• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    DFT study of solvation of Li+/Na+in fluoroethylene carbonate/vinylene carbonate/ethylene sulfite solvents for lithium/sodium-based battery?

    2021-03-19 03:21:58QiLiu劉琦GuoqiangTan譚國強(qiáng)FengWu吳鋒DaobinMu穆道斌andBorongWu吳伯榮
    Chinese Physics B 2021年3期
    關(guān)鍵詞:劉琦

    Qi Liu(劉琦), Guoqiang Tan(譚國強(qiáng)), Feng Wu(吳鋒), Daobin Mu(穆道斌), and Borong Wu(吳伯榮)

    Beijing Key Laboratory of Environment Science and Engineering,School of Material Science and Engineering,Beijing Institute of Technology,Beijing 100081,China

    Keywords: elelctrolyte,solvation,lithium ion battery,sodium ion battery

    1. Introduction

    Lithium ion battery has been applied in kinds of electric devices,[1-4]and sodium ion battery is very promising for large-scale grid energy storage system.[5-7]The electrochemical performance is closely related to the electrolyte property of lithium/sodium ion battery.[8-12]The functional solvents are necessary to optimize lithium/sodium battery electrochemical performance.[13-16]

    Vinylene carbonate(VC),fluorinated ethylene carbonate(FEC), and ethylene sulfite (ES), etc. solvents were usually used as electrolyte additives to improve the lithium/sodium ion battery interface stability.[17-26]The research on their potential application as electrolyte solvents is also important.Wang et al. have investigated FEC organic solvent containing LiTFSI(0.75 mol·kg?1)salt as electrolyte to improve the safety of graphite||NMC based lithium ion battery by reducing flammability.[27]The 1.2 M FEC based electrolyte with LiPF6salt has been used in Li/Li and Cu/LiFePO4cells,forming nanostructured LiF particles SEI film and improving the electrochemical performance.[28]Lee et al.have demonstrated that FEC-based electrolyte with 1 M NaFSI salt stabilizes Na metal deposition during electrochemical cycling, the FECNaFSI constructs the NaF, Na2CO3, and sodium alkylcarbonates mechanically strong and ion-permeable interlayer.[29]FEC based co-solvent of FEC+DMC has been proposed for Mg2Si anode of lithium ion battery to improve cycling stability by forming LiF-rich SEI.[30]The FEC based FEC/TTE/DEC(2:2:1 vol.) mixed electrolyte has been used in anode-free battery of LiNi0.5Mn0.3Co0.2O2/Cu, forming LiF-richer SEI on the anode surface, improving the cycling performance of the battery.[31]FEC solvent in the Li4Ti5O12/LiNi0.5Mn1.5O4battery for the anti-oxidation electrolyte system has improved the electrochemical performance, FEC solvent is responsible the formation of stable,uniform SEI films on individual Li4Ti5O12particles.[32]FEC based electrolyte with FEC/dimethyl carbonate/HFE mixed solvents has been used to improve the performance of both lithium metal anode and high voltage LiCoO2cathode material.[33]Zeng et al. have proposed a fluorinated intermixture of FEC and di-(2,2,2 trifluoroethyl) carbonate (TFEC) based non-flammable electrolyte for lithium/sodium ion battery, improving the compatibility with Prussian blue sodium ion battery cathode and the cycling stability of the silicon nanoparticle anode of lithium ion battery.[34,35]In-situ Na deposition image has indicated that the use of ethylene carbonate(EC),DEC,and PC based electrolyte produces a large number of dendrites and gas releasing, and FEC co-solvent dramatically reduces the dendrite growth and gas releasing, meanwhile improves the cycling stability.[36]Kuratani et al. have studied the density, viscosity,and conductivity of 1.5-2.0 mol·dm?3XClO4(X=Li and Na)based electrolyte in PC and γ-butyrolactone,the NaCIO4based electrolyte enjoys higher ionic conductivity and lower viscosity compared with LiClO4, and the ionic conductivity of NaClO4based electrolyte is 10%-20% higher than that of LiClO4.[37]The density, viscosity, and ionic conductivity of Li- and Na-TFSI in γ-butyrolactone and PC based electrolytes at the condition of 0.1 mol/L ≤C ≤2.0 mol/L and 278 K ≤T ≤328 K have been investigated to understand the electrolyte solution chemistry, it is indicated that sodium ion electrolyte occupies more volume compared with lithium ion electrolyte, and sodium ion electrolyte enjoys higher mobility and conductivity.[38]Zhang et al. have reported vinylethylene carbonate (VEC) single solvent based electrolyte with 1 M lithium hexafluorophosphates salt, enabling high safety and long cycle life for Li-metal batteries, which is attributed to unique interphase property and easy Li+desolvation in VEC.[39]Jin et al. have found that the aliphatic chain and cross-linking poly(ethylene oxide) (PEO) with carboxylate and carbonate species SEIs are formed in pure VC or FEC electrolytes.[40]Sulfur-containing sulfolane based solvent has been developed,which enhances the Li+conductivity of NCA cathode SEI film and the interfacial stability.[41]Wu et al.have reported a novel ES based electrolyte for Li-O2batteries which shows excellent round-trip efficiency and high specific capacity.[42]Wang et al.’s study has indicated that the Li plating potential dropping is ascribed to the carbonate-containing unstable SEI layer,[43]and LiFSI improved lithium deposition in carbonate electrolyte.[44]Cosolvation of Li+and solvent reductive decomposition have been studied by density functional theory(DFT)method,indicating that the different interactions with Li+affect the formation of SEI film.[45]Quantum chemistry (QC) calculations have been used for the prediction of oxidation and reduction stability of electrolyte components such as EC, FEC, and VC.[13]Liu et al.’s study has indicated that the different solvation ionic numbers lead to the different HOMO levels.[9]DFT calculation also has been used to study the reduction mechanism of VC, ES, and FEC for lithium/sodium battery.[15,46]The oxidation/reduction potentials and decomposition of VC have been studied by quantum chemistry calculation.[47-49]The concerns of the researchers are mainly focused on the influence of electrolyte solvents to the SEI formation mechanism and the improvement of the electrochemical performance of the battery, the research on the solvation mechanism of Li+/Na+in FEC, VC, ES, etc.organic solvents is absent. We have studied the Li+/Na+solvation in commonly used carbonate esters and ethers based on previous studies.[50,51]It is important for understanding the performance improvement mechanism of lithium/sodium ion battery by comparing the Li+/Na+solvation property in these organic solvents.

    The Li+/Na+solvation property in organic electrolyte solvents of VC, ES, and FEC is mainly investigated in this work. The energy,solvation structures,infrared spectrum,Raman spectrum, Gibbs free energy, and enthalpy of Li+/Na+-solvation complexes are compared. It is demonstrated that the solvation complexes of Li+with VC, ES, and FEC solvents are more stable compared with Na+solvation complexes. The discussion of detail method and result will be shown in the next part.

    2. Computation method

    B3LYP nonlocal correlation functional was used for the DFT calculations. The optimizations of structure and calculation of frequency were completed at B3LYP/6-311++G(d,p) level, the theoretical spectra analysis was obtained from frequency calculation. For more accurate calculation, B3LYP/6-311++G(3df,3dp) was used for all of the single point energy computation, and the energy was revised by zero-point energy calculation. ΔG = ΔThermal correction to Gibbs free energy (B3LYP/6-311+G(d,p)) +ΔE (B3LYP/6-311++G(3df,3dp)). ΔH = ΔThermal correction to enthalpy (B3LYP/6-311+G(d,p)) + ΔE (B3LYP/6-311++G(3df,3dp)). Enthalpies and Gibbs free energies were calculated at 298.15 K. Gaussian 09 program package was used for all DFT calculations.[52]

    3. Results and discussion

    3.1. Li+/Na+solvation in VC solvent

    The Gibbs free energy curves of stepwise Li+and Na+solvation reactions to VC solvent in different ions concentration are shown in Fig.1(a). It is clearly exhibited that with VC molecule increasing, the ΔG for the stepwise reaction gradually increases, and when forming 4VC-Li+and 4VC-Na+solvation complexes, thermodynamic equilibrium for the reactions is reached. The ΔE, ΔH, and ΔG of the VC stepwise solvation reactions with Li+and Na+are exhibited in Table 1.

    Table 1. The ΔE,ΔH,and ΔG of VC stepwise solvation reactions with Li+ and Na+,the unit is kcal·mol?1.

    Fig.1. (a) The Gibbs free energy curves of stepwise Li+ and Na+ solvation reactions to VC solvent in different ions concentration. (b)nVC-Li+and nVC-Na+(1 ≤n ≤5)solvation complexes models. IR spectra of(c)nVC-Li+and(d)nVC-Na+complexes by DFT calculation.

    It can be seen that the ΔG of stepwise solvation reactions VC+4VC-Na+=5VC-Na+and VC+4VC-Li+=5VC-Li+are 2.73 kcal·mol?1and 6.23 kcal·mol?1, respectively, indicating that stepwise reactions to form 5VC-Li+and 5VC-Na+solvation complexes are non-spontaneous processes.

    Table 2. Lengths of all Li-O and Na-O bonds and the average length after optimization for nVC-Li+ and nVC-Na+ complexes,the units are.

    Table 2. Lengths of all Li-O and Na-O bonds and the average length after optimization for nVC-Li+ and nVC-Na+ complexes,the units are.

    VC-Li+ 1.75 1.75(average)2VC-Li+ 1.80 1.80 1.80(average)3VC-Li+ 1.86 1.86 1.86 1.86(average)4VC-Li+ 1.94 1.94 1.94 1.94 1.94(average)5VC-Li+ 2.15 2.00 2.00 2.12 2.02 2.06(average)VC-Na+ 2.13 2.13(average)2VC-Na+ 2.17 2.17 2.17(average)3VC-Na+ 2.22 2.22 2.21 2.22(average)4VC-Na+ 2.27 2.27 2.27 2.26 2.27(average)5VC-Na+ 2.36 2.31 2.36 2.31 2.32 2.33(average)

    Figure 1(c) exhibits the theoretical IR spectra of nVCLi+. The vibration peak in 1815.01-1873.59 cm?1frequency range represents the stretching vibration of O=C in nVC-Li+solvation complexes,and with the Li+concentration reducing in nVC-Li+,the O=C peak evidently shifts to high frequency and the C=O bond is shortened(Table S1),it is in accord with the experimental FTIR spectrum results that O=C stretching vibration of VC is attributed to the peak at 1836 cm?1.[54]Besides,the three peaks in 1362.82-1385.38 cm?1,1181.17-1185.41 cm?1, and 1111.97-1168.08 cm?1frequency ranges represent different O-C stretching and H-C twist vibrations,when the Li+concentration decreases, all the above three vibration peaks shift to low frequency,and the peak in 1111.97-1168.08 cm?1exhibits the maximum frequency shift. The peak in 762.18-822.216 cm?1frequency range represents Li-O stretching accompanying with carbonate stretching in nVCLi+solvation complexes, when the concentration of lithium ion decreases from 2VC-Li+to 5VC-Li+, the vibration peak moves to low frequency, while the peak shifts to high frequency from VC-Li+to 2VC-Li+. The peak in 731.559-748.953 cm?1represents C-H twisting vibration in different nVC-Li+solvation complexes,the vibration shifts to low frequency with the decrease of Li+concentration. The Li-O stretching vibration in nVC-Li+solvation complexes is assigned to 376.039-619.7 cm?1frequency range which moves to low frequency when the complex changes from 2VC-Li+to 5VC-Li+. Figure 1(d) exhibits the theoretical IR spectra for nVC-Na+. From the figure, the peak in 1828.89-1878.62 cm?1represents the stretching vibration of O=C in nVC-Na+solvation complexes, with the sodium ion concentration decreasing, the vibration peak moves to high frequency and the C=O bond is shortened(Table S2). The frequency movement rule of nVC-Na+solvation complexes is in agreement with that of nVC-Li+. The results show that the different interactions of Li+and Na+with VC lead to the different C=O bond vibration peaks for the two kinds of solvation complexes, and the C=O vibration peak frequency in the nVC-Na+solvation complexes is higher than that of nVC-Li+, the difference becomes smaller when the solvent number increases in the complexes. Besides,the three peaks in 1360.26-1373.95 cm?1,1180.81-1182.38 cm?1,and 1109.49-1148.71 cm?1represent different stretching of OC and H-C twisting in nVC-Na+solvation complexes, the vibration peak shifts to low frequency with the decrease of Na+concentration. The vibration frequencies of the above three peaks in nVC-Na+solvation complexes are lower than those in nVC-Li+complexes. The vibration peak in 759.056-782.01 cm?1represents stretching of Na-O accompanying with carbonate stretching vibration, which moves to low frequency with the Na+concentration decreasing in the complexes. The vibration peak in 729.712-744.412 cm?1represents the twisting of H-C in the solvation complexes of nVCNa+, the peak shifts to low frequency with the decrease of Na+concentration. The twisting vibration frequency of H-C in nVC-Na+complexes is slightly lower than that in nVC-Li+.The stretching vibration of Na-O in nVC-Na+solvation complexes is assigned to 208.76-310.102 cm?1frequency range,the vibration peak shifts to low frequency when the sodium ion concentration changes from 2VC-Na+to 5VC-Na+.

    On the other hand, the theoretical Raman spectra analysis of nVC-Li+complexes is exhibited in Fig.2(a), the vibration peaks in 3294.66-3321.08 cm?1represent stretching vibration of H-C in nVC-Li+solvation complexes. The C=C bond stretching vibration peak in nVC-Li+complexes is assigned to the frequency range of 1654.26-1661.37 cm?1,which slightly moves to high frequency when the Li+concentration decreases in the solvation complexes. The two Raman vibration peaks in 1183.43-1185.41 cm?1and 1089.18-1102.01 cm?1represent stretching of O-C accompanying with twisting vibration of C-H. The three vibration peaks in 1046.16-1050.88 cm?1,941.29-986.518 cm?1,and 911.503-918.111 cm?1represent different stretching of O-C in nVCLi+solvation complexes. The C-H twisting vibration peak in nVC-Li+solvation complexes is assigned to 847.531-857.607 cm?1, which moves to low frequency when the Li+concentration decreases. Besides, the Raman vibration peak in 768.177-817.172 cm?1represents Li-O stretching accompanying with carbonate stretching in nVC-Li+complexes,it is fundamentally in accord with the peak frequency of IR spectra. Figure 2(b)shows the theoretical Raman spectra of nVCNa+, the two peaks in 3293.52-3320.97 cm?1and 1658.01-1662.73 cm?1represent the stretching vibrations of C-H and C=C bonds respectively in the nVC-Na+solvation complexes. There is small difference for C-H and C=C vibration peak frequencies in nVC-Na+and nVC-Li+complexes,indicating that the interaction to C-H and C=C bonds is negligible between Li+/Na+and VC.In addition,the C-O stretching vibration in nVC-Na+complexes is assigned to the two peaks of 1039.52-1049.47 cm?1and 929.064-964.543 cm?1,which move to low frequency with the sodium ion concentration decreasing. The Raman vibration peak in 843.097-854.053 cm?1frequency range represents twisting of H-C in nVC-Na+complexes. The Raman vibration peak in 759.056-782.01 cm?1represents stretching of Na-O accompanying with carbonate stretching in nVC-Na+.

    Fig.2. Raman spectra of(a)nVC-Li+ and(b)nVC-Na+ by DFT calculation.

    3.2. Li+/Na+solvation in ES solvent

    Except for VC solvent, the solvation of Li+/Na+in ES solvent is also studied. The Gibbs free energy curves of stepwise Li+and Na+solvation reactions to ES solvent in different ions concentration are exhibited in Fig.3(a). The thermodynamic equilibrium is reached after forming 4ES-Li+and 4ES-Na+for the stepwise solvation reactions.Table 3 exhibits ΔE, ΔH, and ΔG of the ES stepwise solvation reactions with Li+and Na+. The ΔG for reactions ES + 4ES-Li+= 5ESLi+and ES+4ES-Na+=5ES-Na+are 12.96 kcal·mol?1and 3.49 kcal·mol?1,respectively,suggesting non-spontaneous reaction processes to form 5ES-Li+and 5ES-Na+complexes.

    Table 3. The ΔE,ΔH,and ΔG of ES stepwise solvation reactions with Li+and Na+,the unit is kcal·mol?1.

    Fig.3.(a)The Gibbs free energy curves of stepwise Li+and Na+solvation reactions to ES solvent in different ions concentration. (b)nES-Li+and nES-Na+ (1 ≤n ≤5)solvation complexes models. IR spectra of(c)nES-Li+ and(d)nES-Na+ complexes by DFT calculation.

    In addition, IR spectra of nES-Li+complexes by DFT calculation are shown in Fig.3(c),the S=O stretching vibration in nES-Li+solvation complexes is assigned to 1118.3-1189.37 cm?1frequency range, which moves to high frequency with the decrease of Li+concentration,and the S=O bond is also shortened(Table S3). The two peaks in 1008.79-1020.66 cm?1and 907.372-922.035 cm?1represent different stretching vibrations of O-C-C-O bonds,which move to high frequency with Li+concentration decreasing. Besides, the O-S-O symmetrical stretching vibration in nES-Li+solvation complexes is assigned to 692.627-742.714 cm?1, which moves to low frequency from 2ES-Li+to 5ES-Li+. The peak in the frequency range of 640.685-658.844 cm?1represents the asymmetric vibration of O-S-O in nES-Li+solvation complexes, the peak moves to low frequency with Li+concentration decreasing in the complexes. The peak in 565.743-598.221 cm?1represents the asymmetric vibration of O-S-O;and it shifts to low frequency from 2ES-Li+to 5ES-Li+. The peak in the frequency range of 303.443-421.853 cm?1represents O-Li stretching driving sulfite stretching,and the vibration peak shifts to low frequency from 2ES-Li+to 5ES-Li+.

    Table 4. Length of all Li-O and Na-O bonds and the average length after optimization for nES-Li+ and nES-Na+ complexes,the units are ?A.

    On the other hand,the IR spectra of nES-Na+complexes by DFT calculation are exhibited in Fig.3(d), the peak in the frequency range of 1126.8-1165.37 cm?1represents the stretching vibration of S=O in the nES-Na+. The two peaks in 1012.19-1016.07 cm?1and 912.811-917.813 cm?1are on behalf of different stretching vibrations of O-C-C-O. Besides, the symmetric stretching vibration of O-S-O group in nES-Na+complexes is assigned to the frequency of 681.309-719.991 cm?1,which moves to low frequency with Na+concentration decreasing; because of the different interaction of ES molecules to Li+/Na+,the symmetric stretching vibration peak frequency in the nES-Na+complexes is evidently lower than that in nES-Li+complexes. The two peaks in 638.527-647.396 cm?1and 558.312-593.845 cm?1represent asymmetrical O-S-O stretching vibration in the nES-Na+complexes. Furthermore, the stretching vibration of Na-O in the nES-Na+complexes is assigned to the frequency of 200.708-302.905 cm?1.

    Figure 4(a) shows the Raman spectra of nES-Li+by DFT calculation. The C-H stretching vibration in nES-Li+complexes is assigned to the peak in the frequency range of 3070.12-3167.78 cm?1. Besides, the three peaks at about 1500 cm?1, 1242 cm?1, and 1218 cm?1represent different C-H twisting vibrations in nES-Li+complexes. The S=O Raman stretching vibration frequency in the nES-Li+complexes is assigned to 1118.3-1178.31 cm?1. The two Raman peaks in 1008.79-1012.39 cm?1and 907.372-919.306 cm?1represent different stretching vibrations of O-C-C-O in the nES-Li+complexes. The Raman vibration peak in 708.235-737.643 cm?1represents symmetrical O-S-O stretching vibration in the nES-Li+complexes.

    On the other hand, the Raman spectra of nES-Na+by DFT calculation are shown in Fig.4(b), the Raman stretching vibration of C-H in the nES-Na+solvation complexes is assigned to the peak of 3063.18-3162.13 cm?1. The three Raman peaks in 1500.38-1503.32 cm?1, 1242.33-1243.68 cm?1, and 1218.87-1221.83 cm?1represent the different twisting vibrations of C-H in the nES-Na+solvation complexes, the vibration peak frequency of C-H twisting in nES-Na+complexes is slightly higher than that in nES-Li+.The S=O Raman stretching vibration in nES-Na+is assigned to the frequency of 1126.8-1186.42 cm?1, and the S=O vibration frequency in nES-Na+complexes is higher than that in nES-Li+. In addition, the two Raman peaks in 1012.19-1016.07 cm?1and 912.811-919.593 cm?1represent different stretching vibrations of O-C-C-O in nES-Na+complexes.The symmetric O-S-O Raman stretching vibration in nESNa+is assigned to the peak of 689.831-719.991 cm?1.

    Fig.4. Raman spectra of(a)nES-Li+ and(b)nES-Na+by DFT calculation.

    3.3. Li+/Na+solvation in FEC solvent

    Table 5.The ΔE,ΔH,and ΔG of FEC stepwise solvation reactions with Li+ and Na+,the unit is kcal·mol?1.

    Fig.5. (a)The Gibbs free energy curves of stepwise Li+ and Na+ solvation reactions to FEC solvent in different ions concentration. (b)nFEC-Li+and nFEC-Na+ (1 ≤n ≤5)solvation complexes models. IR spectra of(c)nFEC-Li+ and(d)nFEC-Na+ complexes by DFT calculation.

    On the other hand, the IR spectra of nFEC-Na+complexes by DFT calculation are exhibited in Fig.5(d),the C=O stretching vibration peak in the nFEC-Na+complexes is assigned to the frequency of 1825.67-1889.31 cm?1, with the concentration of Na+decreasing the peak shifts to high frequency and the C=O bond is shortened (Table S6). The frequency of C=O stretching vibration peak for nFEC-Na+complexes is higher than that of nFEC-Li+. The two peaks in 1238.07-1243.58 cm?1and 1168.54-1206.39 cm?1represent stretching of O-C accompanying with twisting of C-H vibration in nFEC-Na+, and the vibration frequency moves to low frequency with the sodium ion concentration decreasing. Besides, the two peaks in 1119.07-1138.99 cm?1and 1088.06-1097.41 cm?1represent stretching of C-O accompanying with stretching of C-F,and the peaks also shift to low frequency with the sodium ion concentration decreasing in the nFEC-Na+complexes. The CH2-O stretching driving C-F stretching vibration in the nFEC-Na+is assigned to the peak in the frequency range of 1007.36-1011.62 cm?1. Furthermore,the peak in 741.512-755.315 cm?1represents O-Na stretching accompanying with carbonate stretching vibration in the nFEC-Na+complexes,which moves to low frequency with the sodium ion concentration decreasing in the complexes. The O-Na stretching vibration peak in the nFEC-Na+is assigned to the frequency of 211.156-306.307 cm?1.

    Table 6. Lengths of all Li-O and Na-O bonds and the average length after optimization for nFEC-Li+ and nFEC-Na+ complexes, the units are .

    Table 6. Lengths of all Li-O and Na-O bonds and the average length after optimization for nFEC-Li+ and nFEC-Na+ complexes, the units are .

    FEC-Li+ 1.75 1.75(average)2FEC-Li+ 1.80 1.80 1.80(average)3FEC-Li+ 1.86 1.86 1.86 1.86(average)4FEC-Li+ 1.94 1.94 1.94 1.94 1.94(average)5FEC-Li+ 1.98 2.32 1.99 1.98 2.06 2.07(average)FEC-Na+ 2.13 2.13(average)2FEC-Na+ 2.17 2.17 2.17(average)3FEC-Na+ 2.22 2.22 2.22 2.22(average)4FEC-Na+ 2.27 2.27 2.26 2.26 2.27(average)5FEC-Na+ 2.31 2.37 2.32 2.35 2.36 2.34(average)

    Figure 6(a) shows the Raman spectra of nFEC-Li+by DFT calculation. The C-H stretching vibration in the nFECLi+solvation complexes is assigned to the frequency of 3099.54-3319.78 cm?1. The peak at about 1501 cm?1represents twisting vibration of C-H in the nFEC-Li+complexes.The FEC ring enlargement vibration in the nFEC-Li+complexes is assigned to the frequency of 926.229-941.81 cm?1which moves to low frequency with the lithium ion concentration decreasing. The Raman peak in 867.656-873.965 cm?1represents stretching vibration of C-C in nFEC-Li+complexes, and the peak shifts to low frequency with the decrease of the Li+concentration. Besides, the Raman peak in 748.187-779.833 cm?1represents O-Li stretching accompanying with carbonate stretching vibration in the nFEC-Li+complexes.

    On the other hand, figure 6(b) exhibits the Raman spectra of nFEC-Na+by DFT calculation. The C-H stretching vibration peak in the nFEC-Na+complexes is assigned to the frequency of 3085.76-3170.68 cm?1,which moves to low frequency with sodium ion concentration decreasing.The Raman peak at about 1503 cm?1represents twisting vibration of CH in the nFEC-Na+complexes. The FEC ring enlargement stretching vibration peak in the nFEC-Na+complexes is assigned to the frequency of 916.897-937.212 cm?1. The peak in 860.869-872.501 cm?1is ascribed to stretching vibration of C-C in the nFEC-Na+complexes,and the peak moves to low frequency with the sodium ion concentration decreasing. Besides,the peak in 742.024-755.315 cm?1represents stretching of Na-O accompanying with stretching vibration of carbonate,the vibration peak moves to low frequency with the sodium ion concentration decreasing.

    Fig.6. Raman spectra of (a) nFEC-Li+ and (b) nFEC-Na+ by DFT calculation.

    At last, the stepwise solvation reactions and total solvation reactions Gibbs free energy change ΔG for Li+/Na+in the potential electrolyte solvents of VC, ES, and FEC are analyzed. Figure 7(a) shows the Gibbs free energy curve for Li+/Na+stepwise solvation reactions in VC, ES, and FEC, respectively, with solvent numbers changed. The maximum thermodynamics stability solvation complexes are consisted of 4VC-Li+, 4VC-Na+, 4ES-Li+, 4ES-Na+, 4FECLi+, and 4FEC-Na+by spontaneous solvation reactions between Li+/Na+and VC,ES,FEC solvents. Figure 7(b)shows the Gibbs free energy curve for the overall Li+/Na+solvation reactions with the change of solvation numbers. It is clearly seen that the absolute value of Gibbs free energy releasing(ΔG)reaches the maximum by overall Li+/Na+solvation reactions forming 4sol-Li+/Na+complexes, which is in agreement with the above stepwise solvation reaction results. In addition,it is clearly exhibited that the absolute values of free energy releasing(ΔG)for forming lithium-ion solvation complexes of nVC-Li+, nES-Li+, nFEC-Li+are evidently larger than those for formation of nVC-Na+, nES-Na+, nFEC-Na+complexes, indicating that lithium ion is easier to combine with VC,ES,and FEC compared to sodium ion,and lithiumion solvation complexes of nVC-Li+, nES-Li+, and nFECLi+are more stable compared with nVC-Na+,nES-Na+,and nFEC-Na+sodium ion solvation complexes.

    Fig.7. (a) Gibbs free energy curves for Li+/Na+ stepwise solvation reactions in VC,ES,and FEC,respectively,with solvent numbers changed. (b)Gibbs free energy curve for the overall Li+/Na+ solvation reactions with the change of solvation numbers.

    4. Conclusion

    Electrolyte solvents are very important to the electrochemical performance of lithium/sodium batteries. The solvation property of lithium/sodium ion in organic electrolyte solvents of VC, ES, and FEC is studied by DFT method.The results demonstrate that the maximum thermodynamics stability solvation complexes are consisted of 4VC-Li+,4VC-Na+, 4ES-Li+, 4ES-Na+, 4FEC-Li+, and 4FEC-Na+.The innermost solvation shells of 5VC-Li+, 5VC-Na+, 5ESLi+,5ES-Na+,5FEC-Li+,and 5FEC-Na+can be formed between Li+/Na+and solvent molecules. In addition, the results demonstrate that lithium ion is easier to combine with VC, ES, and FEC compared to sodium ion, and lithiumion solvation complexes of nVC-Li+, nES-Li+, and nFECLi+are more stable than nVC-Na+, nES-Na+, and nFECNa+sodium ion solvation complexes. Besides, the theoretical IR and Raman spectra analysis for the solvation complexes between Li+/Na+and VC, ES, FEC solvents demonstrates that the stretching vibration of O=C peak evidently shifts to high frequency when Li+/Na+concentration reducing in nVC-Li+,nVC-Na+,nFEC-Li+,and nFEC-Na+solvation complexes,and the O=C vibration in the Na+solvation complexes is higher than that of Li+complexes.The S=O vibration frequency in nES-Na+complexes is higher than that of nES-Li+,and the S=O stretching vibration in nES-Li+/Na+solvation complexes moves to high frequency with the decrease of Li+/Na+concentration. Besides, the stretching vibration of O-S-O group in nES-Na+/Li+complexes moves to low frequency with ion concentration decreasing, and the peak in nES-Na+complexes is lower than that of nES-Li+.The vibration peaks frequency occurs regular shift when the Li+/Na+concentration changes,and the different interactions for Li+and Na+with these solvents lead to the diverse characteristic peak frequencies for Li+/Na+solvation complexes.The results are important to guide the design of electrolyte and understand the performance improvement mechanism of lithium/sodium battery. In addition, different solvation complexes concentration may affect the reduction/oxidation potential, and solvation ionic is important for the initial stages of SEI formation. More studies on oxidation/reduction potentials of different solvation ionics are needed to deeply analyze the formation mechanism of the SEI film.

    猜你喜歡
    劉琦
    Electron sheaths near a positively biased plate subjected to a weak electron beam
    咕咕叫的肚皮
    復(fù)雜神經(jīng)網(wǎng)絡(luò)下的多行為識(shí)別技術(shù)研究
    客聯(lián)(2022年3期)2022-05-31 03:58:03
    初心引航,構(gòu)建“雙減”新樣態(tài)
    大戰(zhàn)章魚博士
    Plasma characteristics and broadband electromagnetic wave absorption in argon and helium capacitively coupled plasma?
    Resistive switching memory for high density storage and computing*
    Modeling and Simulation of the impact of mobile phone usage on energy consumption
    新生代(2019年17期)2019-10-16 08:36:30
    GLOBAL EXISTENCE OF CLASSICAL SOLUTIONS TO THE HYPERBOLIC GEOMETRY FLOW WITH TIME-DEPENDENT DISSIPATION?
    3-D Lagrangian-based investigations of the time-dependent cloud cavitating flows around a Clark-Y hydrofoil with special emphasis on shedding process analysis *
    肉色欧美久久久久久久蜜桃| 国产免费视频播放在线视频| 久久人人爽人人片av| av在线app专区| 国产精品国产av在线观看| av.在线天堂| 亚洲伊人久久精品综合| 美国免费a级毛片| 女的被弄到高潮叫床怎么办| 岛国毛片在线播放| 人人妻人人澡人人看| 久久久久久久精品精品| 少妇人妻精品综合一区二区| 国产成人午夜福利电影在线观看| 男女啪啪激烈高潮av片| 国产精品三级大全| 女性被躁到高潮视频| 97在线人人人人妻| 国产精品久久久久久久电影| 少妇的丰满在线观看| 丝袜美足系列| av在线app专区| 久久女婷五月综合色啪小说| 日日撸夜夜添| 欧美 亚洲 国产 日韩一| 亚洲伊人色综图| 亚洲精品美女久久久久99蜜臀 | videossex国产| 如何舔出高潮| 免费av不卡在线播放| 中文字幕人妻熟女乱码| xxxhd国产人妻xxx| 精品99又大又爽又粗少妇毛片| 亚洲在久久综合| 日产精品乱码卡一卡2卡三| 欧美少妇被猛烈插入视频| 我要看黄色一级片免费的| 男女午夜视频在线观看 | a 毛片基地| 国产成人精品一,二区| 国产精品久久久久久久电影| 高清av免费在线| 欧美国产精品va在线观看不卡| 亚洲精品一区蜜桃| 国产成人精品在线电影| 日韩中文字幕视频在线看片| 欧美国产精品va在线观看不卡| 国产一区有黄有色的免费视频| 插逼视频在线观看| 色婷婷av一区二区三区视频| 热re99久久国产66热| 亚洲精品国产av蜜桃| 在线天堂中文资源库| 亚洲熟女精品中文字幕| 少妇猛男粗大的猛烈进出视频| 晚上一个人看的免费电影| 91精品三级在线观看| 黄片无遮挡物在线观看| 中文字幕av电影在线播放| 国产一级毛片在线| 波野结衣二区三区在线| 五月玫瑰六月丁香| 亚洲精品第二区| 欧美变态另类bdsm刘玥| 日韩人妻精品一区2区三区| 九色成人免费人妻av| 丝袜脚勾引网站| 成年女人在线观看亚洲视频| 久久99精品国语久久久| 日本av手机在线免费观看| 另类精品久久| 精品人妻熟女毛片av久久网站| 成人手机av| 在线观看国产h片| 少妇熟女欧美另类| 纵有疾风起免费观看全集完整版| 黑丝袜美女国产一区| 欧美xxⅹ黑人| 国产片内射在线| 欧美精品亚洲一区二区| 国产在线视频一区二区| 亚洲av成人精品一二三区| 大片免费播放器 马上看| av线在线观看网站| 男女免费视频国产| 制服人妻中文乱码| 久久久精品区二区三区| 国产白丝娇喘喷水9色精品| 视频区图区小说| 国产免费一区二区三区四区乱码| 精品视频人人做人人爽| 制服诱惑二区| 久久 成人 亚洲| 免费黄网站久久成人精品| 色网站视频免费| 亚洲综合色惰| 国产精品一区www在线观看| 热99久久久久精品小说推荐| 日本午夜av视频| 久久韩国三级中文字幕| 欧美成人午夜免费资源| 成人毛片60女人毛片免费| 夫妻午夜视频| 飞空精品影院首页| 成年美女黄网站色视频大全免费| av一本久久久久| 在线观看www视频免费| 久久鲁丝午夜福利片| 搡女人真爽免费视频火全软件| 午夜91福利影院| 亚洲国产毛片av蜜桃av| 丝袜人妻中文字幕| 免费大片18禁| 国产日韩欧美亚洲二区| 欧美精品人与动牲交sv欧美| 成人影院久久| av线在线观看网站| 亚洲精品自拍成人| 日日爽夜夜爽网站| 男女边吃奶边做爰视频| 午夜精品国产一区二区电影| 国产福利在线免费观看视频| 日本av手机在线免费观看| 飞空精品影院首页| 久久久久久久久久人人人人人人| 中文精品一卡2卡3卡4更新| 国语对白做爰xxxⅹ性视频网站| 韩国av在线不卡| 久久久国产欧美日韩av| 赤兔流量卡办理| 满18在线观看网站| 亚洲成国产人片在线观看| 久久热在线av| 亚洲欧美清纯卡通| 免费看av在线观看网站| 国产av一区二区精品久久| 久久久久久久久久成人| 亚洲一区二区三区欧美精品| 久久人妻熟女aⅴ| 午夜福利网站1000一区二区三区| 人成视频在线观看免费观看| 免费高清在线观看视频在线观看| 亚洲美女视频黄频| 欧美少妇被猛烈插入视频| 七月丁香在线播放| 久久久久久伊人网av| 大片电影免费在线观看免费| 王馨瑶露胸无遮挡在线观看| 亚洲,一卡二卡三卡| 男人爽女人下面视频在线观看| 中文字幕制服av| 精品一品国产午夜福利视频| 亚洲国产精品999| 丝瓜视频免费看黄片| 欧美97在线视频| 成人亚洲精品一区在线观看| 男的添女的下面高潮视频| 日韩精品有码人妻一区| 在线观看美女被高潮喷水网站| 中文乱码字字幕精品一区二区三区| 欧美精品高潮呻吟av久久| 亚洲人成77777在线视频| 五月伊人婷婷丁香| 人人妻人人添人人爽欧美一区卜| 水蜜桃什么品种好| 日本欧美视频一区| 久久久久久久久久久免费av| 国产精品一国产av| 蜜臀久久99精品久久宅男| 我的女老师完整版在线观看| 国产高清国产精品国产三级| 老司机影院成人| 99热这里只有是精品在线观看| 免费黄频网站在线观看国产| 国产不卡av网站在线观看| 免费女性裸体啪啪无遮挡网站| 日本av免费视频播放| 国产精品人妻久久久影院| 色视频在线一区二区三区| 国产片特级美女逼逼视频| 免费人成在线观看视频色| 成人毛片a级毛片在线播放| 免费久久久久久久精品成人欧美视频 | 一区二区三区精品91| 成人漫画全彩无遮挡| 亚洲精品日本国产第一区| 亚洲国产精品国产精品| 人人妻人人爽人人添夜夜欢视频| 全区人妻精品视频| 日本色播在线视频| 国产高清国产精品国产三级| 性色avwww在线观看| 国产欧美日韩一区二区三区在线| 综合色丁香网| 制服人妻中文乱码| 亚洲av综合色区一区| 久久精品熟女亚洲av麻豆精品| 边亲边吃奶的免费视频| 一级片'在线观看视频| 国产精品久久久久久精品电影小说| 在现免费观看毛片| 欧美精品高潮呻吟av久久| 90打野战视频偷拍视频| 亚洲精品一区蜜桃| 另类亚洲欧美激情| 国产av码专区亚洲av| 日韩制服骚丝袜av| 欧美日韩视频高清一区二区三区二| 久久人人爽人人片av| 久久婷婷青草| 欧美xxⅹ黑人| 最近最新中文字幕免费大全7| 美女福利国产在线| 亚洲成人一二三区av| 国产午夜精品一二区理论片| 大话2 男鬼变身卡| 亚洲av男天堂| 色婷婷久久久亚洲欧美| av在线老鸭窝| 肉色欧美久久久久久久蜜桃| 久久这里只有精品19| 黄片播放在线免费| a级毛片黄视频| 91成人精品电影| 99国产综合亚洲精品| 成年美女黄网站色视频大全免费| 99热网站在线观看| 看免费av毛片| 婷婷色av中文字幕| 国产毛片在线视频| a级毛片在线看网站| 国产激情久久老熟女| 精品国产国语对白av| 丝瓜视频免费看黄片| 熟女av电影| 亚洲精品久久久久久婷婷小说| 国产激情久久老熟女| 成年人午夜在线观看视频| 日日啪夜夜爽| 国产一区二区激情短视频 | 两性夫妻黄色片 | 亚洲经典国产精华液单| av天堂久久9| 久久久国产欧美日韩av| 国产麻豆69| 亚洲精品第二区| 日本免费在线观看一区| 国产成人免费无遮挡视频| 亚洲丝袜综合中文字幕| 亚洲精品久久久久久婷婷小说| 久久综合国产亚洲精品| 人妻少妇偷人精品九色| 如何舔出高潮| 国产在线视频一区二区| 国产精品一国产av| 免费观看性生交大片5| 丝瓜视频免费看黄片| 男女免费视频国产| 日韩精品有码人妻一区| 亚洲,一卡二卡三卡| 中文字幕制服av| 人妻一区二区av| 日韩一本色道免费dvd| 国产男女内射视频| 高清欧美精品videossex| a级毛色黄片| 日本91视频免费播放| 欧美日韩一区二区视频在线观看视频在线| 久久99蜜桃精品久久| 综合色丁香网| 丰满饥渴人妻一区二区三| 99国产精品免费福利视频| 国产精品成人在线| 免费大片18禁| 欧美成人精品欧美一级黄| 天堂中文最新版在线下载| 国产1区2区3区精品| 日韩欧美一区视频在线观看| 2018国产大陆天天弄谢| 免费少妇av软件| 草草在线视频免费看| 人妻系列 视频| 高清黄色对白视频在线免费看| 精品卡一卡二卡四卡免费| 亚洲,欧美,日韩| 亚洲欧洲日产国产| 男人添女人高潮全过程视频| xxx大片免费视频| 亚洲图色成人| 精品国产一区二区久久| 香蕉精品网在线| 亚洲av中文av极速乱| 欧美国产精品va在线观看不卡| 亚洲av电影在线进入| 色视频在线一区二区三区| 久久久欧美国产精品| 爱豆传媒免费全集在线观看| 国产亚洲av片在线观看秒播厂| 欧美精品一区二区免费开放| 亚洲人与动物交配视频| 久久免费观看电影| 9热在线视频观看99| 最近中文字幕2019免费版| 久久 成人 亚洲| 亚洲久久久国产精品| 精品一区在线观看国产| 亚洲人成网站在线观看播放| 男女国产视频网站| 另类亚洲欧美激情| 亚洲欧洲精品一区二区精品久久久 | 亚洲国产av影院在线观看| 国产精品蜜桃在线观看| 香蕉丝袜av| 国产成人免费无遮挡视频| 久久久久久久久久成人| 美女xxoo啪啪120秒动态图| 久久久国产欧美日韩av| 18禁裸乳无遮挡动漫免费视频| 免费看av在线观看网站| 国产 一区精品| a 毛片基地| 亚洲av日韩在线播放| 午夜福利视频精品| 女人久久www免费人成看片| 日本av手机在线免费观看| 免费黄频网站在线观看国产| 七月丁香在线播放| 久久久a久久爽久久v久久| 国产国语露脸激情在线看| 欧美 日韩 精品 国产| av播播在线观看一区| 久久人人爽人人片av| 国产精品 国内视频| 精品一区二区三区视频在线| 久久99一区二区三区| 亚洲精品国产av成人精品| 欧美最新免费一区二区三区| 午夜老司机福利剧场| 看十八女毛片水多多多| 大片免费播放器 马上看| 亚洲中文av在线| 久久精品久久精品一区二区三区| 不卡视频在线观看欧美| 看免费av毛片| 女性生殖器流出的白浆| 少妇猛男粗大的猛烈进出视频| 99国产精品免费福利视频| 久久久国产一区二区| 国产精品麻豆人妻色哟哟久久| 中文乱码字字幕精品一区二区三区| 熟女电影av网| 国内精品宾馆在线| 边亲边吃奶的免费视频| 丝袜脚勾引网站| 免费观看av网站的网址| 久久精品久久精品一区二区三区| 国产色爽女视频免费观看| 免费观看在线日韩| 亚洲av男天堂| 丝袜脚勾引网站| 亚洲人成77777在线视频| 9色porny在线观看| 黄网站色视频无遮挡免费观看| 免费大片黄手机在线观看| 国产一区亚洲一区在线观看| 人妻系列 视频| 最近最新中文字幕大全免费视频 | xxxhd国产人妻xxx| 熟女av电影| 亚洲国产精品一区三区| 国产毛片在线视频| 久久97久久精品| 国产在线免费精品| 99九九在线精品视频| 伦理电影大哥的女人| 啦啦啦视频在线资源免费观看| 日韩,欧美,国产一区二区三区| 亚洲色图综合在线观看| 女性生殖器流出的白浆| 一本久久精品| 国产女主播在线喷水免费视频网站| 成年人午夜在线观看视频| 精品熟女少妇av免费看| 国产精品久久久久久精品电影小说| 中文天堂在线官网| 亚洲人与动物交配视频| 日本与韩国留学比较| 成人二区视频| 最黄视频免费看| 熟妇人妻不卡中文字幕| 色婷婷av一区二区三区视频| 丝袜喷水一区| 大片电影免费在线观看免费| 国产精品人妻久久久久久| 国产高清国产精品国产三级| 久久久久精品人妻al黑| 亚洲婷婷狠狠爱综合网| 香蕉丝袜av| www日本在线高清视频| 精品福利永久在线观看| 侵犯人妻中文字幕一二三四区| 蜜臀久久99精品久久宅男| 欧美3d第一页| 少妇人妻 视频| 亚洲精品国产av蜜桃| 亚洲欧洲国产日韩| 久久久国产欧美日韩av| 亚洲精品乱久久久久久| 久久久精品免费免费高清| 国产亚洲午夜精品一区二区久久| 久久av网站| 黄色怎么调成土黄色| 岛国毛片在线播放| 夜夜骑夜夜射夜夜干| 大话2 男鬼变身卡| 少妇熟女欧美另类| 最黄视频免费看| 精品亚洲乱码少妇综合久久| 中文精品一卡2卡3卡4更新| 精品人妻在线不人妻| 久久久久人妻精品一区果冻| 成年人免费黄色播放视频| 美女内射精品一级片tv| 国产成人精品久久久久久| a级毛片黄视频| 婷婷色麻豆天堂久久| 国产精品一二三区在线看| 美女主播在线视频| 男女午夜视频在线观看 | 欧美激情 高清一区二区三区| 黑人欧美特级aaaaaa片| 91精品三级在线观看| 午夜福利视频精品| 欧美xxⅹ黑人| 人妻系列 视频| 观看av在线不卡| 乱人伦中国视频| 大码成人一级视频| 国产精品不卡视频一区二区| 免费观看无遮挡的男女| 久久人妻熟女aⅴ| 亚洲欧美一区二区三区国产| 免费观看a级毛片全部| 国产在线一区二区三区精| 18禁裸乳无遮挡动漫免费视频| 成年女人在线观看亚洲视频| 欧美日韩视频高清一区二区三区二| 伦理电影大哥的女人| 精品少妇内射三级| 精品人妻熟女毛片av久久网站| 一级毛片电影观看| 亚洲av中文av极速乱| √禁漫天堂资源中文www| 亚洲国产精品国产精品| 18在线观看网站| 欧美 亚洲 国产 日韩一| 尾随美女入室| 久久人人爽av亚洲精品天堂| 五月开心婷婷网| 夜夜骑夜夜射夜夜干| 日韩一本色道免费dvd| 蜜桃国产av成人99| 色婷婷av一区二区三区视频| 久久狼人影院| 在线观看美女被高潮喷水网站| 色94色欧美一区二区| 色婷婷久久久亚洲欧美| 欧美精品一区二区免费开放| 涩涩av久久男人的天堂| 国产精品欧美亚洲77777| 国产高清不卡午夜福利| 国产精品久久久久成人av| 视频在线观看一区二区三区| 三上悠亚av全集在线观看| 色婷婷av一区二区三区视频| 成人午夜精彩视频在线观看| 久久久久久久精品精品| av.在线天堂| 久久人人爽人人片av| 国产极品粉嫩免费观看在线| 巨乳人妻的诱惑在线观看| 青春草亚洲视频在线观看| 国产欧美亚洲国产| 欧美国产精品va在线观看不卡| 日产精品乱码卡一卡2卡三| 久久人人97超碰香蕉20202| av又黄又爽大尺度在线免费看| 亚洲精品一二三| 精品少妇内射三级| 精品人妻偷拍中文字幕| 狠狠精品人妻久久久久久综合| 一本—道久久a久久精品蜜桃钙片| 欧美变态另类bdsm刘玥| 毛片一级片免费看久久久久| 中文天堂在线官网| 中文字幕制服av| 国产男人的电影天堂91| 十八禁网站网址无遮挡| 日韩免费高清中文字幕av| 男女边摸边吃奶| 亚洲精品国产av蜜桃| 亚洲综合色网址| 亚洲,欧美精品.| 亚洲国产最新在线播放| 丝袜人妻中文字幕| 国产在线一区二区三区精| 国产精品欧美亚洲77777| 久久久久国产网址| 男人爽女人下面视频在线观看| 制服诱惑二区| 国产精品久久久av美女十八| 国产成人av激情在线播放| 插逼视频在线观看| 久久99热6这里只有精品| 又大又黄又爽视频免费| 亚洲丝袜综合中文字幕| 国产1区2区3区精品| 纵有疾风起免费观看全集完整版| 久久久久久久大尺度免费视频| 亚洲一级一片aⅴ在线观看| 欧美老熟妇乱子伦牲交| 午夜老司机福利剧场| 汤姆久久久久久久影院中文字幕| 亚洲美女搞黄在线观看| 激情五月婷婷亚洲| 国产免费现黄频在线看| 欧美精品亚洲一区二区| 草草在线视频免费看| 少妇被粗大的猛进出69影院 | 亚洲伊人色综图| 激情五月婷婷亚洲| 久久久久久久久久人人人人人人| 秋霞在线观看毛片| 女人精品久久久久毛片| 国产伦理片在线播放av一区| 咕卡用的链子| 成人手机av| 亚洲国产毛片av蜜桃av| 观看美女的网站| 男女免费视频国产| 纯流量卡能插随身wifi吗| 啦啦啦在线观看免费高清www| 亚洲精品美女久久av网站| 中文乱码字字幕精品一区二区三区| 69精品国产乱码久久久| 久久精品熟女亚洲av麻豆精品| 日日摸夜夜添夜夜爱| 男的添女的下面高潮视频| 国产精品久久久久久精品古装| 大码成人一级视频| 免费大片黄手机在线观看| 国产 精品1| 国产国语露脸激情在线看| 午夜视频国产福利| 一区二区三区乱码不卡18| 午夜免费男女啪啪视频观看| 国产成人a∨麻豆精品| 1024视频免费在线观看| 涩涩av久久男人的天堂| 色视频在线一区二区三区| 国产福利在线免费观看视频| 中文字幕免费在线视频6| 欧美另类一区| 欧美最新免费一区二区三区| 国产精品一二三区在线看| 久久久久视频综合| 欧美激情极品国产一区二区三区 | 26uuu在线亚洲综合色| 两个人免费观看高清视频| 精品少妇内射三级| 大香蕉久久成人网| 国产日韩欧美在线精品| 国产成人免费无遮挡视频| 亚洲精品自拍成人| 国产色爽女视频免费观看| 久久精品久久精品一区二区三区| 母亲3免费完整高清在线观看 | 少妇的逼水好多| 午夜老司机福利剧场| 国产一区二区三区av在线| 国产又爽黄色视频| 91精品伊人久久大香线蕉| 免费高清在线观看视频在线观看| 午夜影院在线不卡| 91精品国产国语对白视频| 2022亚洲国产成人精品| 国产精品久久久av美女十八| 日日摸夜夜添夜夜爱| 婷婷色麻豆天堂久久| 亚洲欧美色中文字幕在线| 国产1区2区3区精品| 国产极品天堂在线| 巨乳人妻的诱惑在线观看| 毛片一级片免费看久久久久| 大香蕉久久成人网| 免费人成在线观看视频色| videossex国产| 国产 一区精品| 精品人妻在线不人妻| 日韩免费高清中文字幕av| 中文字幕人妻熟女乱码| 国产精品人妻久久久久久| 欧美国产精品va在线观看不卡| 国产国语露脸激情在线看| 欧美激情 高清一区二区三区| av不卡在线播放| av在线观看视频网站免费| 免费黄网站久久成人精品| 亚洲国产欧美在线一区| 亚洲,欧美精品.| 99久久综合免费| av网站免费在线观看视频| 99热这里只有是精品在线观看| 日韩熟女老妇一区二区性免费视频| 欧美精品av麻豆av|