• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Multi-layer structures including zigzag sculptured thin films for corrosion protection of AISI 304 stainless steel?

    2021-03-19 03:21:58FatemeAbdi
    Chinese Physics B 2021年3期

    Fateme Abdi

    Department of Engineering Sciences,Faculty of Advanced Technologies,University of Mohaghegh Ardabili,Namin,Iran

    Keywords: corrosion protection,multilayer,zigzag thin film,EIS,equivalent circuit

    1. Introduction

    AISI 304 stain less steel has many applications in industry and technology due to its good mechanical properties and good corrosion resistance. However, this substance does not have high resistance to corrosion in the environments containing aggressive ions, such as Cl?and S?2, especially at high temperatures, and environments with very high or very low pHs.[1-3]Therefore,improving the corrosion resistance of this widely used substance is a fundamental requirement. So far,many methods have been employed to increase the corrosion resistance of the AISI 304 stainless steel. The previous older methods such as painting have been extensively used due to the good adhesion of paints to steel.[4]Paint is a thick coating, and the use of thin coatings to protect steel from corrosion is very essential. To do so, ion implantation,[5]arc ion plating,[6]sol-gel coating,[7,8]chemical deposition,[9]and physical depositions[5,10,11]have been used. The advantage of using physical depositions is that the layers are more controllable. In the previous study, the researchers used a physical coating to form multilayer structures on steel and revealed that the application of manganese nitride multilayer structure instead of the monolayer structure significantly increased the corrosion resistance.[12]The very purpose of the present study is to improve multilayer structures,for which the zigzag structure is used in the multilayer thin films.

    2. Experiment

    Sheets of AISI 304 stainless steel with dimensions of 20 mm×20 mm×1 mm and the compounds listed in Table 1 were considered as substrates. To begin with, all substrates were first cleaned in acetone, in alcohol, in in ultrasonic bath in sequence. Then, the substrates were glued to the substrate holder with a special vacuum adhesive. Manganese was considered as the protecting material,and the deposition was performed by using An Edwards(Edwards E19 A3)machine and electron beam at room temperature with a base pressure of 2×10?7Torr (1 Torr=1.33322×102Pa) over four steps.At each step of the deposition, thin films of manganese with 55-nm thickness were formed, so that the total thickness of the manganese thin films on the substrate was 220 nm. In the four-step deposition process,there is a 15-min interval between two depositions. The purpose of this interruption was to cool the previous layer and stabilize the grains. Figure 1(a)demonstrates the mentioned four-layer structure(conventional multilayer thin film).

    Table 1. Chemical compositions of AISI 304-type stainless steel used in this work.

    The next task was to deform the middle layers (layers 2 and 3). To do so, first a 55-nm-thin film of manganese was formed on a substrate. Then, a 110-nm zigzag structure was formed on the previous thin film,and finally a 55-nm-thin film of manganese was formed on this zigzag structure by returning the substrate to its original state. To form the zigzag structure,after forming the conventional 55-nm-thin film, the substrate was placed at an angle of 20?relative to the line perpendicular to the substrate,and this structure is called zigzag 1 structure for short. Figure 1(b)shows this structure.

    Fig.1. Schematic diagram of(a)conventional multilayer thin film,(b)multilayer thin film with zigzag 1 structure, and (c) multilayer thin film with zigzag 2 structure.

    To better investigate the effect of the geometry on the protection against corrosion,the other task was to convert each of zigzag arms into a zigzag structure. That is, after depositing a 55-nm-thin film, the zigzag structure was formed twice so that the thickness of each zigzag arm was 27.5 nm, and the total thickness of the middle layer(two zigzag structures containing 4 arms) was 110 nm. Finally, a 55-nm-thin film was deposited on them. Figure 1(c)shows a schematic representation of this design. This structure is called zigzag 2 structure for short.

    After forming the conventional multilayer thin films,zigzag 1 and zigzag 2 structures, their nitriding process was performed by using a furnace (Exciton, 1200-30/6, T.H, Iran equipped with Shinko temperature programmable controller- PCD33A). To do so, the samples were annealed with a 400-sccm nitrogen flux at 623 K.The annealing processes consisted of the following three stages:

    Stage AIt took an hour for the temperature to reach 623 K(in steps of 6?C per min).

    Stage BThe samples were kept at this temperature for 4 h.

    Stage CThe device was turned off to cool down to temperature slowly from 623 K to room temperature.

    In all the above-mentioned stages, the nitrogen flux passed through the samples.

    Fig.2. The FESEM image of(a)conventional multilayer thin film,(b)multilayer thin film with zigzag 1 structure, and (c) multilayer thin film with zigzag 2 structure.

    The film thickness and cross sections of structures were observed by field emission scanning electron microscope(FESEM)(Hitachi S-4100 SEM,Japan). Figures 2(a)-2(c)show the FESEM images of the conventional multilayer thin film,zigzag 1 structure,and zigzag 2 structure respectively. To ensure the formation of manganese nitride phase and to investigate the crystallinity degree of the samples, x-ray diffraction(XRD) analysis was performed (model STADI MP Diffractometer, Germany (Cu-Kαradiation) in steps of 0.01?and count time of 1.0 s per step),In addition,the surface morphology of samples was examined by using an atomic force microscope(AFM)(Nt-mdt scanning probe microscope,BL022,Russia; with low stress silicon nitride tip of less than 200 ?A in radius and tip opening of 18?). Polarization test was performed to determine the corrosion rate and tendency. Furthermore, the electrochemical impedance spectroscopy(EIS)test was performed to investigate the corrosion resistances of different structures by using a three-electrode cell and the Ivum state model of Potentiostat device made by Ivum Company.The 3.5%NaCl solution was considered as the corrosive solution. Furthermore,the AgCl solution,reference electrode,and platinum electrode were used as auxiliary electrodes.

    The samples were placed in the fixture as a working electrode in such a way that only a circle with a diameter of 1 cm of the samples was exposed to the corrosive environment. Polarization measurements were performed at potentials ranging from ?1 V to 2 V at a rate of 50 mV/s. Moreover,the EIS test was performed in a frequency range from 1 kHz to 0.01 kHz with a voltage range of 0.01 V.Prior to the measurement,the samples were placed in the solution for 0.5 h to stabilize the open circuit potential (OCP). After performing the corrosion test,the SEM images were taken from the samples to observe the surface.

    3. Results

    3.1. XRD results

    Figures 3(a) and 3(b) indicate the XRD results of the 304 stainless steel as compared with the XRD of multilayer structures (conventional multilayer thin film, zigzag 1 structure, and zigzag 2 structure) before and after annealing at nitrogen flux, respectively. As the figures reveal that the XRD spectra of the 304 stainless steel have four peaks,which are located at 2θ =43.7?,2θ =50.7?,2θ =74.8?,and 2θ =90.8?which represent the γ-Fe (111), γ-Fe (200), γ-Fe (220), and γ-Fe(311)phases,respectively.

    Figure 3(a) demonstrates that in the XRD spectrum of the multilayer structures (conventional multilayer thin film,zigzag 1 structure and zigzag 2 structure), in addition to the peaks related to the substrate,namely the phases γ -Fe(200),γ -Fe (220), and γ -Fe (311), other peak is located at 2θ =43.03?, which represents the crystallographic orientation of Mn(330)(according to the standard card 00-020-0180).

    Figure 3(b)indicates that the XRD spectrum of the conventional manganese multilayer thin film does not change much in the nitrogen flux. Only the Mn (330) peak intensity increases slightly due to the grain growth as a result of annealing,and no phase of manganese nitride is observed. However,unlike this structure,the zigzag multilayer structure(zigzag 1 structure and zigzag 2 structure) has a peak at 2θ =40.44?,which indicates the formation of manganese nitride phase and represents the Mn4N (111) crystallographic orientation (according to the standard card 00-001-1202). The formation of the nitride phase in this structure can be attributed to the porosity nature of the sculptured thin film and the better possibility of reaction and nitride formation. Figure 3(b) shows that the magnesium nitride phase intensity,for the zigzag 2 structure is less than the zigzag 1 structure. The reason is due to the small zigzag arms of this structure.

    Fig.3. XRD patterns of AISI 304 stainless steel, conventional multilayer thin film, multilayer thin film with zigzag 1 structure, and multilayer thin film with zigzag 2 structure,before(a)and after(b)annealing.

    3.2. AFM results

    The surface morphology of the conventional multilayer thin film and zigzag multilayer structures (zigzag 1 structure and zigzag 2 structure)is investigated after annealing in nitrogen flux,by using the atomic force microscopy(AFM).

    Fig.4.The 2D and 3D AFM images of(a)conventional multilayer thin film,(b)multilayer thin film with zigzag 1 structure,and(c)multilayer thin film with zigzag 2 structure.

    Figure 4 demonstrates the two-dimensional (2D) and three-dimensional(3D)images of these samples.As the figure evidently indicates,the sample with the zigzag 1 structure has a smaller grain size than that of the conventional multilayer sample.

    In addition,the sample with zigzag 2 structure has smaller grains than the sample with zigzag 1 structure, which can be attributed to the shadowing effect in the glancing angle deposition.

    The reason why the smaller grain sizes can change the geometry of thin film from the conventional multilayer thin film into zigzag 1 and zigzag 2 structures can be explained as follows:

    (i) The conventional multilayer thin film consists of four 55-nm-thick layers with the least porosity, so the possibility with which the diffusion process takes place in this structure during the annealing is high and large columns might be formed in this process.

    (ii) Compared with the conventional multilayer thin film,zigzag 1 structure has high porosity, which reduces its grain size. Thus the diffusion process will be less effective.

    (iii) Zigzag 2 structure has higher porosity and smaller grains than the previous two structures due to the shortness of the columns, with the thickness of the middle layer being smaller.

    In fact, the grain size increases with thickness increasing. So, conventional multilayer structures and zigzag structure 1 have larger grains than zigzag 2 structure due to their longer arm length in each step of deposition. Average grain size(DAFM), average surface roughness(Rave), and deviation from the mean(Rms)obtained by using Nova software are presented in Table 2.

    Table 2. Details of experimental results for AISI 304 stainless steel.

    As figure 3 indicates, the reason for the reduction in nitride phase intensity by converting zigzag 1 structure into zigzag 2 structure is due to the shrinkage of the grains in this process.

    3.3. Corrosion results

    3.3.1. Polarization test results

    Figure 5 shows the polarization curves of conventional multilayer thin film and zigzag structures (zigzag 1 structure and zigzag 2 structure)in a 3.5%salt solution. The corrosion current and corrosion potential obtained from these curves(using the Tafel slope) are given in columns 5 and 6 of Table 2, respectively. The results reveal that the zigzag multilayer structures(zigzag 1 and zigzag 2 structures)have higher corrosion potential and lower corrosion current than the conventional multilayer thin film.Given that the current corrosion and the potential corrosion control the corrosion rate and corrosion tendency,respectively,the zigzag multilayer structures have a lower corrosion tendency and corrosion rate than that of the conventional multilayer thin film due to the formation of the nitride phase.

    As figure 5 indicates,the zigzag 2 structure has the lowest corrosion current,the highest corrosion potential,and thereby resulting in the highest corrosion resistance. Considering the fact that this structure has a lower nitride phase intensity than that of the zigzag 1 structure,the reason for the higher corrosion resistance,in addition to the nitride phase formation,can be attributed to the geometry of the zigzag 2 structure and the greater number of interfaces, which will be further explained in the subsection of the EIS results.

    Fig.5. Potentiodynamic polarization curve of conventional multilayer thin film, multilayer thin film with zigzag 1 structure, and multilayer thin film with zigzag 2 structure.

    3.3.2. EIS test results

    The Nyquist curves of the conventional multilayer thin film structure and the zigzag multilayer structures (zigzag1 and zigzag 2 structures)are presented in Fig.6.

    Fig.6. Experimental Nyquist diagram of conventional multilayer thin film,multilayer thin film with zigzag 1 structure, and multilayer thin film with zigzag 2 structure.

    This figure demonstrates that the Nyquist curve of the conventional multilayer thin film has an inductive loop that occurs at low frequencies. The above-mentioned inductive behavior indicates the production of corrosion products and the formation of salt on the sample surface through the pitting of Chlorine ions on the sample surface.[13-17]The mentioned behavior is not observed in the Nyquist curves of zigzag structures. The comparison between Nyquist curves reveals that zigzag 1 structure has a better corrosion resistance than the conventional multilayer thin film due to the presence of nitride phase in this structure. Moreover, the results show that zigzag 2 structure has a much higher corrosion resistance than zigzag 1 structure. The mentioned finding can be attributed to the zigzag geometry of this structure.The equivalent circuit of these structures is provided to better evaluate the EIS results of different multilayer structures.

    Figure 7 shows the equivalent circuits for the conventional and zigzag multilayer structures(zigzag 1 and zigzag 2 structures). In these circuits, Rsis the resistance of the solution,L is the coefficient related to the inductive behavior,and CC1,2is the capacitance related to the coating and is observed in incomplete coatings where the solution penetrates the coating. Subscripts 1 and 2 indicate the existence of two coatings with different substances. Due to the fact that the formation of oxides and nitrides on the surface does not change r thickness much,two types of capacitors are considered in the equivalent circuit.

    Fig.7. Equivalent circuit of the experimental EIS data of (a) conventional multilayer thin film and(b)multilayer thin film with zigzag 1 structure and multilayer thin film with zigzag 2 structure.

    Cdlis the double-layer capacitance formed at the metalcoating interface and is obtained from the following equation

    where d is the thickness of the coating,A is the area exposed to the solution,and ε is the dielectric constant of the coating.Rdlis the resistance related to the double layer capacitance,and R1,2is the resistance related to the coating. Due to the heterogeneity and roughness of the surfaces of the electrodes,capacitors are not considered to be ideal, and the parameters α1,α2,α3respectively express how far they are from the ideal capacitor. Corrosion resistances for different circuits are obtained from the difference between the impedance at infinite frequency and impedance at zero frequency,respectively.

    Fig.8. Bode (column I) and phase (column II) diagrams of all samples for experimental results (solid line) and simulation results (dashed line of(a)conventional multilayer thin film,(b)multilayer thin film with zigzag 1 structure,and(c)multilayer thin film with zigzag 2 structure.

    Bode and phase plots obtained from experiments and simulations performed by equivalent circuits of different multilayer structures (conventional multilayer thin film, zigzag 1 structure,and zigzag 2 structure)are presented in Fig.8.These figures indicate the best fit between the experimental and simulation results.

    Table 3 presents the equivalent circuit quantities obtained by using the simulations with ZView software. The data indicate that the zigzag structures(zigzag 1structure,and zigzag 2 structure)have smaller coating capacitance(Ccor)than the conventional multilayer thin film. The mentioned finding can be attributed to the smaller grains of zigzag structures than that of the multilayer structure due to the shadowing effect. Because the coating capacitance is a set of parallel capacitors,the total capacitance decreases as the number of parallel capacitors increases(decrease of the grain size and increase of the number of grain boundaries).

    This table shows that the zigzag structures have high electrical resistances as compared with the conventional multilayer thin film due to the better nitride phase formation in these structures. The better formation of the nitride phase in the zigzag structures also eliminates the inductive behavior. The findings reveal that zigzag 2 structure has a smaller double layer capacitance (Cd) than zigzag 1 structure due to the geometry of the zigzag structure,since the capacitance decreases as the dielectric is tilted. The loss of induction behavior and the increase of electrical resistance with the decrease of the double layer and coatings capacitances in zigzag 2 structures increase the electrical impedance,and thus increasing the corrosion resistance of this structure.

    Table 3. Electrochemical parameters of AISI 304 stainless steel obtained from fitting of EIS spectra by equivalent circuit.

    3.4. SEM results

    To examine the surfaces of the samples after corrosion, SEM images of the conventional multilayer thin film and zigzag multilayer structures (zigzag 1 and zigzag 2 structures) are studied after corrosion test. These images are shown in Fig.8.Comparison of Fig.9(a) with Figs. 9(b) and 9(c), which show the SEM images of the conventional multilayer thin film and zigzag multilayer structures,respectively,reveal that the surface of the conventional multilayer thin film has a higher degradation than zigzag structures. Zigzag 1 structures have less degradation than the conventional multilayer structure. Moreover,zigzag 2 structure has a more suitable structure for protecting steel from corrosion.

    Fig.9. SEM micrograph of (a) conventional multilayer thin film, (b) multilayer thin film with zigzag 1 structure, and (c) multilayer thin film with zigzag 2 structure.

    4. Conclusions

    In the present study,conventional multilayer thin film and multilayer thin films including zigzag structures(zigzag 1 and zigzag 2 structures)are considered for the corrosion protection of AISI 304 stainless steel. Surface and crystalline studies of structures by using AFM and XRD reveal that although the zigzag structures have smaller grains than conventional multilayer structure due to the shadowing effect, nitride phase formation is better due to the porosity of these structures. The investigation of corrosion tests and SEM images indicate that multilayer thin films including zigzag structures have a lower corrosion rate,lower corrosion tendency,and higher corrosion resistance,and zigzag 2 structure has the best coating for corrosion protection in the samples. The equivalent circuit simulation by ZView software shows that the high corrosion resistance of zigzag 2 is attributed to the loss of inductance,the decrease of double layer capacitance, the decrease of coating capacitance,and the increase of the electrical resistance.

    国产精品蜜桃在线观看| 高清视频免费观看一区二区| 寂寞人妻少妇视频99o| 日韩精品有码人妻一区| 偷拍熟女少妇极品色| 我要看黄色一级片免费的| 婷婷色av中文字幕| 十八禁网站网址无遮挡 | 少妇熟女欧美另类| 国产色婷婷99| 在线看a的网站| 国产一区二区在线观看日韩| 天堂8中文在线网| 欧美精品亚洲一区二区| 国产av一区二区精品久久| 夜夜看夜夜爽夜夜摸| 深夜a级毛片| 亚洲精品国产色婷婷电影| 国产老妇伦熟女老妇高清| 高清在线视频一区二区三区| 在线天堂最新版资源| 日韩不卡一区二区三区视频在线| 热re99久久国产66热| 久热久热在线精品观看| 高清视频免费观看一区二区| 一区二区三区精品91| 有码 亚洲区| 春色校园在线视频观看| 成人美女网站在线观看视频| 边亲边吃奶的免费视频| 精品久久久久久久久av| 狂野欧美激情性bbbbbb| a级片在线免费高清观看视频| 欧美精品人与动牲交sv欧美| 亚洲内射少妇av| av不卡在线播放| 新久久久久国产一级毛片| 欧美最新免费一区二区三区| 国内揄拍国产精品人妻在线| 嫩草影院入口| 在线观看人妻少妇| 三级国产精品欧美在线观看| 黑人高潮一二区| 插阴视频在线观看视频| 精品亚洲乱码少妇综合久久| 国产精品久久久久久久电影| 在线观看三级黄色| 老司机影院成人| 久久久a久久爽久久v久久| 久久国产精品大桥未久av | 黄色欧美视频在线观看| 亚洲国产精品一区二区三区在线| 午夜久久久在线观看| 大香蕉97超碰在线| 国产一区有黄有色的免费视频| 色网站视频免费| 日本wwww免费看| 91精品国产国语对白视频| 嘟嘟电影网在线观看| 人人妻人人爽人人添夜夜欢视频 | 国产亚洲精品久久久com| 中文字幕人妻熟人妻熟丝袜美| 色94色欧美一区二区| 亚洲怡红院男人天堂| 国产精品久久久久久av不卡| 精品人妻一区二区三区麻豆| 性高湖久久久久久久久免费观看| 亚洲精品aⅴ在线观看| 五月伊人婷婷丁香| 中文天堂在线官网| 免费av不卡在线播放| 欧美精品一区二区免费开放| 又粗又硬又长又爽又黄的视频| 亚洲欧美日韩卡通动漫| 91精品伊人久久大香线蕉| 午夜福利影视在线免费观看| 啦啦啦啦在线视频资源| 日韩欧美一区视频在线观看 | 日本av手机在线免费观看| 精品一区二区三区视频在线| 成年av动漫网址| 久热这里只有精品99| 欧美日韩一区二区视频在线观看视频在线| 欧美日韩在线观看h| √禁漫天堂资源中文www| 少妇猛男粗大的猛烈进出视频| 99热6这里只有精品| 大又大粗又爽又黄少妇毛片口| 黄色一级大片看看| 国产高清不卡午夜福利| 国产极品天堂在线| 一本—道久久a久久精品蜜桃钙片| 国产亚洲最大av| 啦啦啦视频在线资源免费观看| 中文字幕精品免费在线观看视频 | 在线观看av片永久免费下载| 亚洲精品自拍成人| 亚洲真实伦在线观看| 69精品国产乱码久久久| 深夜a级毛片| 亚洲国产精品专区欧美| 一边亲一边摸免费视频| 嫩草影院新地址| 色婷婷久久久亚洲欧美| 久久人人爽人人片av| 午夜激情福利司机影院| 国产一级毛片在线| 夜夜爽夜夜爽视频| 国产精品不卡视频一区二区| 波野结衣二区三区在线| 18禁动态无遮挡网站| 亚洲美女搞黄在线观看| 熟女av电影| 国产成人一区二区在线| 成年美女黄网站色视频大全免费 | 卡戴珊不雅视频在线播放| 丝瓜视频免费看黄片| 色网站视频免费| 大码成人一级视频| 韩国高清视频一区二区三区| 欧美区成人在线视频| 777米奇影视久久| 狂野欧美白嫩少妇大欣赏| 人妻一区二区av| 婷婷色综合大香蕉| 国产精品久久久久成人av| 日韩视频在线欧美| 国产精品偷伦视频观看了| 国产av国产精品国产| 国产深夜福利视频在线观看| 高清黄色对白视频在线免费看 | 少妇的逼水好多| 2022亚洲国产成人精品| 亚洲高清免费不卡视频| 久久精品熟女亚洲av麻豆精品| 91午夜精品亚洲一区二区三区| 我要看日韩黄色一级片| 十八禁高潮呻吟视频 | 青春草国产在线视频| 不卡视频在线观看欧美| 日日撸夜夜添| a级毛色黄片| 成年人免费黄色播放视频 | 免费看av在线观看网站| 精品国产露脸久久av麻豆| 日本猛色少妇xxxxx猛交久久| 少妇 在线观看| 免费看光身美女| 亚洲国产av新网站| 亚洲欧美一区二区三区国产| h日本视频在线播放| 18禁裸乳无遮挡动漫免费视频| 麻豆成人午夜福利视频| 久久久久久久久久久免费av| 五月玫瑰六月丁香| 热re99久久精品国产66热6| 亚洲成色77777| 黑人高潮一二区| 秋霞在线观看毛片| 女性生殖器流出的白浆| 99久久中文字幕三级久久日本| 在线 av 中文字幕| 精品人妻熟女毛片av久久网站| 亚洲欧洲国产日韩| 老司机影院成人| 色5月婷婷丁香| 99热国产这里只有精品6| 国语对白做爰xxxⅹ性视频网站| 男人添女人高潮全过程视频| 69精品国产乱码久久久| 在线 av 中文字幕| 岛国毛片在线播放| 国产精品免费大片| 熟妇人妻不卡中文字幕| 国产永久视频网站| 久久青草综合色| 精品人妻一区二区三区麻豆| 亚洲真实伦在线观看| 亚洲成人手机| 国产精品不卡视频一区二区| 亚洲精品乱久久久久久| 中文字幕亚洲精品专区| 男的添女的下面高潮视频| 日韩成人av中文字幕在线观看| av黄色大香蕉| 22中文网久久字幕| 一级毛片我不卡| 美女中出高潮动态图| 一区二区三区精品91| 精品国产国语对白av| 男女无遮挡免费网站观看| 只有这里有精品99| 中文字幕精品免费在线观看视频 | 久久久久久久大尺度免费视频| 国产91av在线免费观看| 91在线精品国自产拍蜜月| 久久国产亚洲av麻豆专区| 观看美女的网站| 在线 av 中文字幕| 国产爽快片一区二区三区| 欧美人与善性xxx| 日韩中字成人| 国产 精品1| 日韩在线高清观看一区二区三区| 99久久中文字幕三级久久日本| 麻豆成人午夜福利视频| 国产av精品麻豆| 国产亚洲午夜精品一区二区久久| 十八禁高潮呻吟视频 | 欧美精品亚洲一区二区| h日本视频在线播放| 一级a做视频免费观看| 韩国av在线不卡| 久久鲁丝午夜福利片| 十分钟在线观看高清视频www | 性高湖久久久久久久久免费观看| 久久ye,这里只有精品| 亚洲国产精品国产精品| 国产一区二区三区av在线| 精品少妇内射三级| 日韩电影二区| av福利片在线| 最近2019中文字幕mv第一页| 永久网站在线| 热re99久久国产66热| 日韩一区二区视频免费看| 免费观看a级毛片全部| 一本大道久久a久久精品| 久久亚洲国产成人精品v| 成人国产麻豆网| 黄色视频在线播放观看不卡| 成年人免费黄色播放视频 | 久久久久人妻精品一区果冻| 久久久久久人妻| 日本-黄色视频高清免费观看| 久久久久久久精品精品| 人妻 亚洲 视频| 亚洲欧美成人综合另类久久久| 水蜜桃什么品种好| 亚洲欧美一区二区三区黑人 | 亚洲欧美精品自产自拍| 亚洲色图综合在线观看| 久久精品熟女亚洲av麻豆精品| 最新中文字幕久久久久| 国产视频内射| 男女免费视频国产| 久久午夜福利片| 国产成人午夜福利电影在线观看| 亚洲精品色激情综合| 黑丝袜美女国产一区| 偷拍熟女少妇极品色| 在线观看一区二区三区激情| 久久国产乱子免费精品| 最近的中文字幕免费完整| av天堂中文字幕网| 国产综合精华液| 男人添女人高潮全过程视频| 国产精品国产三级国产av玫瑰| 美女视频免费永久观看网站| 久久久久久久久久久久大奶| 国产精品久久久久成人av| 久久久久国产网址| 在线观看国产h片| 亚洲国产毛片av蜜桃av| 一区二区av电影网| 国产欧美日韩一区二区三区在线 | 伦理电影免费视频| 国产欧美日韩精品一区二区| 亚洲一级一片aⅴ在线观看| 中文字幕亚洲精品专区| 少妇人妻一区二区三区视频| 三级国产精品片| 三级国产精品欧美在线观看| 美女cb高潮喷水在线观看| 不卡视频在线观看欧美| 免费大片18禁| 亚洲精华国产精华液的使用体验| av又黄又爽大尺度在线免费看| 99热这里只有精品一区| 日本av免费视频播放| 国产淫片久久久久久久久| 大香蕉久久网| 午夜免费鲁丝| a级片在线免费高清观看视频| 久久人人爽人人爽人人片va| 欧美精品高潮呻吟av久久| 欧美日韩精品成人综合77777| 99热6这里只有精品| 日本黄大片高清| 毛片一级片免费看久久久久| 国产一区二区三区综合在线观看 | 一本色道久久久久久精品综合| 美女视频免费永久观看网站| 91aial.com中文字幕在线观看| 久久久久网色| 欧美三级亚洲精品| 最近手机中文字幕大全| 插逼视频在线观看| 午夜福利影视在线免费观看| 99精国产麻豆久久婷婷| 高清不卡的av网站| 99re6热这里在线精品视频| a级毛片免费高清观看在线播放| 国产亚洲av片在线观看秒播厂| 一区在线观看完整版| 韩国av在线不卡| 纵有疾风起免费观看全集完整版| 亚洲欧美清纯卡通| 久久久国产精品麻豆| 99九九线精品视频在线观看视频| 国产精品国产av在线观看| 免费不卡的大黄色大毛片视频在线观看| 国产爽快片一区二区三区| 如日韩欧美国产精品一区二区三区 | 日日撸夜夜添| 极品少妇高潮喷水抽搐| 国内揄拍国产精品人妻在线| 国产爽快片一区二区三区| 国产一区二区三区av在线| 麻豆乱淫一区二区| 一区二区三区精品91| 国产精品99久久99久久久不卡 | 777米奇影视久久| videos熟女内射| 久久精品国产自在天天线| 国产乱来视频区| 亚洲av欧美aⅴ国产| 大香蕉97超碰在线| 国产av码专区亚洲av| 久久 成人 亚洲| 亚洲无线观看免费| 欧美另类一区| 精品久久久噜噜| 精品一区二区免费观看| 超碰97精品在线观看| 欧美精品一区二区大全| 大香蕉97超碰在线| 你懂的网址亚洲精品在线观看| 91精品国产国语对白视频| 国产av一区二区精品久久| 黑人高潮一二区| 乱人伦中国视频| 日本色播在线视频| 免费看日本二区| 最新的欧美精品一区二区| 夜夜骑夜夜射夜夜干| 亚洲中文av在线| 久久影院123| 国产色爽女视频免费观看| 日本午夜av视频| 国产精品一二三区在线看| 伊人亚洲综合成人网| 欧美 亚洲 国产 日韩一| 亚洲中文av在线| 久久久久久久精品精品| 十八禁网站网址无遮挡 | 国产一区二区三区综合在线观看 | 中文欧美无线码| 狂野欧美激情性bbbbbb| 两个人的视频大全免费| 国产精品熟女久久久久浪| 高清午夜精品一区二区三区| 精品少妇内射三级| 老司机影院毛片| 91精品伊人久久大香线蕉| 内射极品少妇av片p| 亚洲精品国产色婷婷电影| 80岁老熟妇乱子伦牲交| 青春草亚洲视频在线观看| 亚洲欧美成人精品一区二区| 亚洲av电影在线观看一区二区三区| 欧美老熟妇乱子伦牲交| 校园人妻丝袜中文字幕| 国产精品.久久久| 久久97久久精品| 人妻制服诱惑在线中文字幕| 日日摸夜夜添夜夜爱| 免费看光身美女| av在线播放精品| 亚洲欧美日韩东京热| 视频中文字幕在线观看| 欧美日本中文国产一区发布| 美女xxoo啪啪120秒动态图| 欧美变态另类bdsm刘玥| 欧美另类一区| 日韩成人伦理影院| 丰满迷人的少妇在线观看| 人妻 亚洲 视频| 狂野欧美激情性xxxx在线观看| 国产在线男女| 免费av中文字幕在线| 在线观看免费视频网站a站| 国产亚洲午夜精品一区二区久久| 在线播放无遮挡| 有码 亚洲区| 亚洲国产精品国产精品| 日本与韩国留学比较| 亚洲欧美成人精品一区二区| 国产精品无大码| 在线 av 中文字幕| 免费看光身美女| av天堂久久9| 青春草视频在线免费观看| 大香蕉久久网| 成人影院久久| 久久狼人影院| 草草在线视频免费看| 麻豆精品久久久久久蜜桃| 天堂中文最新版在线下载| 日日摸夜夜添夜夜爱| a级片在线免费高清观看视频| 午夜久久久在线观看| 青春草视频在线免费观看| 五月玫瑰六月丁香| 自线自在国产av| 久久久午夜欧美精品| 午夜老司机福利剧场| 青春草视频在线免费观看| 国产精品福利在线免费观看| 亚洲精品456在线播放app| 日韩伦理黄色片| 亚洲精品国产av蜜桃| 日韩制服骚丝袜av| 欧美一级a爱片免费观看看| 亚洲精品乱久久久久久| 久久久精品免费免费高清| 伦理电影免费视频| 内射极品少妇av片p| 人人澡人人妻人| 欧美激情极品国产一区二区三区 | 各种免费的搞黄视频| 久久久久久久亚洲中文字幕| 免费av中文字幕在线| 蜜桃在线观看..| 9色porny在线观看| 久久久久久久久久久免费av| 亚洲av免费高清在线观看| 久久热精品热| 一级av片app| 少妇人妻 视频| 久久久a久久爽久久v久久| 2018国产大陆天天弄谢| 18+在线观看网站| 18禁在线播放成人免费| 日韩,欧美,国产一区二区三区| 最近中文字幕高清免费大全6| 少妇高潮的动态图| 大香蕉97超碰在线| 日日啪夜夜撸| 香蕉精品网在线| av福利片在线| 一级爰片在线观看| 久久久精品94久久精品| 久久鲁丝午夜福利片| videossex国产| 亚洲国产精品一区二区三区在线| 国产日韩欧美视频二区| 亚洲欧美成人综合另类久久久| 国产色爽女视频免费观看| 国产男女内射视频| 国产探花极品一区二区| 插阴视频在线观看视频| 日韩一本色道免费dvd| 亚洲精品中文字幕在线视频 | 99热这里只有是精品在线观看| 五月伊人婷婷丁香| 国产高清三级在线| av天堂久久9| 国产在线免费精品| 国产在视频线精品| 亚洲精品自拍成人| 内地一区二区视频在线| 自拍欧美九色日韩亚洲蝌蚪91 | 精品久久久久久电影网| 丝袜喷水一区| 精品一区在线观看国产| 国产一区二区三区综合在线观看 | 免费观看无遮挡的男女| 欧美xxⅹ黑人| 久久99热6这里只有精品| 亚洲欧洲国产日韩| 国产成人精品一,二区| 成人影院久久| 人人妻人人澡人人爽人人夜夜| 成年人午夜在线观看视频| 日本与韩国留学比较| 国产深夜福利视频在线观看| 精品久久久久久久久av| 国产探花极品一区二区| 一本大道久久a久久精品| 亚洲精品日韩在线中文字幕| 亚洲av不卡在线观看| 亚洲av.av天堂| 国产av一区二区精品久久| av国产精品久久久久影院| 夜夜看夜夜爽夜夜摸| 午夜激情福利司机影院| 精品国产乱码久久久久久小说| 久久久国产欧美日韩av| 成人漫画全彩无遮挡| 免费av不卡在线播放| 大香蕉97超碰在线| av在线观看视频网站免费| 久久久久久人妻| 亚洲国产欧美在线一区| 蜜桃在线观看..| 亚洲成人手机| 久久久亚洲精品成人影院| 啦啦啦啦在线视频资源| 一区二区av电影网| 在线观看免费视频网站a站| 人人妻人人添人人爽欧美一区卜| 精品熟女少妇av免费看| 亚洲成人一二三区av| 久久久久久伊人网av| 国产精品国产av在线观看| 嫩草影院新地址| 一级毛片黄色毛片免费观看视频| 天堂俺去俺来也www色官网| 少妇人妻 视频| h视频一区二区三区| 免费观看无遮挡的男女| 天天操日日干夜夜撸| 女的被弄到高潮叫床怎么办| 国产成人精品婷婷| www.av在线官网国产| 国产片特级美女逼逼视频| 日本午夜av视频| 欧美一级a爱片免费观看看| 黄色怎么调成土黄色| 国产高清不卡午夜福利| 99热全是精品| 日日撸夜夜添| 国产伦理片在线播放av一区| 国产在视频线精品| 国产真实伦视频高清在线观看| 精品亚洲成国产av| 国产日韩一区二区三区精品不卡 | 寂寞人妻少妇视频99o| 欧美3d第一页| 久久久久久久久大av| 熟女av电影| 一区二区三区免费毛片| 国产极品天堂在线| 一个人免费看片子| 色视频在线一区二区三区| 日本免费在线观看一区| 国产视频内射| 日韩中文字幕视频在线看片| 精品人妻熟女毛片av久久网站| 免费观看的影片在线观看| 国产精品国产三级专区第一集| 亚洲av在线观看美女高潮| 国国产精品蜜臀av免费| 国产黄片美女视频| 亚洲欧美日韩另类电影网站| 我的女老师完整版在线观看| 久久毛片免费看一区二区三区| 午夜91福利影院| 久久久午夜欧美精品| 日本91视频免费播放| 狂野欧美激情性xxxx在线观看| 人体艺术视频欧美日本| a级毛色黄片| 国产欧美另类精品又又久久亚洲欧美| 人人妻人人爽人人添夜夜欢视频 | 黑丝袜美女国产一区| 日韩一区二区三区影片| 99久久中文字幕三级久久日本| 在线播放无遮挡| 99久久精品国产国产毛片| 国产精品成人在线| 男人添女人高潮全过程视频| 亚洲色图综合在线观看| 一级,二级,三级黄色视频| 亚洲美女搞黄在线观看| 久久午夜综合久久蜜桃| 欧美区成人在线视频| 婷婷色av中文字幕| 日韩av免费高清视频| 免费av不卡在线播放| 建设人人有责人人尽责人人享有的| 成人国产av品久久久| 久久av网站| 国内精品宾馆在线| av播播在线观看一区| 男女无遮挡免费网站观看| 久久6这里有精品| 精品人妻偷拍中文字幕| 精品99又大又爽又粗少妇毛片| 午夜激情久久久久久久| 少妇高潮的动态图| 日韩一区二区三区影片| 精品午夜福利在线看| 久久久久久久久久久免费av| 国产日韩欧美视频二区| 亚洲av福利一区| 国产在线免费精品| 少妇 在线观看| 国产成人免费观看mmmm| 青春草视频在线免费观看| 午夜免费鲁丝| 中国美白少妇内射xxxbb| 一本大道久久a久久精品| 亚洲av欧美aⅴ国产| 蜜桃久久精品国产亚洲av| 青春草亚洲视频在线观看| 国产成人精品无人区| 成年av动漫网址| 午夜激情久久久久久久| 欧美最新免费一区二区三区| 国产精品伦人一区二区| 国产精品国产三级国产av玫瑰| 99国产精品免费福利视频| 精品人妻熟女av久视频|