看| √禁漫天堂资源中文www| 新久久久久国产一级毛片| 欧美日韩视频精品一区| 成年版毛片免费区| 久久中文字幕一级| 久久国产亚洲av麻豆专区| 18禁国产床啪视频网站| 亚洲精品乱久久久久久| 国产在线观看jvid| www.精华液| 亚洲成人免费av在线播放| 操出白浆在线播放| 亚洲精品在线美女| 午夜福利在线观看吧| av不卡在线播放| 十八禁网站免费在线| 在线播放国产精品三级| 搡老岳熟女国产| 99热网站在线观看| 三上悠亚av全集在线观看| 久久性视频一级片| 曰老女人黄片| 91av网站免费观看| 国产激情欧美一区二区| 人妻 亚洲 视频| 91麻豆av在线| 国产亚洲精品第一综合不卡| 别揉我奶头~嗯~啊~动态视频| 色老头精品视频在线观看| 久久中文字幕人妻熟女| 99国产精品99久久久久| 国产91精品成人一区二区三区| 久久久国产成人精品二区 | 老司机在亚洲福利影院| 久久人妻熟女aⅴ| 精品国产国语对白av| 国产亚洲欧美在线一区二区| 精品少妇久久久久久888优播| 一区福利在线观看| 精品午夜福利视频在线观看一区| 国产欧美日韩一区二区三区在线| 亚洲精华国产精华精| 国产精品国产高清国产av | 丰满迷人的少妇在线观看| 日韩精品免费视频一区二区三区| 国产精品秋霞免费鲁丝片| 12—13女人毛片做爰片一| 大香蕉久久成人网| 麻豆乱淫一区二区| 视频在线观看一区二区三区| 午夜激情av网站| 精品福利永久在线观看| 麻豆乱淫一区二区| 美女 人体艺术 gogo| 国产精品久久久久久精品古装| 国产欧美日韩综合在线一区二区| 纯流量卡能插随身wifi吗| 别揉我奶头~嗯~啊~动态视频| 午夜视频精品福利| a在线观看视频网站| 不卡一级毛片| 国产精品秋霞免费鲁丝片| 久久狼人影院| 国产aⅴ精品一区二区三区波| 日韩成人在线观看一区二区三区| 久久久国产一区二区| 亚洲成av片中文字幕在线观看| 热re99久久国产66热| 啪啪无遮挡十八禁网站| ponron亚洲| 夫妻午夜视频| 久久久久久久午夜电影 | 欧美成人午夜精品| 美女 人体艺术 gogo|