• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    DFT study of solvation of Li+/Na+in fluoroethylene carbonate/vinylene carbonate/ethylene sulfite solvents for lithium/sodium-based battery?

    2021-03-19 03:21:58QiLiu劉琦GuoqiangTan譚國強(qiáng)FengWu吳鋒DaobinMu穆道斌andBorongWu吳伯榮
    Chinese Physics B 2021年3期
    關(guān)鍵詞:劉琦

    Qi Liu(劉琦), Guoqiang Tan(譚國強(qiáng)), Feng Wu(吳鋒), Daobin Mu(穆道斌), and Borong Wu(吳伯榮)

    Beijing Key Laboratory of Environment Science and Engineering,School of Material Science and Engineering,Beijing Institute of Technology,Beijing 100081,China

    Keywords: elelctrolyte,solvation,lithium ion battery,sodium ion battery

    1. Introduction

    Lithium ion battery has been applied in kinds of electric devices,[1-4]and sodium ion battery is very promising for large-scale grid energy storage system.[5-7]The electrochemical performance is closely related to the electrolyte property of lithium/sodium ion battery.[8-12]The functional solvents are necessary to optimize lithium/sodium battery electrochemical performance.[13-16]

    Vinylene carbonate(VC),fluorinated ethylene carbonate(FEC), and ethylene sulfite (ES), etc. solvents were usually used as electrolyte additives to improve the lithium/sodium ion battery interface stability.[17-26]The research on their potential application as electrolyte solvents is also important.Wang et al. have investigated FEC organic solvent containing LiTFSI(0.75 mol·kg?1)salt as electrolyte to improve the safety of graphite||NMC based lithium ion battery by reducing flammability.[27]The 1.2 M FEC based electrolyte with LiPF6salt has been used in Li/Li and Cu/LiFePO4cells,forming nanostructured LiF particles SEI film and improving the electrochemical performance.[28]Lee et al.have demonstrated that FEC-based electrolyte with 1 M NaFSI salt stabilizes Na metal deposition during electrochemical cycling, the FECNaFSI constructs the NaF, Na2CO3, and sodium alkylcarbonates mechanically strong and ion-permeable interlayer.[29]FEC based co-solvent of FEC+DMC has been proposed for Mg2Si anode of lithium ion battery to improve cycling stability by forming LiF-rich SEI.[30]The FEC based FEC/TTE/DEC(2:2:1 vol.) mixed electrolyte has been used in anode-free battery of LiNi0.5Mn0.3Co0.2O2/Cu, forming LiF-richer SEI on the anode surface, improving the cycling performance of the battery.[31]FEC solvent in the Li4Ti5O12/LiNi0.5Mn1.5O4battery for the anti-oxidation electrolyte system has improved the electrochemical performance, FEC solvent is responsible the formation of stable,uniform SEI films on individual Li4Ti5O12particles.[32]FEC based electrolyte with FEC/dimethyl carbonate/HFE mixed solvents has been used to improve the performance of both lithium metal anode and high voltage LiCoO2cathode material.[33]Zeng et al. have proposed a fluorinated intermixture of FEC and di-(2,2,2 trifluoroethyl) carbonate (TFEC) based non-flammable electrolyte for lithium/sodium ion battery, improving the compatibility with Prussian blue sodium ion battery cathode and the cycling stability of the silicon nanoparticle anode of lithium ion battery.[34,35]In-situ Na deposition image has indicated that the use of ethylene carbonate(EC),DEC,and PC based electrolyte produces a large number of dendrites and gas releasing, and FEC co-solvent dramatically reduces the dendrite growth and gas releasing, meanwhile improves the cycling stability.[36]Kuratani et al. have studied the density, viscosity,and conductivity of 1.5-2.0 mol·dm?3XClO4(X=Li and Na)based electrolyte in PC and γ-butyrolactone,the NaCIO4based electrolyte enjoys higher ionic conductivity and lower viscosity compared with LiClO4, and the ionic conductivity of NaClO4based electrolyte is 10%-20% higher than that of LiClO4.[37]The density, viscosity, and ionic conductivity of Li- and Na-TFSI in γ-butyrolactone and PC based electrolytes at the condition of 0.1 mol/L ≤C ≤2.0 mol/L and 278 K ≤T ≤328 K have been investigated to understand the electrolyte solution chemistry, it is indicated that sodium ion electrolyte occupies more volume compared with lithium ion electrolyte, and sodium ion electrolyte enjoys higher mobility and conductivity.[38]Zhang et al. have reported vinylethylene carbonate (VEC) single solvent based electrolyte with 1 M lithium hexafluorophosphates salt, enabling high safety and long cycle life for Li-metal batteries, which is attributed to unique interphase property and easy Li+desolvation in VEC.[39]Jin et al. have found that the aliphatic chain and cross-linking poly(ethylene oxide) (PEO) with carboxylate and carbonate species SEIs are formed in pure VC or FEC electrolytes.[40]Sulfur-containing sulfolane based solvent has been developed,which enhances the Li+conductivity of NCA cathode SEI film and the interfacial stability.[41]Wu et al.have reported a novel ES based electrolyte for Li-O2batteries which shows excellent round-trip efficiency and high specific capacity.[42]Wang et al.’s study has indicated that the Li plating potential dropping is ascribed to the carbonate-containing unstable SEI layer,[43]and LiFSI improved lithium deposition in carbonate electrolyte.[44]Cosolvation of Li+and solvent reductive decomposition have been studied by density functional theory(DFT)method,indicating that the different interactions with Li+affect the formation of SEI film.[45]Quantum chemistry (QC) calculations have been used for the prediction of oxidation and reduction stability of electrolyte components such as EC, FEC, and VC.[13]Liu et al.’s study has indicated that the different solvation ionic numbers lead to the different HOMO levels.[9]DFT calculation also has been used to study the reduction mechanism of VC, ES, and FEC for lithium/sodium battery.[15,46]The oxidation/reduction potentials and decomposition of VC have been studied by quantum chemistry calculation.[47-49]The concerns of the researchers are mainly focused on the influence of electrolyte solvents to the SEI formation mechanism and the improvement of the electrochemical performance of the battery, the research on the solvation mechanism of Li+/Na+in FEC, VC, ES, etc.organic solvents is absent. We have studied the Li+/Na+solvation in commonly used carbonate esters and ethers based on previous studies.[50,51]It is important for understanding the performance improvement mechanism of lithium/sodium ion battery by comparing the Li+/Na+solvation property in these organic solvents.

    The Li+/Na+solvation property in organic electrolyte solvents of VC, ES, and FEC is mainly investigated in this work. The energy,solvation structures,infrared spectrum,Raman spectrum, Gibbs free energy, and enthalpy of Li+/Na+-solvation complexes are compared. It is demonstrated that the solvation complexes of Li+with VC, ES, and FEC solvents are more stable compared with Na+solvation complexes. The discussion of detail method and result will be shown in the next part.

    2. Computation method

    B3LYP nonlocal correlation functional was used for the DFT calculations. The optimizations of structure and calculation of frequency were completed at B3LYP/6-311++G(d,p) level, the theoretical spectra analysis was obtained from frequency calculation. For more accurate calculation, B3LYP/6-311++G(3df,3dp) was used for all of the single point energy computation, and the energy was revised by zero-point energy calculation. ΔG = ΔThermal correction to Gibbs free energy (B3LYP/6-311+G(d,p)) +ΔE (B3LYP/6-311++G(3df,3dp)). ΔH = ΔThermal correction to enthalpy (B3LYP/6-311+G(d,p)) + ΔE (B3LYP/6-311++G(3df,3dp)). Enthalpies and Gibbs free energies were calculated at 298.15 K. Gaussian 09 program package was used for all DFT calculations.[52]

    3. Results and discussion

    3.1. Li+/Na+solvation in VC solvent

    The Gibbs free energy curves of stepwise Li+and Na+solvation reactions to VC solvent in different ions concentration are shown in Fig.1(a). It is clearly exhibited that with VC molecule increasing, the ΔG for the stepwise reaction gradually increases, and when forming 4VC-Li+and 4VC-Na+solvation complexes, thermodynamic equilibrium for the reactions is reached. The ΔE, ΔH, and ΔG of the VC stepwise solvation reactions with Li+and Na+are exhibited in Table 1.

    Table 1. The ΔE,ΔH,and ΔG of VC stepwise solvation reactions with Li+ and Na+,the unit is kcal·mol?1.

    Fig.1. (a) The Gibbs free energy curves of stepwise Li+ and Na+ solvation reactions to VC solvent in different ions concentration. (b)nVC-Li+and nVC-Na+(1 ≤n ≤5)solvation complexes models. IR spectra of(c)nVC-Li+and(d)nVC-Na+complexes by DFT calculation.

    It can be seen that the ΔG of stepwise solvation reactions VC+4VC-Na+=5VC-Na+and VC+4VC-Li+=5VC-Li+are 2.73 kcal·mol?1and 6.23 kcal·mol?1, respectively, indicating that stepwise reactions to form 5VC-Li+and 5VC-Na+solvation complexes are non-spontaneous processes.

    Table 2. Lengths of all Li-O and Na-O bonds and the average length after optimization for nVC-Li+ and nVC-Na+ complexes,the units are.

    Table 2. Lengths of all Li-O and Na-O bonds and the average length after optimization for nVC-Li+ and nVC-Na+ complexes,the units are.

    VC-Li+ 1.75 1.75(average)2VC-Li+ 1.80 1.80 1.80(average)3VC-Li+ 1.86 1.86 1.86 1.86(average)4VC-Li+ 1.94 1.94 1.94 1.94 1.94(average)5VC-Li+ 2.15 2.00 2.00 2.12 2.02 2.06(average)VC-Na+ 2.13 2.13(average)2VC-Na+ 2.17 2.17 2.17(average)3VC-Na+ 2.22 2.22 2.21 2.22(average)4VC-Na+ 2.27 2.27 2.27 2.26 2.27(average)5VC-Na+ 2.36 2.31 2.36 2.31 2.32 2.33(average)

    Figure 1(c) exhibits the theoretical IR spectra of nVCLi+. The vibration peak in 1815.01-1873.59 cm?1frequency range represents the stretching vibration of O=C in nVC-Li+solvation complexes,and with the Li+concentration reducing in nVC-Li+,the O=C peak evidently shifts to high frequency and the C=O bond is shortened(Table S1),it is in accord with the experimental FTIR spectrum results that O=C stretching vibration of VC is attributed to the peak at 1836 cm?1.[54]Besides,the three peaks in 1362.82-1385.38 cm?1,1181.17-1185.41 cm?1, and 1111.97-1168.08 cm?1frequency ranges represent different O-C stretching and H-C twist vibrations,when the Li+concentration decreases, all the above three vibration peaks shift to low frequency,and the peak in 1111.97-1168.08 cm?1exhibits the maximum frequency shift. The peak in 762.18-822.216 cm?1frequency range represents Li-O stretching accompanying with carbonate stretching in nVCLi+solvation complexes, when the concentration of lithium ion decreases from 2VC-Li+to 5VC-Li+, the vibration peak moves to low frequency, while the peak shifts to high frequency from VC-Li+to 2VC-Li+. The peak in 731.559-748.953 cm?1represents C-H twisting vibration in different nVC-Li+solvation complexes,the vibration shifts to low frequency with the decrease of Li+concentration. The Li-O stretching vibration in nVC-Li+solvation complexes is assigned to 376.039-619.7 cm?1frequency range which moves to low frequency when the complex changes from 2VC-Li+to 5VC-Li+. Figure 1(d) exhibits the theoretical IR spectra for nVC-Na+. From the figure, the peak in 1828.89-1878.62 cm?1represents the stretching vibration of O=C in nVC-Na+solvation complexes, with the sodium ion concentration decreasing, the vibration peak moves to high frequency and the C=O bond is shortened(Table S2). The frequency movement rule of nVC-Na+solvation complexes is in agreement with that of nVC-Li+. The results show that the different interactions of Li+and Na+with VC lead to the different C=O bond vibration peaks for the two kinds of solvation complexes, and the C=O vibration peak frequency in the nVC-Na+solvation complexes is higher than that of nVC-Li+, the difference becomes smaller when the solvent number increases in the complexes. Besides,the three peaks in 1360.26-1373.95 cm?1,1180.81-1182.38 cm?1,and 1109.49-1148.71 cm?1represent different stretching of OC and H-C twisting in nVC-Na+solvation complexes, the vibration peak shifts to low frequency with the decrease of Na+concentration. The vibration frequencies of the above three peaks in nVC-Na+solvation complexes are lower than those in nVC-Li+complexes. The vibration peak in 759.056-782.01 cm?1represents stretching of Na-O accompanying with carbonate stretching vibration, which moves to low frequency with the Na+concentration decreasing in the complexes. The vibration peak in 729.712-744.412 cm?1represents the twisting of H-C in the solvation complexes of nVCNa+, the peak shifts to low frequency with the decrease of Na+concentration. The twisting vibration frequency of H-C in nVC-Na+complexes is slightly lower than that in nVC-Li+.The stretching vibration of Na-O in nVC-Na+solvation complexes is assigned to 208.76-310.102 cm?1frequency range,the vibration peak shifts to low frequency when the sodium ion concentration changes from 2VC-Na+to 5VC-Na+.

    On the other hand, the theoretical Raman spectra analysis of nVC-Li+complexes is exhibited in Fig.2(a), the vibration peaks in 3294.66-3321.08 cm?1represent stretching vibration of H-C in nVC-Li+solvation complexes. The C=C bond stretching vibration peak in nVC-Li+complexes is assigned to the frequency range of 1654.26-1661.37 cm?1,which slightly moves to high frequency when the Li+concentration decreases in the solvation complexes. The two Raman vibration peaks in 1183.43-1185.41 cm?1and 1089.18-1102.01 cm?1represent stretching of O-C accompanying with twisting vibration of C-H. The three vibration peaks in 1046.16-1050.88 cm?1,941.29-986.518 cm?1,and 911.503-918.111 cm?1represent different stretching of O-C in nVCLi+solvation complexes. The C-H twisting vibration peak in nVC-Li+solvation complexes is assigned to 847.531-857.607 cm?1, which moves to low frequency when the Li+concentration decreases. Besides, the Raman vibration peak in 768.177-817.172 cm?1represents Li-O stretching accompanying with carbonate stretching in nVC-Li+complexes,it is fundamentally in accord with the peak frequency of IR spectra. Figure 2(b)shows the theoretical Raman spectra of nVCNa+, the two peaks in 3293.52-3320.97 cm?1and 1658.01-1662.73 cm?1represent the stretching vibrations of C-H and C=C bonds respectively in the nVC-Na+solvation complexes. There is small difference for C-H and C=C vibration peak frequencies in nVC-Na+and nVC-Li+complexes,indicating that the interaction to C-H and C=C bonds is negligible between Li+/Na+and VC.In addition,the C-O stretching vibration in nVC-Na+complexes is assigned to the two peaks of 1039.52-1049.47 cm?1and 929.064-964.543 cm?1,which move to low frequency with the sodium ion concentration decreasing. The Raman vibration peak in 843.097-854.053 cm?1frequency range represents twisting of H-C in nVC-Na+complexes. The Raman vibration peak in 759.056-782.01 cm?1represents stretching of Na-O accompanying with carbonate stretching in nVC-Na+.

    Fig.2. Raman spectra of(a)nVC-Li+ and(b)nVC-Na+ by DFT calculation.

    3.2. Li+/Na+solvation in ES solvent

    Except for VC solvent, the solvation of Li+/Na+in ES solvent is also studied. The Gibbs free energy curves of stepwise Li+and Na+solvation reactions to ES solvent in different ions concentration are exhibited in Fig.3(a). The thermodynamic equilibrium is reached after forming 4ES-Li+and 4ES-Na+for the stepwise solvation reactions.Table 3 exhibits ΔE, ΔH, and ΔG of the ES stepwise solvation reactions with Li+and Na+. The ΔG for reactions ES + 4ES-Li+= 5ESLi+and ES+4ES-Na+=5ES-Na+are 12.96 kcal·mol?1and 3.49 kcal·mol?1,respectively,suggesting non-spontaneous reaction processes to form 5ES-Li+and 5ES-Na+complexes.

    Table 3. The ΔE,ΔH,and ΔG of ES stepwise solvation reactions with Li+and Na+,the unit is kcal·mol?1.

    Fig.3.(a)The Gibbs free energy curves of stepwise Li+and Na+solvation reactions to ES solvent in different ions concentration. (b)nES-Li+and nES-Na+ (1 ≤n ≤5)solvation complexes models. IR spectra of(c)nES-Li+ and(d)nES-Na+ complexes by DFT calculation.

    In addition, IR spectra of nES-Li+complexes by DFT calculation are shown in Fig.3(c),the S=O stretching vibration in nES-Li+solvation complexes is assigned to 1118.3-1189.37 cm?1frequency range, which moves to high frequency with the decrease of Li+concentration,and the S=O bond is also shortened(Table S3). The two peaks in 1008.79-1020.66 cm?1and 907.372-922.035 cm?1represent different stretching vibrations of O-C-C-O bonds,which move to high frequency with Li+concentration decreasing. Besides, the O-S-O symmetrical stretching vibration in nES-Li+solvation complexes is assigned to 692.627-742.714 cm?1, which moves to low frequency from 2ES-Li+to 5ES-Li+. The peak in the frequency range of 640.685-658.844 cm?1represents the asymmetric vibration of O-S-O in nES-Li+solvation complexes, the peak moves to low frequency with Li+concentration decreasing in the complexes. The peak in 565.743-598.221 cm?1represents the asymmetric vibration of O-S-O;and it shifts to low frequency from 2ES-Li+to 5ES-Li+. The peak in the frequency range of 303.443-421.853 cm?1represents O-Li stretching driving sulfite stretching,and the vibration peak shifts to low frequency from 2ES-Li+to 5ES-Li+.

    Table 4. Length of all Li-O and Na-O bonds and the average length after optimization for nES-Li+ and nES-Na+ complexes,the units are ?A.

    On the other hand,the IR spectra of nES-Na+complexes by DFT calculation are exhibited in Fig.3(d), the peak in the frequency range of 1126.8-1165.37 cm?1represents the stretching vibration of S=O in the nES-Na+. The two peaks in 1012.19-1016.07 cm?1and 912.811-917.813 cm?1are on behalf of different stretching vibrations of O-C-C-O. Besides, the symmetric stretching vibration of O-S-O group in nES-Na+complexes is assigned to the frequency of 681.309-719.991 cm?1,which moves to low frequency with Na+concentration decreasing; because of the different interaction of ES molecules to Li+/Na+,the symmetric stretching vibration peak frequency in the nES-Na+complexes is evidently lower than that in nES-Li+complexes. The two peaks in 638.527-647.396 cm?1and 558.312-593.845 cm?1represent asymmetrical O-S-O stretching vibration in the nES-Na+complexes. Furthermore, the stretching vibration of Na-O in the nES-Na+complexes is assigned to the frequency of 200.708-302.905 cm?1.

    Figure 4(a) shows the Raman spectra of nES-Li+by DFT calculation. The C-H stretching vibration in nES-Li+complexes is assigned to the peak in the frequency range of 3070.12-3167.78 cm?1. Besides, the three peaks at about 1500 cm?1, 1242 cm?1, and 1218 cm?1represent different C-H twisting vibrations in nES-Li+complexes. The S=O Raman stretching vibration frequency in the nES-Li+complexes is assigned to 1118.3-1178.31 cm?1. The two Raman peaks in 1008.79-1012.39 cm?1and 907.372-919.306 cm?1represent different stretching vibrations of O-C-C-O in the nES-Li+complexes. The Raman vibration peak in 708.235-737.643 cm?1represents symmetrical O-S-O stretching vibration in the nES-Li+complexes.

    On the other hand, the Raman spectra of nES-Na+by DFT calculation are shown in Fig.4(b), the Raman stretching vibration of C-H in the nES-Na+solvation complexes is assigned to the peak of 3063.18-3162.13 cm?1. The three Raman peaks in 1500.38-1503.32 cm?1, 1242.33-1243.68 cm?1, and 1218.87-1221.83 cm?1represent the different twisting vibrations of C-H in the nES-Na+solvation complexes, the vibration peak frequency of C-H twisting in nES-Na+complexes is slightly higher than that in nES-Li+.The S=O Raman stretching vibration in nES-Na+is assigned to the frequency of 1126.8-1186.42 cm?1, and the S=O vibration frequency in nES-Na+complexes is higher than that in nES-Li+. In addition, the two Raman peaks in 1012.19-1016.07 cm?1and 912.811-919.593 cm?1represent different stretching vibrations of O-C-C-O in nES-Na+complexes.The symmetric O-S-O Raman stretching vibration in nESNa+is assigned to the peak of 689.831-719.991 cm?1.

    Fig.4. Raman spectra of(a)nES-Li+ and(b)nES-Na+by DFT calculation.

    3.3. Li+/Na+solvation in FEC solvent

    Table 5.The ΔE,ΔH,and ΔG of FEC stepwise solvation reactions with Li+ and Na+,the unit is kcal·mol?1.

    Fig.5. (a)The Gibbs free energy curves of stepwise Li+ and Na+ solvation reactions to FEC solvent in different ions concentration. (b)nFEC-Li+and nFEC-Na+ (1 ≤n ≤5)solvation complexes models. IR spectra of(c)nFEC-Li+ and(d)nFEC-Na+ complexes by DFT calculation.

    On the other hand, the IR spectra of nFEC-Na+complexes by DFT calculation are exhibited in Fig.5(d),the C=O stretching vibration peak in the nFEC-Na+complexes is assigned to the frequency of 1825.67-1889.31 cm?1, with the concentration of Na+decreasing the peak shifts to high frequency and the C=O bond is shortened (Table S6). The frequency of C=O stretching vibration peak for nFEC-Na+complexes is higher than that of nFEC-Li+. The two peaks in 1238.07-1243.58 cm?1and 1168.54-1206.39 cm?1represent stretching of O-C accompanying with twisting of C-H vibration in nFEC-Na+, and the vibration frequency moves to low frequency with the sodium ion concentration decreasing. Besides, the two peaks in 1119.07-1138.99 cm?1and 1088.06-1097.41 cm?1represent stretching of C-O accompanying with stretching of C-F,and the peaks also shift to low frequency with the sodium ion concentration decreasing in the nFEC-Na+complexes. The CH2-O stretching driving C-F stretching vibration in the nFEC-Na+is assigned to the peak in the frequency range of 1007.36-1011.62 cm?1. Furthermore,the peak in 741.512-755.315 cm?1represents O-Na stretching accompanying with carbonate stretching vibration in the nFEC-Na+complexes,which moves to low frequency with the sodium ion concentration decreasing in the complexes. The O-Na stretching vibration peak in the nFEC-Na+is assigned to the frequency of 211.156-306.307 cm?1.

    Table 6. Lengths of all Li-O and Na-O bonds and the average length after optimization for nFEC-Li+ and nFEC-Na+ complexes, the units are .

    Table 6. Lengths of all Li-O and Na-O bonds and the average length after optimization for nFEC-Li+ and nFEC-Na+ complexes, the units are .

    FEC-Li+ 1.75 1.75(average)2FEC-Li+ 1.80 1.80 1.80(average)3FEC-Li+ 1.86 1.86 1.86 1.86(average)4FEC-Li+ 1.94 1.94 1.94 1.94 1.94(average)5FEC-Li+ 1.98 2.32 1.99 1.98 2.06 2.07(average)FEC-Na+ 2.13 2.13(average)2FEC-Na+ 2.17 2.17 2.17(average)3FEC-Na+ 2.22 2.22 2.22 2.22(average)4FEC-Na+ 2.27 2.27 2.26 2.26 2.27(average)5FEC-Na+ 2.31 2.37 2.32 2.35 2.36 2.34(average)

    Figure 6(a) shows the Raman spectra of nFEC-Li+by DFT calculation. The C-H stretching vibration in the nFECLi+solvation complexes is assigned to the frequency of 3099.54-3319.78 cm?1. The peak at about 1501 cm?1represents twisting vibration of C-H in the nFEC-Li+complexes.The FEC ring enlargement vibration in the nFEC-Li+complexes is assigned to the frequency of 926.229-941.81 cm?1which moves to low frequency with the lithium ion concentration decreasing. The Raman peak in 867.656-873.965 cm?1represents stretching vibration of C-C in nFEC-Li+complexes, and the peak shifts to low frequency with the decrease of the Li+concentration. Besides, the Raman peak in 748.187-779.833 cm?1represents O-Li stretching accompanying with carbonate stretching vibration in the nFEC-Li+complexes.

    On the other hand, figure 6(b) exhibits the Raman spectra of nFEC-Na+by DFT calculation. The C-H stretching vibration peak in the nFEC-Na+complexes is assigned to the frequency of 3085.76-3170.68 cm?1,which moves to low frequency with sodium ion concentration decreasing.The Raman peak at about 1503 cm?1represents twisting vibration of CH in the nFEC-Na+complexes. The FEC ring enlargement stretching vibration peak in the nFEC-Na+complexes is assigned to the frequency of 916.897-937.212 cm?1. The peak in 860.869-872.501 cm?1is ascribed to stretching vibration of C-C in the nFEC-Na+complexes,and the peak moves to low frequency with the sodium ion concentration decreasing. Besides,the peak in 742.024-755.315 cm?1represents stretching of Na-O accompanying with stretching vibration of carbonate,the vibration peak moves to low frequency with the sodium ion concentration decreasing.

    Fig.6. Raman spectra of (a) nFEC-Li+ and (b) nFEC-Na+ by DFT calculation.

    At last, the stepwise solvation reactions and total solvation reactions Gibbs free energy change ΔG for Li+/Na+in the potential electrolyte solvents of VC, ES, and FEC are analyzed. Figure 7(a) shows the Gibbs free energy curve for Li+/Na+stepwise solvation reactions in VC, ES, and FEC, respectively, with solvent numbers changed. The maximum thermodynamics stability solvation complexes are consisted of 4VC-Li+, 4VC-Na+, 4ES-Li+, 4ES-Na+, 4FECLi+, and 4FEC-Na+by spontaneous solvation reactions between Li+/Na+and VC,ES,FEC solvents. Figure 7(b)shows the Gibbs free energy curve for the overall Li+/Na+solvation reactions with the change of solvation numbers. It is clearly seen that the absolute value of Gibbs free energy releasing(ΔG)reaches the maximum by overall Li+/Na+solvation reactions forming 4sol-Li+/Na+complexes, which is in agreement with the above stepwise solvation reaction results. In addition,it is clearly exhibited that the absolute values of free energy releasing(ΔG)for forming lithium-ion solvation complexes of nVC-Li+, nES-Li+, nFEC-Li+are evidently larger than those for formation of nVC-Na+, nES-Na+, nFEC-Na+complexes, indicating that lithium ion is easier to combine with VC,ES,and FEC compared to sodium ion,and lithiumion solvation complexes of nVC-Li+, nES-Li+, and nFECLi+are more stable compared with nVC-Na+,nES-Na+,and nFEC-Na+sodium ion solvation complexes.

    Fig.7. (a) Gibbs free energy curves for Li+/Na+ stepwise solvation reactions in VC,ES,and FEC,respectively,with solvent numbers changed. (b)Gibbs free energy curve for the overall Li+/Na+ solvation reactions with the change of solvation numbers.

    4. Conclusion

    Electrolyte solvents are very important to the electrochemical performance of lithium/sodium batteries. The solvation property of lithium/sodium ion in organic electrolyte solvents of VC, ES, and FEC is studied by DFT method.The results demonstrate that the maximum thermodynamics stability solvation complexes are consisted of 4VC-Li+,4VC-Na+, 4ES-Li+, 4ES-Na+, 4FEC-Li+, and 4FEC-Na+.The innermost solvation shells of 5VC-Li+, 5VC-Na+, 5ESLi+,5ES-Na+,5FEC-Li+,and 5FEC-Na+can be formed between Li+/Na+and solvent molecules. In addition, the results demonstrate that lithium ion is easier to combine with VC, ES, and FEC compared to sodium ion, and lithiumion solvation complexes of nVC-Li+, nES-Li+, and nFECLi+are more stable than nVC-Na+, nES-Na+, and nFECNa+sodium ion solvation complexes. Besides, the theoretical IR and Raman spectra analysis for the solvation complexes between Li+/Na+and VC, ES, FEC solvents demonstrates that the stretching vibration of O=C peak evidently shifts to high frequency when Li+/Na+concentration reducing in nVC-Li+,nVC-Na+,nFEC-Li+,and nFEC-Na+solvation complexes,and the O=C vibration in the Na+solvation complexes is higher than that of Li+complexes.The S=O vibration frequency in nES-Na+complexes is higher than that of nES-Li+,and the S=O stretching vibration in nES-Li+/Na+solvation complexes moves to high frequency with the decrease of Li+/Na+concentration. Besides, the stretching vibration of O-S-O group in nES-Na+/Li+complexes moves to low frequency with ion concentration decreasing, and the peak in nES-Na+complexes is lower than that of nES-Li+.The vibration peaks frequency occurs regular shift when the Li+/Na+concentration changes,and the different interactions for Li+and Na+with these solvents lead to the diverse characteristic peak frequencies for Li+/Na+solvation complexes.The results are important to guide the design of electrolyte and understand the performance improvement mechanism of lithium/sodium battery. In addition, different solvation complexes concentration may affect the reduction/oxidation potential, and solvation ionic is important for the initial stages of SEI formation. More studies on oxidation/reduction potentials of different solvation ionics are needed to deeply analyze the formation mechanism of the SEI film.

    猜你喜歡
    劉琦
    Electron sheaths near a positively biased plate subjected to a weak electron beam
    咕咕叫的肚皮
    復(fù)雜神經(jīng)網(wǎng)絡(luò)下的多行為識(shí)別技術(shù)研究
    客聯(lián)(2022年3期)2022-05-31 03:58:03
    初心引航,構(gòu)建“雙減”新樣態(tài)
    大戰(zhàn)章魚博士
    Plasma characteristics and broadband electromagnetic wave absorption in argon and helium capacitively coupled plasma?
    Resistive switching memory for high density storage and computing*
    Modeling and Simulation of the impact of mobile phone usage on energy consumption
    新生代(2019年17期)2019-10-16 08:36:30
    GLOBAL EXISTENCE OF CLASSICAL SOLUTIONS TO THE HYPERBOLIC GEOMETRY FLOW WITH TIME-DEPENDENT DISSIPATION?
    3-D Lagrangian-based investigations of the time-dependent cloud cavitating flows around a Clark-Y hydrofoil with special emphasis on shedding process analysis *
    午夜激情欧美在线| 在线播放无遮挡| 动漫黄色视频在线观看| 日本精品一区二区三区蜜桃| 日韩高清综合在线| 久久精品国产亚洲av天美| 欧美+日韩+精品| 国产乱人视频| 国产国拍精品亚洲av在线观看| 国产精品久久视频播放| 亚洲美女搞黄在线观看 | 午夜福利成人在线免费观看| 色5月婷婷丁香| 国产乱人视频| 淫秽高清视频在线观看| 精品人妻熟女av久视频| 人人妻人人看人人澡| 1000部很黄的大片| АⅤ资源中文在线天堂| 成人av在线播放网站| av黄色大香蕉| 又紧又爽又黄一区二区| 草草在线视频免费看| 日本a在线网址| 99久久精品国产亚洲精品| 丁香六月欧美| 国内精品美女久久久久久| 久久久成人免费电影| 日本a在线网址| 首页视频小说图片口味搜索| 欧美精品啪啪一区二区三区| 男女做爰动态图高潮gif福利片| 最近中文字幕高清免费大全6 | 亚洲欧美日韩高清专用| 久久伊人香网站| 欧美最黄视频在线播放免费| 老熟妇乱子伦视频在线观看| 国产伦精品一区二区三区视频9| 狠狠狠狠99中文字幕| 桃色一区二区三区在线观看| 91在线观看av| 丁香欧美五月| 欧美成人a在线观看| 精品日产1卡2卡| 熟妇人妻久久中文字幕3abv| 久久精品久久久久久噜噜老黄 | 国产69精品久久久久777片| 亚洲中文日韩欧美视频| 精品人妻视频免费看| 国产一区二区三区在线臀色熟女| 最近在线观看免费完整版| 国产精品一区二区免费欧美| 亚洲欧美激情综合另类| 国产精品亚洲美女久久久| 99国产极品粉嫩在线观看| 琪琪午夜伦伦电影理论片6080| 欧美色视频一区免费| 精品久久久久久久久久免费视频| 又粗又爽又猛毛片免费看| 久久久久久久午夜电影| 首页视频小说图片口味搜索| 亚洲精品一卡2卡三卡4卡5卡| 欧美bdsm另类| 欧美xxxx黑人xx丫x性爽| 亚洲不卡免费看| 亚洲色图av天堂| 亚洲成人中文字幕在线播放| 最近中文字幕高清免费大全6 | 日韩亚洲欧美综合| 欧美极品一区二区三区四区| 欧美最黄视频在线播放免费| 99久久九九国产精品国产免费| 午夜免费成人在线视频| 床上黄色一级片| 性插视频无遮挡在线免费观看| 欧美色欧美亚洲另类二区| 久久人妻av系列| 亚洲欧美日韩东京热| 91字幕亚洲| 国产野战对白在线观看| 日本 av在线| 一二三四社区在线视频社区8| 色综合站精品国产| 色播亚洲综合网| 亚洲国产色片| 特大巨黑吊av在线直播| 亚洲精品乱码久久久v下载方式| 啦啦啦韩国在线观看视频| 欧美绝顶高潮抽搐喷水| 在线天堂最新版资源| av天堂在线播放| 少妇的逼好多水| 一进一出抽搐动态| 搞女人的毛片| 一进一出好大好爽视频| 成人性生交大片免费视频hd| 亚洲va日本ⅴa欧美va伊人久久| 欧美又色又爽又黄视频| 午夜福利欧美成人| 高清在线国产一区| 乱码一卡2卡4卡精品| 18+在线观看网站| 757午夜福利合集在线观看| 12—13女人毛片做爰片一| 婷婷六月久久综合丁香| 国产精品日韩av在线免费观看| 日本 欧美在线| 可以在线观看的亚洲视频| 国产日本99.免费观看| 欧洲精品卡2卡3卡4卡5卡区| 亚洲精品乱码久久久v下载方式| 国产精品亚洲一级av第二区| 国产一区二区激情短视频| 美女 人体艺术 gogo| 9191精品国产免费久久| 夜夜看夜夜爽夜夜摸| 精品无人区乱码1区二区| 舔av片在线| 精品免费久久久久久久清纯| 精品久久久久久久末码| 午夜福利成人在线免费观看| 91在线观看av| 又黄又爽又刺激的免费视频.| av在线老鸭窝| 最近最新中文字幕大全电影3| 9191精品国产免费久久| 久久精品国产亚洲av香蕉五月| 亚洲精品影视一区二区三区av| 中文在线观看免费www的网站| 亚洲成人免费电影在线观看| 欧美一区二区国产精品久久精品| 亚洲一区高清亚洲精品| 在线天堂最新版资源| 麻豆国产97在线/欧美| 在线免费观看不下载黄p国产 | 免费av不卡在线播放| 国产精品,欧美在线| 1024手机看黄色片| 欧美激情国产日韩精品一区| 国产91精品成人一区二区三区| 亚洲av免费高清在线观看| 脱女人内裤的视频| 国产av在哪里看| 69人妻影院| 高清在线国产一区| 欧美又色又爽又黄视频| 在线观看午夜福利视频| 欧美高清成人免费视频www| 少妇被粗大猛烈的视频| 成人无遮挡网站| 怎么达到女性高潮| 婷婷色综合大香蕉| 青草久久国产| 亚洲最大成人中文| 色吧在线观看| 在线看三级毛片| 国产乱人伦免费视频| 男女床上黄色一级片免费看| 国产精品久久久久久久久免 | 岛国在线免费视频观看| www.熟女人妻精品国产| 国产精品影院久久| 在线观看午夜福利视频| 成人永久免费在线观看视频| 亚洲国产欧洲综合997久久,| 欧美日韩亚洲国产一区二区在线观看| 国产高潮美女av| 极品教师在线免费播放| 精品久久久久久成人av| 日韩欧美国产一区二区入口| 一本久久中文字幕| 日韩欧美在线乱码| 亚洲av.av天堂| 国产人妻一区二区三区在| 国产伦在线观看视频一区| 一区福利在线观看| 熟女人妻精品中文字幕| 亚洲精品一卡2卡三卡4卡5卡| 麻豆国产97在线/欧美| 亚洲第一欧美日韩一区二区三区| 国内少妇人妻偷人精品xxx网站| 色在线成人网| 一区二区三区四区激情视频 | 午夜福利免费观看在线| 丰满人妻熟妇乱又伦精品不卡| 色哟哟哟哟哟哟| 极品教师在线免费播放| 免费在线观看日本一区| 午夜福利18| 精品久久久久久久末码| 久久久久久久久久成人| 麻豆国产97在线/欧美| 精品日产1卡2卡| 三级国产精品欧美在线观看| 天堂动漫精品| 亚洲黑人精品在线| 51国产日韩欧美| 一本精品99久久精品77| 婷婷亚洲欧美| 黄色女人牲交| 成人无遮挡网站| 日韩有码中文字幕| 中文字幕人妻熟人妻熟丝袜美| 精品福利观看| 亚洲精品亚洲一区二区| ponron亚洲| 日韩欧美三级三区| 亚洲黑人精品在线| 一级av片app| 欧美激情国产日韩精品一区| 欧美又色又爽又黄视频| 久久久久久大精品| 最近在线观看免费完整版| 观看免费一级毛片| 免费av不卡在线播放| 黄色女人牲交| 日本 欧美在线| 亚洲不卡免费看| .国产精品久久| 3wmmmm亚洲av在线观看| 天美传媒精品一区二区| 国产又黄又爽又无遮挡在线| 动漫黄色视频在线观看| 精品午夜福利在线看| 国产一区二区在线av高清观看| 人妻制服诱惑在线中文字幕| 精品国产亚洲在线| 国产免费一级a男人的天堂| 久久精品国产亚洲av香蕉五月| 女人十人毛片免费观看3o分钟| 国内精品久久久久久久电影| av在线老鸭窝| 亚洲国产高清在线一区二区三| 亚洲综合色惰| 最近最新免费中文字幕在线| 午夜久久久久精精品| 伦理电影大哥的女人| 国产蜜桃级精品一区二区三区| 亚洲精华国产精华精| 国产成人啪精品午夜网站| 亚洲av五月六月丁香网| 久久亚洲精品不卡| 99久久无色码亚洲精品果冻| 内地一区二区视频在线| 一个人看的www免费观看视频| 99热只有精品国产| 嫁个100分男人电影在线观看| 国产伦在线观看视频一区| 一二三四社区在线视频社区8| 精品99又大又爽又粗少妇毛片 | 亚洲国产精品sss在线观看| 在现免费观看毛片| 欧美最新免费一区二区三区 | 久久久精品大字幕| 黄色女人牲交| 中文字幕免费在线视频6| 好男人电影高清在线观看| 久久午夜福利片| 国产精品不卡视频一区二区 | 真人做人爱边吃奶动态| 长腿黑丝高跟| 一本精品99久久精品77| 91av网一区二区| 一进一出抽搐动态| 日韩欧美 国产精品| 国产精品久久视频播放| 免费无遮挡裸体视频| 国产精品精品国产色婷婷| 怎么达到女性高潮| 欧美黑人欧美精品刺激| 精品久久久久久久久久久久久| 亚洲欧美日韩无卡精品| 夜夜夜夜夜久久久久| 国产极品精品免费视频能看的| а√天堂www在线а√下载| 免费一级毛片在线播放高清视频| 深夜精品福利| 国产美女午夜福利| 国产免费男女视频| 国产精品99久久久久久久久| 99热6这里只有精品| 中文字幕高清在线视频| 一本精品99久久精品77| 国产一区二区三区视频了| 99在线人妻在线中文字幕| 中亚洲国语对白在线视频| 成人亚洲精品av一区二区| 国产极品精品免费视频能看的| 超碰av人人做人人爽久久| av黄色大香蕉| 91午夜精品亚洲一区二区三区 | 亚洲自偷自拍三级| 国产精品嫩草影院av在线观看 | 黄色视频,在线免费观看| 97超级碰碰碰精品色视频在线观看| 国产熟女xx| 日韩中字成人| 久久天躁狠狠躁夜夜2o2o| 精品99又大又爽又粗少妇毛片 | 神马国产精品三级电影在线观看| 国产精品爽爽va在线观看网站| 欧美中文日本在线观看视频| h日本视频在线播放| 国产成年人精品一区二区| 一进一出抽搐动态| 国产探花极品一区二区| 亚洲综合色惰| bbb黄色大片| 欧美激情久久久久久爽电影| 高清日韩中文字幕在线| 国产av一区在线观看免费| 在线观看一区二区三区| 99热这里只有精品一区| 久久精品91蜜桃| 一夜夜www| 成人精品一区二区免费| 欧美性猛交黑人性爽| 欧美一级a爱片免费观看看| 国产免费av片在线观看野外av| 亚洲av不卡在线观看| av中文乱码字幕在线| 日韩有码中文字幕| 好男人电影高清在线观看| 成人av在线播放网站| 欧美日韩黄片免| 一边摸一边抽搐一进一小说| 又黄又爽又免费观看的视频| 日本a在线网址| 亚洲国产日韩欧美精品在线观看| 亚洲av电影在线进入| 国产激情偷乱视频一区二区| 丰满的人妻完整版| 精品无人区乱码1区二区| 久久久久国产精品人妻aⅴ院| avwww免费| 男女视频在线观看网站免费| 国产精品伦人一区二区| 欧美不卡视频在线免费观看| 欧美日韩中文字幕国产精品一区二区三区| 天堂av国产一区二区熟女人妻| 长腿黑丝高跟| 国产av麻豆久久久久久久| 天堂√8在线中文| 日韩欧美在线二视频| 一a级毛片在线观看| 男人狂女人下面高潮的视频| 1000部很黄的大片| 女人十人毛片免费观看3o分钟| 国产 一区 欧美 日韩| 身体一侧抽搐| 99国产综合亚洲精品| 国产视频内射| 欧美区成人在线视频| 变态另类丝袜制服| 老司机午夜十八禁免费视频| 国产乱人伦免费视频| 哪里可以看免费的av片| 欧美丝袜亚洲另类 | 亚洲国产高清在线一区二区三| 淫秽高清视频在线观看| 中文字幕免费在线视频6| 每晚都被弄得嗷嗷叫到高潮| 嫩草影院精品99| 亚洲天堂国产精品一区在线| 人人妻,人人澡人人爽秒播| 欧美成人一区二区免费高清观看| 小蜜桃在线观看免费完整版高清| avwww免费| 国产中年淑女户外野战色| 国产伦一二天堂av在线观看| 草草在线视频免费看| 一进一出抽搐动态| 国产白丝娇喘喷水9色精品| 长腿黑丝高跟| 亚洲欧美精品综合久久99| 999久久久精品免费观看国产| 免费观看人在逋| 日本三级黄在线观看| 悠悠久久av| 我要搜黄色片| 九色国产91popny在线| 亚洲成人精品中文字幕电影| 亚洲欧美清纯卡通| 国产伦精品一区二区三区四那| 最好的美女福利视频网| 午夜老司机福利剧场| 国内精品久久久久精免费| 亚洲自拍偷在线| 欧美乱妇无乱码| 搞女人的毛片| 天堂动漫精品| 一级黄片播放器| 999久久久精品免费观看国产| 久久九九热精品免费| 国产视频一区二区在线看| 69人妻影院| 99热精品在线国产| 丁香欧美五月| 久99久视频精品免费| 亚洲经典国产精华液单 | av黄色大香蕉| 午夜福利18| 欧美色视频一区免费| 亚洲av五月六月丁香网| 丰满乱子伦码专区| 国产aⅴ精品一区二区三区波| 亚洲综合色惰| 国产综合懂色| 精品久久久久久久久亚洲 | 日韩欧美精品免费久久 | 97超视频在线观看视频| 午夜激情欧美在线| 亚洲人成网站在线播放欧美日韩| 色综合站精品国产| av黄色大香蕉| 一级a爱片免费观看的视频| 久9热在线精品视频| 国产精品一区二区性色av| 国产精华一区二区三区| 成人国产综合亚洲| a级毛片a级免费在线| 欧美成人免费av一区二区三区| 精品国产亚洲在线| 深爱激情五月婷婷| 久久久久精品国产欧美久久久| 日韩欧美精品v在线| 一级作爱视频免费观看| 国产伦在线观看视频一区| 色哟哟·www| 9191精品国产免费久久| 丝袜美腿在线中文| 精品国产亚洲在线| 中文字幕精品亚洲无线码一区| 国产极品精品免费视频能看的| 一个人观看的视频www高清免费观看| 国产伦精品一区二区三区四那| 国产不卡一卡二| 狂野欧美白嫩少妇大欣赏| 在线a可以看的网站| 国产成人福利小说| 日本三级黄在线观看| 精华霜和精华液先用哪个| 亚洲人成伊人成综合网2020| 欧美日韩黄片免| 51国产日韩欧美| 日韩欧美精品v在线| 内地一区二区视频在线| 国产精品一区二区三区四区久久| av在线老鸭窝| 色噜噜av男人的天堂激情| 欧美丝袜亚洲另类 | 欧美不卡视频在线免费观看| 久久久久久国产a免费观看| 又黄又爽又刺激的免费视频.| 亚洲成人精品中文字幕电影| 在现免费观看毛片| 在线天堂最新版资源| 色播亚洲综合网| 久久久久久久久久成人| 国产亚洲欧美在线一区二区| 啦啦啦韩国在线观看视频| 亚洲熟妇熟女久久| 又黄又爽又刺激的免费视频.| 亚洲国产精品999在线| .国产精品久久| eeuss影院久久| 国产69精品久久久久777片| 波多野结衣高清无吗| 久9热在线精品视频| 国产午夜福利久久久久久| a在线观看视频网站| 亚洲欧美日韩东京热| 俄罗斯特黄特色一大片| 中文字幕av在线有码专区| www.999成人在线观看| 淫妇啪啪啪对白视频| 精品久久国产蜜桃| 国产av麻豆久久久久久久| 一二三四社区在线视频社区8| 直男gayav资源| 97人妻精品一区二区三区麻豆| 国产人妻一区二区三区在| 两个人的视频大全免费| 男插女下体视频免费在线播放| .国产精品久久| 亚洲精品影视一区二区三区av| 少妇高潮的动态图| 精品免费久久久久久久清纯| 国产成+人综合+亚洲专区| 最近视频中文字幕2019在线8| netflix在线观看网站| 欧美成人性av电影在线观看| 欧美日韩综合久久久久久 | 久久久久久久久久黄片| 欧美成人免费av一区二区三区| 亚洲精品在线观看二区| 狂野欧美白嫩少妇大欣赏| 一区二区三区高清视频在线| 成年人黄色毛片网站| 在线天堂最新版资源| 18禁裸乳无遮挡免费网站照片| 精品福利观看| 天天躁日日操中文字幕| 欧美不卡视频在线免费观看| 亚洲成av人片免费观看| 日韩欧美精品v在线| 国产aⅴ精品一区二区三区波| 精品午夜福利在线看| 怎么达到女性高潮| 国产av不卡久久| 成人美女网站在线观看视频| 久久精品国产清高在天天线| 蜜桃久久精品国产亚洲av| 中文字幕人成人乱码亚洲影| 成熟少妇高潮喷水视频| www.色视频.com| 波多野结衣巨乳人妻| 免费搜索国产男女视频| 日韩人妻高清精品专区| 国产成人啪精品午夜网站| 国产黄a三级三级三级人| 在线十欧美十亚洲十日本专区| 欧美成狂野欧美在线观看| 日韩欧美精品v在线| av在线老鸭窝| 午夜亚洲福利在线播放| 国产精品1区2区在线观看.| 我要看日韩黄色一级片| 欧美最黄视频在线播放免费| 国产精品三级大全| 麻豆一二三区av精品| 色哟哟·www| 国产精品野战在线观看| 久久精品影院6| 首页视频小说图片口味搜索| 久久久久精品国产欧美久久久| 婷婷六月久久综合丁香| 99热这里只有是精品在线观看 | 亚洲18禁久久av| 日本一本二区三区精品| 婷婷六月久久综合丁香| 精品久久久久久久久久久久久| 欧美午夜高清在线| 国产色爽女视频免费观看| 国产国拍精品亚洲av在线观看| 可以在线观看毛片的网站| 精品久久国产蜜桃| 午夜日韩欧美国产| av在线天堂中文字幕| 国产亚洲精品av在线| 俄罗斯特黄特色一大片| 成人永久免费在线观看视频| 69人妻影院| 在线a可以看的网站| 99riav亚洲国产免费| 亚洲一区二区三区色噜噜| 国产中年淑女户外野战色| 免费av毛片视频| 日日摸夜夜添夜夜添av毛片 | 精品人妻一区二区三区麻豆 | 精品一区二区三区av网在线观看| 国产欧美日韩精品亚洲av| 亚洲午夜理论影院| 91久久精品国产一区二区成人| 欧美区成人在线视频| 日韩有码中文字幕| 亚洲乱码一区二区免费版| 女人被狂操c到高潮| 男女下面进入的视频免费午夜| 亚洲天堂国产精品一区在线| 极品教师在线视频| 18禁黄网站禁片免费观看直播| 欧美3d第一页| 午夜福利欧美成人| 精品久久久久久久久久免费视频| 国产三级黄色录像| 看片在线看免费视频| 性色av乱码一区二区三区2| 日本成人三级电影网站| 国产精品美女特级片免费视频播放器| 久久久久亚洲av毛片大全| 成年女人毛片免费观看观看9| 亚洲片人在线观看| 中文在线观看免费www的网站| 麻豆国产97在线/欧美| 91狼人影院| 亚洲av熟女| 国产视频一区二区在线看| 麻豆成人午夜福利视频| 亚洲精品在线观看二区| 如何舔出高潮| 99久久精品热视频| 直男gayav资源| 国产精品免费一区二区三区在线| 精品国内亚洲2022精品成人| 18禁在线播放成人免费| 亚洲欧美精品综合久久99| 欧美激情久久久久久爽电影| 天天躁日日操中文字幕| 国产精品1区2区在线观看.| 午夜精品在线福利| 午夜免费成人在线视频| 精品99又大又爽又粗少妇毛片 | 久久精品人妻少妇| 亚洲一区高清亚洲精品| 久久国产乱子免费精品| av黄色大香蕉| 丰满乱子伦码专区| 欧美最新免费一区二区三区 | 国产免费男女视频| 嫁个100分男人电影在线观看| 动漫黄色视频在线观看| 精品一区二区三区视频在线| 国产乱人视频| 99热这里只有是精品在线观看 |