• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Particle-in-cell simulation of ion-acoustic solitary waves in a bounded plasma?

    2021-03-19 03:20:52LinWei位琳BoLiu劉博FangPingWang王芳平HengZhang張恒andWenShanDuan段文山
    Chinese Physics B 2021年3期
    關(guān)鍵詞:劉博張恒文山

    Lin Wei(位琳), Bo Liu(劉博), Fang-Ping Wang(王芳平), Heng Zhang(張恒), and Wen-Shan Duan(段文山)

    College of Physics and Electronic Engineering,Northwest Normal University,Lanzhou 730070,China

    Keywords: ion-acoustic solitary waves,particle-in-cell simulation,bounded plasmas

    1. Introduction

    Nonlinear waves exist in many physical systems, such as in water,[1]optics,[2,3]and plasmas.[4-6]They have played important roles in the study of plasma physics.[7-10]They have attracted a great deal of interest because of their widely occurrence in active galactic nuclei,[11-14]pulsar magnetosphere,[15,16]solar atmosphere, and the inner regions of the accretion disks surrounding the central black holes[17-19]in the past few decades. Many authors pay attention to nonlinear waves, especially ion-acoustic solitary waves (IASWs), due to their importance in modern plasma physics.[20-22]IASWs have been theoretically and experimentally studied in various laboratory and space plasmas.[23-32]

    Many researchers have investigated the characteristics of IASWs described by both the KdV equation and the nonlinear Schr¨odinger equation (NLSE) to study the phenomenon observed in various laboratory and space plasma applications.[33-40]On the other hand, a large number of numerical simulation studies have been done for IASWs by using PIC method to check the theoretical results.[41-44]For instance,Kakad et al.[42]have studied the characteristics of the ion-acoustic solitons such as amplitude, width and speed by both fluid and PIC simulations. They found that PIC and fluid results are almost consistent with small amplitude initial density perturbations. Qi et al.[43]have investigated the head-on collision between two IASWs by using the PIC simulation method in a plasma containing hot electrons and cold ions,and it is found that the PIC results are reliable if the amplitudes of both the colliding solitary waves are small enough. Sharma et al.[44]have studied the formation and propagation of large amplitude ion-acoustic solitons using a one-dimensional PIC method,and it suggests that when Mach numbers are low,the PIC simulation results are in close agreement with the KdV soliton solutions.

    Although IASWs have been studied extensively by both theoretical and numerical methods, most of these studies are for unbounded plasmas. However, the plasmas in the laboratory are usually bounded in finite geometry. Studies of IASWs in a bounded plasma are meaningful because of its importance in laboratory experiments and industrial applications. Some theoretical studies have been done for solitary waves in bounded plasmas,[45-49]such as KdV solitary waves,etc.Following these theoretical works,we study not only KdV solitary waves, but also dark envelope solitons in a bounded plasma by using the PIC simulation method and considering dissipation effects of the plasma fluid. Our intention in the present paper is to verify the analytical results by PIC numerical simulation.Using the reductive perturbation technique,we obtain a modified-KdV equation and a modified-NLSE to describe the damping IASWs.We also investigate how the cylinder radius and the viscosity coefficient of the plasma affect the characteristics of IASWs.

    The layout of this paper is as follows: The analytical study on the IASWs by using the reductive perturbation method is given in Section 2. In Section 3, we introduce the PIC simulation method. The PIC simulation results and the analytical ones are both discussed and compared in Section 4.Finally,our discussion and conclusion are given in Section 5.

    2. Basic equations

    We consider a two-component electron-ion plasma which is bounded in a finite cylinder with radius R.[45-49]Taking cylindrical coordinates,the equations of the motion of ion fluid are

    where niand neare the ion and electron number densities, r,θ,and x are the radial,polar angle,and axial coordinates,t is the time. υr, υθ, and υxrepresent the components of the ion velocity in the cylindrical coordinate system. miis the mass of the ions. γ is the adiabatic coefficient, Tiis the ion temperature. ν is the viscosity coefficient of the plasma. ? is the electrostatic potential. nesatisfies Boltzmann distribution ne=ne0exp(e?/kBTe),kBis the Boltzmann constant,Teis the electron temperature.

    We consider a symmetrical cylinder in the present paper.We assume that υr= υθ= 0, i.e., υx=V(r,x,t), which is usually satisfied in some special cases, such as the external magnetic field is large enough.[47,48]Under these assumptions,equations(1)-(3)can be modified as follows:

    The dimen

    In the following, we focus on the case that 1/k ?R,where k is the wavenumber. Notice that in this limit, the axial and radial equations are completely independent. Accordingly,we take[45-48]

    Substituting Eqs.(10)-(12)into Eq.(9),we obtain the following equations:

    where equation (13) is a Bessel equation whose solution is a Bessel function Y0(r)=J0(βr),with ζ =?β2. ζ is the eigenvalue of Bessel equation. β will be determined by the boundary condition which will be given later.Thus,equation(7)-(9)become

    We consider the first boundary condition J0(βR)=0,i.e.,the potential at the boundary is zero.By solving the eigenvalue problem of the Bessel function,we obtain β =3π/4R. In addition,as we consider the second or third boundary conditions,only the value of β changes,the others are the same as the first boundary condition.

    By averaging the physical quantities on the radial direction,we reduce the model to a one-dimensional case,in which the influence of the radius R is included in the parameter β.

    2.1. Modified-KdV equation

    In order to study the KdV solitary waves in a plasma,we introduce the following stretched coordinates according to the reductive perturbation technique: ξ =ε(x ?ct),τ =ε3t,and ν =ε3ν0,where ε is a dimensionless parameter which stands for the strength of the nonlinearity,c is the velocity of the linear wave. Then,the dependent variables are expanded as follows:

    Substituting Eq.(18)into Eqs.(15)-(17), in the first order of ε,we obtain

    In the next higher order,we obtain the modified-KdV equation

    where

    If D=0, equation (22) is a standard KdV equation, its solution is

    If D/=0,equation(22)describes a damping KdV solitary wave,its approximate solution is[50,51]

    2.2. Modified-NLSE

    In order to study the envelope solitary waves in a plasma,we introduce the following stretched coordinates: ξ =ε(x ?υgt), τ =ε2t, ν =ε2ν0, where υgis the group velocity. All the physical quantities are expanded as follows:

    By substituting these expansions into Eqs.(15)-(17),we have the following results: the dispersion relation

    the group velocity

    and finally the modified-NLSE

    where the dispersion coefficient P and the nonlinearity coefficient Q are as follows:

    the damping coefficient D is

    If D=0,equation(28)is a standard NLSE.When PQ <0,its solution is

    If D/=0,equation(28)is a modified-NLSE,its approximate solution(PQ <0)is

    3. Particle-in-cell method

    The one-dimensional PIC simulation method is applied to study the propagation of the KdV solitary waves and the dark envelope solitons in a viscous bounded plasma in this work.During the simulation, the ions are regarded as kinetic particles, while electrons are modeled as Boltzmann distributed background. Generally, real systems contain extremely lots of particles. In order to make simulations efficient, superparticles(SPs)are used. Each SP has a weight factor S specifying the number of real particles contained. The whole simulation region is divided into grid cells. At each time step, the velocities and positions of SPs are weighted to all the grids to calculate the charge density.Once the charge density obtained,the Poisson equation(electrostatic model)will be solved to derive the potential of each grid,and the electric field E at each grid is further derived. Then, each SP will be driven by the electric field, and the new position and velocity are obtained according to the motion equation. The equation of motion of the system is Newton’s equation

    where qE is the electric field force, ?(γ′/n)(?n/?x) is the pressure of ion fluid,?νβ2υ is the viscous force.

    In addition,we need to give the value of the parameter β in the PIC simulation,which is determined by the radius of the cylinder. That is,the bounded plasma is reflected on β in the PIC simulation.

    3.1. Initial condition of the damping KdV solitary wave

    In the PIC simulation,initial conditions are chosen from the analytical solution expressed in Eq.(24)at t=0. The initial values of the number density and the velocity of the ions are

    respectively. The fixed boundary conditions are used. The parameters chosen in the simulation are as follows: Δx=0.3,Δt =0.0125, the number of grid cells is Nx=10000 and the number of SPs contained per cell is 50, the total length of xaxis is Lx=ΔxNx. ε =0.2, γ′=0.003,x0=4Lx/15. This initial disturbance will evolve as the time increases.

    3.2. Initial condition of the damping dark envelope soliton

    In the PIC simulation,initial conditions are chosen from the analytical solution expressed in Eq.(39)at t=0. The initial values of the number density and the velocity of the ions are given below:

    respectively. The boundary conditions along the x-axis are periodic. The parameters chosen in the simulation are as follows: Δx = 0.3, Δt = 0.0125, the number of grid cells is Nx=30000 and the number of SPs contained per cell is 50,the total length of x axis is Lx=ΔxNx. ε =0.01, γ′=0.003,k=0.1,x0=Lx/4. This initial disturbance will evolve as the time increases.

    4. PIC simulation results

    4.1. KdV solitary wave

    Fig.1. The PIC simulation results of the evolution of the KdV solitary wave at different time, where ε =0.2, ψ0 =0.1, γ′ =0.003, R=50, ν =0.4,D=0.056.

    Fig.2. The dependence of the amplitude on the time for KdV solitary waves with ε =0.2,ψ0 =0.1,γ′ =0.003. (a)R=50,ν =0,D=0,Ds =0; (b)R=50, ν =0.4, D=0.056, Ds =0.053; (c)R=50, ν =1.0, D=0.139,Ds=0.134. The red lines represent the analytical results,and the blue dots represent the simulation results. Simulation results for amplitudes are compared with analytical expression (Eq. (24)) and observed that both results are in good agreement,as shown in above graph.

    Furthermore, the dependence of the damping coefficient D(as well as Ds)on both the cylinder radius R and the viscosity coefficient ν is shown in Fig.3.It is noted that the damping coefficient decreases as the cylinder radius R increases,while it increases as the viscosity coefficient ν increases. It is also found that the simulation results and analytical ones are almost consistent.

    Fig.3. Comparisons of the damping coefficient between the simulation results and the analytical ones. (a) The dependence of damping coefficient D on the cylinder radius R, where ε =0.2, ψ0 =0.1, γ′ =0.003, ν =1.0;(b)the dependence of damping coefficient D on the viscosity coefficient ν,where ε=0.2,ψ0=0.1,γ′=0.003,R=50.The red lines are the analytical results,and the blue dots are the simulation results.

    4.2. Dark envelope solitary wave

    The evolution of the dark envelope solitary waves under the effects of the viscous force in the PIC simulation is shown in Fig.4 at different times. The initial amplitude is ψ0=0.00115. It can be observed that as time increases, the amplitude of this dark envelope solitary wave decreases. In order to get more insight into how the amplitudes of the dark envelope solitary waves attenuate,figure 5 shows the variation of the amplitudes with the time under different system parameters. Notice that when there is a viscous force,the amplitude decreases exponentially with time. We also define the same damping coefficient Dsfrom the PIC simulation as that of the KdV solitary wave. It is noted from Fig.5 that the simulation results are close in good agreement with the analytical ones,i.e.,Ds≈D. Also,it is found that the larger the damping coefficient,the stronger the attenuation of the wave.

    Fig.4. The PIC simulation results of the evolution of the dark envelope solitary waves at different times, where ε =0.01, k=0.1, γ′ =0.003,R=50,ν =0.4,D=0.056.

    Fig.5. The dependence of the amplitude on time for dark envelope solitary waves with ε =0.01,k=0.1,γ′=0.003. (a)R=50,ν =0,D=0,Ds=0;(b)R=50,ν =0.4,D=4.44,Ds =4.62; (c)R=50,ν =1.0,D=11.10,Ds =11.00. The red lines represent the analytical results,and the blue dots represent the simulation results. Simulation results for amplitudes are compared with analytical expression(Eq.(39))and observed that both results are in good agreement,as shown in the above graph.

    Fig.6. Comparisons of the damping coefficient between the simulation results and the analytical ones. (a) The dependence of damping coefficient D on the cylinder radius R, where ε =0.01, k=0.1, γ′ =0.003, ν =1.0;(b)the dependence of damping coefficient D on the viscosity coefficient ν,where ε=0.01,k=0.1,γ′=0.003,R=50. The red lines are the analytical results,and the blue dots are the simulation results.

    In order to understand how the damping coefficient depends on the system parameters, figure 6 shows the dependence of the damping coefficient D(or Ds)on the cylinder radius R and the viscosity coefficient ν.It is noted that the damping coefficient decreases as the cylinder radius R increases,while it increases as the viscosity coefficient ν increases. It is also found that the analytical results are consistent with the simulation results.

    5. Discussion and conclusion

    In this paper,we have studied some nonlinear waves of a viscous plasma composed of Boltzmann distributed electrons and ions fluid confined in a finite cylinder. By averaging the physical quantities on the radial direction in some cases, we reduce this system to a simple one-dimensional case. It is found that the effects of the bounded geometry(the radius of the cylinder in this case) can be included in the damping coefficient or the equivalent parameter β which also depends on what kind of the boundary condition.

    Furthermore, one-dimensional PIC simulation method has been applied to study the formation and propagation of the damping KdV solitary waves and dark envelope solitary waves in a viscous bounded plasma. It is observed that the amplitudes of both the KdV solitary waves and the dark envelope solitary waves decrease exponentially as time increases.We define a damping coefficient Dsin the PIC simulation. It is found that the numerical results are in good agreement with the analytical ones, i.e., Ds≈D. The dependence of damping coefficient on both the cylinder radius R and the viscosity coefficient ν is also obtained numerically by using the PIC simulation method,which is consistent with the analytical results. It also suggests that the damping coefficient decreases as the cylinder radius increases, while increases as the viscosity coefficient increases. In the future, we will try to do three-dimensional PIC simulation in the cylindrical coordinates. Our present one-dimensional model is the result of the simplification of the three-dimensional model. We consider a symmetrical cylinder ignoring the angular motion and take the average value in the radial direction. When we only focus on the axial motion of the particles,the three-dimensional PIC simulation in the cylindrical coordinate becomes the onedimensional PIC simulation in the Cartesian coordinate. The one-dimensional model is a special case of symmetry, while the three-dimensional model is a general situation.

    There are debates for a long time about whether the solitary wave exists in a bounded plasma.[52,53]Present paper tries to answer this question. We distinguish whether the solitary wave exists by the following method. We define that the solitary wave does not exist in a bounded plasma if the amplitude of the solitary wave becomes less than half of its initial value after it propagates the distance of five Debye lengths.On the other hand,the solitary wave exists in the system. By using this definition, we find a critical damping coefficient Dc=Ciln2/5λD. It seems that when D <Dc, the solitary wave can propagate, while it can not propagate in a bounded plasma when D >Dc.

    Finally, our results have potential applications in laboratory experiments.[47-49]For example, if a wave is excited at one end of a finite cylindrical tube,we can detect it at the other end of the cylindrical tube in a micro-gravity condition.Therefore,the damping coefficient can be obtained by measuring the wave amplitudes at both ends of the cylindrical tube. Then the viscosity coefficient of the plasma can be indirectly obtained from the relationship between the damping coefficient and the viscosity coefficient of the plasma.

    猜你喜歡
    劉博張恒文山
    Differences between two methods to derive a nonlinear Schr?dinger equation and their application scopes
    詩與象
    詩與學(xué)
    Detecting the meteoroid by measuring the electromagnetic waves excited by the collision between the hypervelocity meteoroid and spacecraft
    A mathematical analysis: From memristor to fracmemristor
    Investigation of the confinement of high energy non-neutral proton beam in a bent magnetic mirror
    文竹
    Quantum Fisher Information Gap for Systems with Nonlinear Hamiltonians?
    霧和霾的十大區(qū)別
    地理教育(2015年12期)2015-12-07 11:58:30
    Holocene paleoearthquake activity along the 2008 Wenchuan earthquake ruptures of the Beichuan and Pengguan faults
    岛国在线观看网站| 性色av一级| 亚洲第一av免费看| 国产男女超爽视频在线观看| 视频区图区小说| 人人妻人人添人人爽欧美一区卜| 久热爱精品视频在线9| 日本欧美视频一区| 男女下面插进去视频免费观看| 两人在一起打扑克的视频| 黄色毛片三级朝国网站| 少妇粗大呻吟视频| 精品人妻熟女毛片av久久网站| 亚洲人成电影观看| 亚洲精品国产一区二区精华液| 美女视频免费永久观看网站| 黄色a级毛片大全视频| 18在线观看网站| 中国美女看黄片| 大码成人一级视频| a 毛片基地| www.自偷自拍.com| 99精国产麻豆久久婷婷| 两人在一起打扑克的视频| 精品高清国产在线一区| 老熟女久久久| 国产精品av久久久久免费| 一区二区av电影网| 王馨瑶露胸无遮挡在线观看| 97在线人人人人妻| 久久人妻熟女aⅴ| 免费不卡黄色视频| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲午夜精品一区,二区,三区| 丝袜喷水一区| 大型av网站在线播放| 老司机午夜福利在线观看视频 | 欧美精品亚洲一区二区| 一区福利在线观看| 免费高清在线观看视频在线观看| 久久人人爽av亚洲精品天堂| 亚洲国产成人一精品久久久| 老司机影院毛片| 一区二区av电影网| 一本久久精品| 天天躁狠狠躁夜夜躁狠狠躁| 成在线人永久免费视频| 日本vs欧美在线观看视频| 91精品伊人久久大香线蕉| 久久久久久人人人人人| videosex国产| 一本—道久久a久久精品蜜桃钙片| 午夜91福利影院| 99久久人妻综合| 成人亚洲精品一区在线观看| 国产区一区二久久| 搡老熟女国产l中国老女人| 国产深夜福利视频在线观看| 高清在线国产一区| 免费日韩欧美在线观看| 日韩欧美一区二区三区在线观看 | 热99久久久久精品小说推荐| 久久九九热精品免费| 亚洲情色 制服丝袜| 性色av一级| 捣出白浆h1v1| 精品国产一区二区久久| 免费日韩欧美在线观看| 亚洲成人国产一区在线观看| 国产成人影院久久av| 一级毛片电影观看| 亚洲精品中文字幕在线视频| 一个人免费在线观看的高清视频 | 欧美 日韩 精品 国产| 亚洲精品美女久久久久99蜜臀| 又大又爽又粗| 一区二区三区四区激情视频| 91成人精品电影| 中文字幕另类日韩欧美亚洲嫩草| 免费av中文字幕在线| 国产精品1区2区在线观看. | 男人舔女人的私密视频| 中文字幕人妻丝袜制服| 国产精品欧美亚洲77777| 狂野欧美激情性bbbbbb| 国产一区二区三区综合在线观看| 亚洲伊人久久精品综合| 777久久人妻少妇嫩草av网站| 两个人免费观看高清视频| 免费看十八禁软件| 50天的宝宝边吃奶边哭怎么回事| 12—13女人毛片做爰片一| 国产在线免费精品| 日韩制服骚丝袜av| 亚洲专区字幕在线| 91麻豆精品激情在线观看国产 | tube8黄色片| 亚洲av日韩在线播放| 久久久国产一区二区| 欧美日韩av久久| 在线永久观看黄色视频| 国产精品成人在线| 一本综合久久免费| 国产精品久久久人人做人人爽| 久久精品亚洲av国产电影网| 9191精品国产免费久久| 国产主播在线观看一区二区| 波多野结衣一区麻豆| 久久国产亚洲av麻豆专区| 午夜免费成人在线视频| 日韩人妻精品一区2区三区| 久久ye,这里只有精品| 999久久久精品免费观看国产| 十八禁网站网址无遮挡| 日韩一卡2卡3卡4卡2021年| 一本大道久久a久久精品| 精品一区二区三卡| 制服诱惑二区| 在线十欧美十亚洲十日本专区| 日韩欧美一区视频在线观看| 国产欧美日韩综合在线一区二区| 老司机影院成人| 热99久久久久精品小说推荐| 日韩制服骚丝袜av| 秋霞在线观看毛片| 人人妻人人澡人人爽人人夜夜| 桃花免费在线播放| 黄网站色视频无遮挡免费观看| 国产欧美亚洲国产| 久久久国产一区二区| 日韩一区二区三区影片| 国产三级黄色录像| 亚洲avbb在线观看| 日韩中文字幕欧美一区二区| 精品国产一区二区三区久久久樱花| 日韩中文字幕视频在线看片| 午夜两性在线视频| 午夜福利免费观看在线| 精品一区在线观看国产| 在线亚洲精品国产二区图片欧美| cao死你这个sao货| 欧美另类一区| 亚洲va日本ⅴa欧美va伊人久久 | 亚洲精品一二三| 欧美黄色片欧美黄色片| 成人亚洲精品一区在线观看| 亚洲人成电影观看| 成年女人毛片免费观看观看9 | 在线精品无人区一区二区三| 久久99一区二区三区| 极品人妻少妇av视频| 黑人欧美特级aaaaaa片| 丝袜脚勾引网站| 精品人妻1区二区| 国产欧美日韩精品亚洲av| 男女边摸边吃奶| 各种免费的搞黄视频| 精品久久久精品久久久| www.自偷自拍.com| 性高湖久久久久久久久免费观看| 日韩制服骚丝袜av| 黑人操中国人逼视频| 亚洲全国av大片| 亚洲人成77777在线视频| 国产一区二区在线观看av| www.熟女人妻精品国产| 国产高清videossex| 久热爱精品视频在线9| 国产日韩欧美在线精品| 在线天堂中文资源库| 亚洲人成77777在线视频| 桃红色精品国产亚洲av| 国产男人的电影天堂91| 男女国产视频网站| 午夜两性在线视频| 免费在线观看完整版高清| 老鸭窝网址在线观看| 777米奇影视久久| 国产精品99久久99久久久不卡| 日韩 欧美 亚洲 中文字幕| 啦啦啦在线免费观看视频4| 欧美国产精品va在线观看不卡| 欧美成人午夜精品| 国产一卡二卡三卡精品| 美女脱内裤让男人舔精品视频| 亚洲欧美精品自产自拍| 99热国产这里只有精品6| 黄色a级毛片大全视频| 黄网站色视频无遮挡免费观看| 午夜福利乱码中文字幕| 天堂中文最新版在线下载| 少妇人妻久久综合中文| 啦啦啦视频在线资源免费观看| 啦啦啦啦在线视频资源| 国产精品久久久人人做人人爽| 亚洲一码二码三码区别大吗| 夜夜夜夜夜久久久久| 精品高清国产在线一区| 久久精品国产a三级三级三级| 国产一区二区激情短视频 | 亚洲精品国产av成人精品| 欧美激情 高清一区二区三区| 中文字幕人妻熟女乱码| 日日夜夜操网爽| 在线十欧美十亚洲十日本专区| 亚洲欧美日韩高清在线视频 | av有码第一页| 最新的欧美精品一区二区| 欧美精品av麻豆av| 亚洲成人手机| 精品国内亚洲2022精品成人 | 伦理电影免费视频| 国产成人a∨麻豆精品| 久久久久久免费高清国产稀缺| 亚洲国产看品久久| 黑丝袜美女国产一区| 一区二区三区精品91| 亚洲欧洲日产国产| 在线十欧美十亚洲十日本专区| 欧美黑人精品巨大| 欧美日韩成人在线一区二区| 久久久久精品国产欧美久久久 | 在线永久观看黄色视频| 国产精品久久久久久人妻精品电影 | 久久久国产精品麻豆| 久久久国产成人免费| 国产免费视频播放在线视频| 亚洲精品一区蜜桃| 国产福利在线免费观看视频| 熟女少妇亚洲综合色aaa.| 一级a爱视频在线免费观看| 亚洲人成77777在线视频| 久久午夜综合久久蜜桃| 国产淫语在线视频| 国产精品久久久久久精品古装| 新久久久久国产一级毛片| 91九色精品人成在线观看| 国产视频一区二区在线看| 精品一品国产午夜福利视频| 亚洲欧美一区二区三区黑人| 极品人妻少妇av视频| 丝袜美足系列| 日韩欧美国产一区二区入口| 99精品欧美一区二区三区四区| 午夜福利在线观看吧| 2018国产大陆天天弄谢| 一边摸一边抽搐一进一出视频| 天天躁狠狠躁夜夜躁狠狠躁| 成年美女黄网站色视频大全免费| 日韩大片免费观看网站| 国产亚洲精品一区二区www | 中文字幕色久视频| 美女国产高潮福利片在线看| 99久久人妻综合| 捣出白浆h1v1| 大香蕉久久成人网| 制服人妻中文乱码| 国产精品久久久久久精品古装| 精品人妻熟女毛片av久久网站| 操出白浆在线播放| 精品国产乱子伦一区二区三区 | 国产黄频视频在线观看| 青青草视频在线视频观看| 久久久久久免费高清国产稀缺| 欧美黄色片欧美黄色片| 国产熟女午夜一区二区三区| 亚洲欧美日韩高清在线视频 | 国产精品久久久人人做人人爽| 亚洲av男天堂| 自线自在国产av| 青草久久国产| 欧美成人午夜精品| 亚洲一区二区三区欧美精品| a级毛片黄视频| 午夜福利在线免费观看网站| 啦啦啦在线免费观看视频4| 久久久欧美国产精品| 大码成人一级视频| 无遮挡黄片免费观看| 国产熟女午夜一区二区三区| 不卡一级毛片| 丝袜人妻中文字幕| 日韩 亚洲 欧美在线| 黄频高清免费视频| 国产精品亚洲av一区麻豆| 老汉色∧v一级毛片| 电影成人av| 又黄又粗又硬又大视频| 最近中文字幕2019免费版| 国产成人av激情在线播放| 国产精品影院久久| 日本wwww免费看| 超碰97精品在线观看| 久久免费观看电影| 欧美日韩精品网址| 大型av网站在线播放| 精品久久久精品久久久| 最近中文字幕2019免费版| 国产日韩一区二区三区精品不卡| 久久久精品免费免费高清| 老司机午夜福利在线观看视频 | 国产免费av片在线观看野外av| 老司机午夜福利在线观看视频 | 欧美变态另类bdsm刘玥| 亚洲精品国产一区二区精华液| 午夜福利视频在线观看免费| 99热国产这里只有精品6| 啦啦啦啦在线视频资源| 成人手机av| 亚洲专区国产一区二区| 在线看a的网站| 午夜福利影视在线免费观看| 91av网站免费观看| 欧美 亚洲 国产 日韩一| 国产一区二区三区在线臀色熟女 | 大陆偷拍与自拍| 午夜久久久在线观看| 国产精品免费视频内射| 国产精品免费视频内射| 亚洲av电影在线进入| 久久久精品94久久精品| 一二三四在线观看免费中文在| 91精品三级在线观看| 操美女的视频在线观看| 亚洲专区国产一区二区| 成在线人永久免费视频| 国产激情久久老熟女| 嫩草影视91久久| 1024视频免费在线观看| 亚洲精品国产av成人精品| 日韩三级视频一区二区三区| 男女国产视频网站| 十八禁高潮呻吟视频| 一区二区三区精品91| 欧美人与性动交α欧美软件| 亚洲国产精品999| 老司机午夜十八禁免费视频| 亚洲国产精品成人久久小说| 日本a在线网址| 91九色精品人成在线观看| 久久女婷五月综合色啪小说| 久久精品国产综合久久久| 国产三级黄色录像| 99久久综合免费| 五月开心婷婷网| 中文字幕av电影在线播放| 精品少妇黑人巨大在线播放| 亚洲色图综合在线观看| 亚洲精品粉嫩美女一区| 久久国产亚洲av麻豆专区| 亚洲精品粉嫩美女一区| 精品少妇内射三级| 大陆偷拍与自拍| 黑人操中国人逼视频| 国产一区二区三区在线臀色熟女 | 五月开心婷婷网| 中文字幕av电影在线播放| 啦啦啦 在线观看视频| 色视频在线一区二区三区| 欧美老熟妇乱子伦牲交| 日本av手机在线免费观看| 亚洲,欧美精品.| 久久热在线av| www.999成人在线观看| 久久人人爽av亚洲精品天堂| 久久久水蜜桃国产精品网| 精品少妇久久久久久888优播| 99国产精品免费福利视频| 黄色怎么调成土黄色| 人人妻人人爽人人添夜夜欢视频| 国产成人av激情在线播放| 99re6热这里在线精品视频| 精品一区二区三区av网在线观看 | 99国产综合亚洲精品| 国产免费一区二区三区四区乱码| 叶爱在线成人免费视频播放| 老司机影院成人| 纵有疾风起免费观看全集完整版| 久久久久国产精品人妻一区二区| 久久性视频一级片| 飞空精品影院首页| 三级毛片av免费| 亚洲伊人色综图| 亚洲国产av新网站| 91成人精品电影| 成年女人毛片免费观看观看9 | 欧美精品av麻豆av| 不卡一级毛片| 一区二区三区激情视频| 欧美激情极品国产一区二区三区| 人人妻人人澡人人看| 国产精品99久久99久久久不卡| 国产欧美亚洲国产| 欧美国产精品一级二级三级| av天堂在线播放| 亚洲精品日韩在线中文字幕| 丰满少妇做爰视频| www.999成人在线观看| 大片电影免费在线观看免费| 久久久久久人人人人人| 午夜福利在线观看吧| 国产成+人综合+亚洲专区| 日韩三级视频一区二区三区| 男女高潮啪啪啪动态图| 国产成人系列免费观看| 国产黄频视频在线观看| 一边摸一边抽搐一进一出视频| 国产精品一区二区在线观看99| 青春草亚洲视频在线观看| 久久国产精品男人的天堂亚洲| 99久久国产精品久久久| 一边摸一边做爽爽视频免费| 欧美激情高清一区二区三区| 亚洲va日本ⅴa欧美va伊人久久 | 人人澡人人妻人| 日韩,欧美,国产一区二区三区| 在线观看免费高清a一片| 人人妻人人澡人人爽人人夜夜| av电影中文网址| 亚洲欧美精品自产自拍| 亚洲五月色婷婷综合| tocl精华| 亚洲少妇的诱惑av| 2018国产大陆天天弄谢| 18禁国产床啪视频网站| 真人做人爱边吃奶动态| 精品免费久久久久久久清纯 | 国产在视频线精品| 纵有疾风起免费观看全集完整版| 建设人人有责人人尽责人人享有的| 免费观看a级毛片全部| 天天躁夜夜躁狠狠躁躁| 精品久久蜜臀av无| 1024香蕉在线观看| 久久国产亚洲av麻豆专区| 国内毛片毛片毛片毛片毛片| 欧美精品高潮呻吟av久久| 亚洲国产av影院在线观看| 91成人精品电影| 亚洲精品国产一区二区精华液| 久久天堂一区二区三区四区| 丁香六月欧美| 国产亚洲精品久久久久5区| 成年人午夜在线观看视频| 一级,二级,三级黄色视频| 亚洲精品第二区| 国产熟女午夜一区二区三区| 91成人精品电影| www.精华液| a级片在线免费高清观看视频| 精品国产乱子伦一区二区三区 | 美女国产高潮福利片在线看| 两性夫妻黄色片| 丝瓜视频免费看黄片| 日本wwww免费看| 啦啦啦免费观看视频1| 欧美少妇被猛烈插入视频| www.999成人在线观看| 99久久99久久久精品蜜桃| 成年美女黄网站色视频大全免费| 国产日韩欧美视频二区| 热99re8久久精品国产| 亚洲欧美色中文字幕在线| 国产激情久久老熟女| 国产精品二区激情视频| 精品国产国语对白av| 欧美在线一区亚洲| 久热爱精品视频在线9| 久9热在线精品视频| 99久久人妻综合| 大片电影免费在线观看免费| 在线精品无人区一区二区三| 国产亚洲精品一区二区www | 大型av网站在线播放| 亚洲成人免费电影在线观看| 热99re8久久精品国产| 精品一区二区三卡| 国产成人av激情在线播放| 国产男女超爽视频在线观看| 日韩 亚洲 欧美在线| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美精品高潮呻吟av久久| 国产精品一区二区在线不卡| videosex国产| 水蜜桃什么品种好| 日韩有码中文字幕| 免费少妇av软件| 久久久久久久久免费视频了| 亚洲九九香蕉| 亚洲成人免费电影在线观看| 老司机午夜十八禁免费视频| 国产精品久久久人人做人人爽| 一区二区三区四区激情视频| 免费女性裸体啪啪无遮挡网站| 黑人巨大精品欧美一区二区mp4| 69精品国产乱码久久久| 巨乳人妻的诱惑在线观看| 久久久久久久久免费视频了| 欧美日韩亚洲综合一区二区三区_| 欧美精品亚洲一区二区| 一进一出抽搐动态| 男人添女人高潮全过程视频| 黄色a级毛片大全视频| 亚洲人成77777在线视频| 一边摸一边抽搐一进一出视频| 亚洲熟女精品中文字幕| 国产在线观看jvid| 色视频在线一区二区三区| 久久中文字幕一级| 天堂俺去俺来也www色官网| 国产精品秋霞免费鲁丝片| 久久亚洲精品不卡| 美女福利国产在线| 交换朋友夫妻互换小说| 狠狠精品人妻久久久久久综合| 婷婷丁香在线五月| 精品人妻熟女毛片av久久网站| 国产精品久久久久成人av| 久久精品亚洲av国产电影网| 女人高潮潮喷娇喘18禁视频| 久久影院123| 俄罗斯特黄特色一大片| 建设人人有责人人尽责人人享有的| 一区二区av电影网| 日韩欧美一区二区三区在线观看 | 亚洲一区二区三区欧美精品| 老熟女久久久| 免费久久久久久久精品成人欧美视频| 捣出白浆h1v1| 亚洲一区中文字幕在线| 日韩有码中文字幕| 久久久精品免费免费高清| 国产成人a∨麻豆精品| 纵有疾风起免费观看全集完整版| 亚洲精品国产av蜜桃| 亚洲欧洲日产国产| 午夜福利在线免费观看网站| 亚洲精品一卡2卡三卡4卡5卡 | 午夜两性在线视频| 日本vs欧美在线观看视频| 考比视频在线观看| 日日摸夜夜添夜夜添小说| 久久精品国产亚洲av高清一级| 久久久久久免费高清国产稀缺| 夜夜夜夜夜久久久久| 蜜桃在线观看..| 美国免费a级毛片| 汤姆久久久久久久影院中文字幕| 人人妻,人人澡人人爽秒播| 中文精品一卡2卡3卡4更新| 他把我摸到了高潮在线观看 | 老司机深夜福利视频在线观看 | 亚洲欧美一区二区三区黑人| 国产精品久久久久成人av| 亚洲一区二区三区欧美精品| 丰满饥渴人妻一区二区三| 免费在线观看黄色视频的| 十八禁高潮呻吟视频| 国产精品欧美亚洲77777| 91精品三级在线观看| 99久久综合免费| cao死你这个sao货| 亚洲一区中文字幕在线| 汤姆久久久久久久影院中文字幕| 欧美 日韩 精品 国产| 国产97色在线日韩免费| av欧美777| 我的亚洲天堂| 国产精品九九99| 国产精品久久久久成人av| 国产黄色免费在线视频| 国产成人欧美| 日韩一卡2卡3卡4卡2021年| 美女午夜性视频免费| 亚洲精品国产色婷婷电影| 日韩,欧美,国产一区二区三区| 又黄又粗又硬又大视频| 亚洲精品久久久久久婷婷小说| 狠狠精品人妻久久久久久综合| 成年女人毛片免费观看观看9 | 亚洲精品国产一区二区精华液| 国产精品久久久人人做人人爽| 亚洲国产精品一区三区| 亚洲成av片中文字幕在线观看| 国产1区2区3区精品| 90打野战视频偷拍视频| 亚洲自偷自拍图片 自拍| 欧美在线一区亚洲| 亚洲三区欧美一区| 99香蕉大伊视频| 99久久人妻综合| 一级片'在线观看视频| 亚洲国产精品999| 热re99久久国产66热| 欧美xxⅹ黑人| 亚洲专区国产一区二区| 一区在线观看完整版| 国产深夜福利视频在线观看| 婷婷丁香在线五月| 欧美黄色片欧美黄色片| 色播在线永久视频| 国产福利在线免费观看视频| 日韩一区二区三区影片| 视频区图区小说| 男人添女人高潮全过程视频| av天堂久久9| 亚洲av日韩精品久久久久久密| 亚洲精品国产av成人精品| 国产精品偷伦视频观看了| 欧美97在线视频| 99九九在线精品视频| 欧美人与性动交α欧美精品济南到| 午夜免费观看性视频| 一本大道久久a久久精品| 黄色片一级片一级黄色片|