• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Plasma characteristics and broadband electromagnetic wave absorption in argon and helium capacitively coupled plasma?

    2021-09-28 02:18:04WenChongOuyang歐陽(yáng)文沖QiLiu劉琦TaoJin金濤andZhengWeiWu吳征威
    Chinese Physics B 2021年9期
    關(guān)鍵詞:劉琦文沖歐陽(yáng)

    Wen-Chong Ouyang(歐陽(yáng)文沖),Qi Liu(劉琦),Tao Jin(金濤),and Zheng-Wei Wu(吳征威)

    School of Nuclear Science and Technology,University of Science and Technology of China,Hefei 230026,China

    Keywords:capacitively coupled plasma,electron number density,absorption frequency,plasma stealth

    1.Introduction

    In recent years,the interaction between electromagnetic wave and plasma has received wide attention,for it has important applications in military,aeronautics,and industry,specifically,in plasma stealth,[1,2]communication blackout during atmospheric reentry,[3,4]and plasma diagnosis.[5,6]etc.The methods of computing the interaction of electromagnetic wave and plasma was developed by many researchers.[7–10]Zhang et al.numerically analyzed the reflection and absorption characteristics of electromagnetic waves propagating in a multilayer plasma plate by the wave impedance matching method.[11]Chen et al.studied the scattering characteristics of time-varying plasma at different incident angles and frequency bands by using the finite-difference time-difference(FDTD)method.[12]Guo L J and Guo L X theoretically solved the absorption coefficient of electromagnetic wave in a moving non-uniform plasma plate based on the covariance of Maxwell equations and the phase invariance of plane wave.[13]

    With the application of plasma to the discharge devices,many researchers pay attention to the propagation characteristics of electromagnetic waves in inductively coupled plasma(ICP)[14,15]and capacitively coupled plasma.[16,17]Li et al.used the improved scattering matrix method(SMM)to study the influence of collision frequency and incident angle on resonance absorption based on the plasma distribution of typical inductively coupled plasma discharge.[18]Wei et al.investigated the influence of the power and atmospheric pressure parameters of ICP discharge on the attenuation of 4 GHz–5 GHz electromagnetic waves.[19]Zhang et al.studied the changes of electromagnetic wave transmission attenuation with the pressure and applied voltage parameters of CCP discharge,and discussed the applications of helium CCP in absorbing electromagnetic waves.[20]However,the parameters that affect the attenuation of electromagnetic wave are not only the pressure but also power.According to our previous research,[4]the electron number density and collision frequency are the main factors that affect the attenuation of electromagnetic waves.The difference in discharge gas,power frequency,discharge gap,and other parameters will also change plasma parameters(electron number density and collision frequency)and affect the attenuation of electromagnetic wave.Therefore,it is necessary to study the characteristics of CCP plasma discharge under these conditions and further analyze their influence on the electromagnetic wave propagation for plasma stealth applications.

    In this paper,a self-consistent calculation model for CCP discharge and electromagnetic wave propagation is developed.Then the influence of difference in discharge gas,discharge gap,power frequency,pressure,and power on the plasma distribution and transmission attenuation are analyzed.Finally,the corresponding parameters of the best electromagnetic wave absorption effect and the applications in plasma stealth are discussed.

    2.Description of model

    2.1.CCP discharge model

    2.1.1.Equation of fluid model

    The CCP is a classical plasma discharge device used to study plasma diagnosis and electromagnetic wave propagation characteristics.The numerical simulation methods of CCP mainly include particle-in-cell(PIC)model,[21]fluid model[20]and global model.Compared with the other two methods,the fluid model is widely used due to the fast calculation speed and better description of the plasma process.

    In this paper,a one-dimensional drift diffusion fluid model is used to investigate the CCP discharge characteristics under different conditions(such as the discharge gas,RF power,etc.).The electron density and electron energy density are obtained by solving the drift diffusion equation

    where neis the electron density,nεis the electron energy density,E is the electric field,seand sεrepresent the electron source term and the electron energy source term produced,respectively,by inelastic collision and elastic collision between electrons and neutral particles,etc.,ΓeandΓεare respectively solved according to

    whereμeandμεrepresent the mobility coefficient of electron and electron energy,respectively.According to the Surendra’s conclusion,[22]the electron mobility coefficient and neutral density satisfy the following relationship:

    The mobility coefficient of electron energy is calculated from

    The diffusion coefficients is defined as

    where Deand Dεrepresent the diffusion coefficient of electron and electron energy,respectively,kBis the Boltzmann constant,Teis the electron temperature.

    The terms seand sεare obtained from the following equations,respectively:

    where kiis the ionization coefficient,nαis the density of species a,Δεαis the energy loss rate coefficient,meis the electron mass,mαis the mass of heavy species a,Tgis the gas temperature,and ve,nrepresents the electron–neutral momentum transfer collision frequency.

    The electron temperature and the average electron energy have the following relationship:

    where nε/nerepresents the average electron energy.

    For ions and other neutral particles,they are expressed by solving the average diffusion model of the mixture[23,24]

    whereρis the density of mixed species,wais the mass fraction of species a,u is the average velocity of all species(can be regarded as fluid),jarepresents the mass flux of species a,and Rais the source term related to the reaction rate of species a.

    The density of mixed species and mass flux of species are calculated from the following equations,respectively:

    where Mnis the average molar mass,pAis the absolute pressure,R is the gas constant,T is the gas temperature,and vais the velocity of species a.

    The velocity of the species a is obtained by solving the following equation:

    The electric field is calculated from the Poisson equation

    2.1.2.Discharge parameters

    The structure of the CCP discharge device is shown in Fig.1.It consists of two electrodes with 30 cm in length,the two electrodes are parallel and have a certain interspace.The upper electrode and the lower electrode are externally connected by an RF power supply,and the lower electrode is grounded.

    Fig.1.Schematic diagram of CCP discharge device.

    In order to study the influence of different discharge parameters on plasma discharge characteristics and electromagnetic wave propagation characteristics,the discharge gap,RF power,RF frequency and pressure in the cavity are set to be 5 cm–15 cm,50 W–300 W,13.56 MHz–45 MHz and 0.1 Torr–0.5 Torr(1 Torr=1.33322×102Pa)in this paper,respectively.The specific conditions of each discharge parameter are shown in Table 1.

    Table 1.Specific values of discharge parameters.

    2.1.3.Chemical reaction of gas discharge

    In this model,the argon and helium are considered as discharge gas.Four species and seven chemical reactions are taken into account in the argon discharge model as shown in Table 2.The four species are Ar(argon atom),Ar?(argon metastable atom),Ar+(argon ion),and e(electron),respectively.

    Table 2.Chemical reactions in argon plasma discharge model.

    Table 3.Chemical reaction in helium plasma discharge model.

    For the helium plasma discharge model,four species including He(helium atom),He?(helium metastable atom),He+(helium ion),and e(electron)are considered in the chemical reactions.The specific chemical reactions for yielding the four species are shown in Table 3.The reaction coefficient indicated by f(ε)in argon and helium plasma discharge model are computed by cross-section data and BOLSIG+.

    2.1.4.Boundary conditions

    The heat emission flux is approximately ignored in this paper,and the boundary conditions of electron and electron energy flux on the wall in the CCP discharge model are respectively expressed by

    where n represents the normal pointing towards the wall,reis the reflection coefficient,ve,this the thermal velocity of a single electron,andγais the secondary electron emission coefficient.

    In addition,the initial temperature in the discharge cavity is set to be 300 K,the reflection coefficient of the wall boundary is zero,the initial electron number density is 1014m?3,and the initial average electron energy is 4 eV.The input power is expressed as

    The total time-average power density satisfies the following relationship:

    where Wtis the total time-average power density and S is the parallel plate electrode areas.According to Eq.(18),the electric field can be solved by the total power density[20]

    The corresponding electric potential and current density are obtained according to the following equations:[20]

    where V is the electric potential,J is the current density,and Γαis the flux of species a.

    2.2.Electromagnetic wave propagation model

    Since the one-dimensional CCP discharge model in this paper simulates the characteristics of plasma discharge from anode to cathode,the multilayer transmission model[25]is used to calculate the propagation characteristics of electromagnetic waves in plasma generated by CCP discharge.The plasma between the anode and the cathode can be divided into l homogeneous layers,and electromagnetic waves propagate through the plasma in the y-axis direction.

    The electromagnetic wave propagation coefficient of the l layer is solved according to the following equation:

    where w is the angular frequency of electromagnetic wave,c is the speed of light,εr(l)is the relative dielectric constant of plasma in the l-th layer.

    The electric field of the l-th layer is expressed as

    where Clis the reflection coefficient,Dlis the transmission coefficient,and E is the electric field.

    Since the electric field and magnetic field on the propagation boundary meet the continuity of the tangential component and phase matching,the relationship between reflection coefficient and transmission coefficient can be expressed in the matrix form as follows:

    where Smis expressed as

    By substituting the boundary conditions into Eq.(25),the following relationship is obtained

    Fig.2.Algorithm flowchart of self-consistent calculation model for CCP discharge and electromagnetic wave propagation.

    where A is the total reflection coefficient,F is the total transmission coefficient,Sgis expressed in the matrix form,Vpis defined as follows:

    Finally,the total reflection coefficient and transmission coefficient are solved according to the following equation:

    The attenuation of the electromagnetic wave through the CCP discharge plasma is obtained according to the transmission coefficient

    where Att is the attenuation value.

    Based on the CCP plasma discharge and electromagnetic wave propagation model,a one-dimensional self-consistent calculation model is proposed to investigate the propagation characteristics of electromagnetic waves in the plasma discharge device.The specific algorithm flow can be divided into two steps as shown in Fig.2.The first step is to use the CCP discharge model established by COMSOL multiphysics to study the effect of the difference in discharge gas,discharge gap,RF power,RF frequency,and pressure on the characteristics of the generated plasma.The second step is to take the electron number density and collision frequency of the plasma as inputs into the electromagnetic wave transmission model established by MATLAB code,and the influence of difference in discharge parameter and the discharge gas on the electromagnetic wave attenuation are obtained.

    3.Simulation results and discussion

    3.1.Plasma characteristics under different discharge gases and parameters

    In the process of numerical solution of CCP discharge model,a large number of RF cycles(102–105)are needed to obtain a steady-state solution.In order to speed up the calculation efficiency,the COMSOL plasma module introduces periodic boundary conditions to quickly calculate the stable state.Taking the metastable particles in the CCP discharge for example,the evolution of the particles is described by using Eq.(33),and the periodic boundary conditions are shown in Eq.(34);

    where n is the number of metastable particles.The first term on the right-hand side in Eq.(33)represents the periodic generation of metastable states and periodic oscillation in the plasma sheath.The second term refers to the loss caused by the collision with the background gas,and the third term is the loss caused by the collision between metastable particles.

    In order to verify the accuracy of the CCP discharge model,figure 3 shows the comparison of electron number density between CCP discharges of argon and helium,for measurement results and simulation results obtained from the present study and other researchers.[20,26]It can be seen from Fig.3(a)that the electron number density distribution of helium discharge in this paper is in good agreement with the simulation results given by Zhang et al.[20]The electron number density distribution in the argon discharge in this paper accords well with the simulation results and experimental results reported by Pan et al.[26]However,the electron number density distribution near the electrode is quite different,because the edge effect is not considered in Ref.[26].

    Figure 4 shows the electron density distribution of argon discharge and helium discharge at gas pressure p=0.5 Torr,discharge gap L=0.1 m,RF power P=300 W,and RF frequency f=13.56 MHz.It is obvious that the electron number density under argon discharge is higher than that under helium discharge.And the maximum electron number density differs by more than 10 times,which is consistent with the conclusion drawn under the inductively coupled plasma(ICP)discharge mode.[27]In addition,although the electron number density of helium is lower than that of argon,the uniform range of plasma in the central region is larger than the case of argon discharge.The reason is that the degree of ionization of argon gas is higher than that of helium gas.It is also verified from the side that the electron number density and uniformity are often mutually restricted.

    Fig.3.Comparison of electron number density distribution between argon and helium CCP discharges,for measurement results and simulation results obtained from the present research and other researches,showing(a)helium discharge at gas pressure p=0.5 Torr,discharge gap L=0.123 m,parallel plate length l=0.28 m,input voltage V=1000 V,and RF frequency f=13.56 MHz,and(b)argon discharge at gas pressure p=250 Pa,discharge gap L=0.078 m,parallel plate length l=0.1 m,RF power P=100 W,and RF frequency f=13.56 MHz.

    Fig.4.Electron number density distribution of argon discharge and helium discharge at gas pressure p=0.5 Torr,discharge gap L=0.1 m,RF power P=300 W,and RF frequency f=13.56 MHz.

    The electron number density distributions of argon discharge under different gas pressures are shown in Fig.5.It can be concluded that the electron number density increases with gas pressure increasing.The maximum electron density corresponding to gas pressure p=0.1 Torr,0.3 Torr,and 0.5 Torr is 4.71×1016m?3,1.59×1017m?3,and 2.09×1017m?3,respectively.The increase in gas pressure will intensify the collisions between different particles,leading the electron number density to increase.

    Fig.5.Electron number density distributions of argon under different gas pressures at discharge gap L=0.1 m,RF power P=300 W,and RF frequency f=13.56 MHz.

    Fig.6.Electron number density distributions of argon discharge under different discharge gaps at gas pressure p=0.5 Torr,RF power P=300 W,and RF frequency f=13.56 MHz.

    Figure 6 shows the electron number density distributions under different discharge gaps.It is obvious that the electron number density first increases and then decreases with discharge gap increasing,and the maximum appears in the case L=0.1 m.The results show that the maximum electron densities are 6.81×1016m?3,2.09×1017m?3,and 1.88×1017m?3,corresponding to the discharge gap of 0.05 m,0.1 m,and 0.15 m,respectively.As the discharge gap decreases exponentially,the uniform range of the plasma density in the central area decreases more than the discharge gap does.Figures 7 and 8 respectively show the electron number density distribution under different values of RF power and RF frequency.It can be seen from Figs.7 and 8 that the electron number density increases with the augment of RF power and frequency.The increase of the input power will make the electrons gain more energies in the electrode sheath,and more high-energy particles will collide with the background gas in the cavity to generate more electrons.The increase of the RF frequency will cause the RF frequency and the oscillation frequency of the electrons to increase,thereby increasing the collision between the electrons and the particles in the background gas.On the other hand,the induced component,as a factor that affects the electron number density,also increases with RF frequency rising.[28]In addition,the influence of RF power on the electron number density is greater than that of RF frequency.

    Fig.7.Electron number density distributions of argon discharge under different values of RF power at gas pressure p=0.5 Torr,discharge gap L=0.1 m,and RF frequency f=13.56 MHz.

    Fig.8.Electron number density distributions of argon discharge under different RF frequencies at gas pressure p=0.5 Torr,discharge gap L=0.1 m,and RF frequency f=13.56 MHz.

    3.2.Electromagnetic wave attenuation for different discharge gases and parameters

    The self-consistent simulation model of CCP discharge and electromagnetic wave is based on the electron number density and collision frequency data in CCP discharge to study the attenuation of electromagnetic wave propagation in plasma.The electron collision frequency can be estimated by the following equation:[29]

    where veis the electron collision frequency,r is the sum of electron–neutral collisional radius(According to Refs.[30]and[31]the average cross section of helium satisfiesπr2=7.63×10?20m2,the average cross section of argon follows πr2=2.32×10?19m2).According to the simulation results in this paper,the periodic average values of the electron temperatures of helium and argon are about 5 eV and 10 eV(1 eV=11300 K),respectively.Combining Zhang’s estimation[20]of the electron collision frequency under CCP discharge,the final formulas for collision frequency of helium and argon are obtained,respectively,

    where veand p are measured in units GHz and Torr,respectively.

    3.3.Transmission attenuation of different discharge gases

    Figure 9 shows the transmission attenuation in argon discharge plasma and helium discharge plasma at the same discharge parameters.It is obvious that the attenuation of electromagnetic wave in argon discharge is greater than that in helium discharge.The reason is that although the electron collision frequency of argon discharge is higher than that of helium discharge,the electron number density of argon discharge is much higher than that of helium discharge.It is generally believed that the normal communication cannot be achieved if the signal attenuation exceeds?5 dB.The plasma produced by helium discharge has little absorption of electromagnetic wave energy and weaker interference to signal communication.The plasma produced by argon discharge has significant absorption of electromagnetic wave energy in a frequency range from 0.01 GHz to 10 GHz,and the absorption peak reaches?13 dB at 2.41 GHz.Therefore,the plasma generated by argon discharge is more suitable for the research of plasma stealth applications.

    Fig.9.Plots of transmission attenuation of electromagnetic wave in argon discharge and helium discharge.

    In addition,it can be seen from Fig.9 that the transmission attenuation curve under argon discharge can be divided into two parts.The electromagnetic wave frequency range of part 1 is 0.01 GHz–2.41 GHz,and the transmission attenuation decreases significantly with frequency increasing.At this time,the wavelength is greater than the thickness of the plasma layer,the diffraction effect is dominant,and the penetration effect is not obvious.The electromagnetic wave frequency of part 2 is greater than 2.41 GHz,and the transmission attenuation increases significantly with the frequency increasing.The corresponding wavelength is close to and slowly far below the thickness of the plasma layer.At this time,the penetration effect is dominant and the diffraction effect can be ignored.

    3.4.Transmission attenuation of different discharge parameters

    Figure 10 shows the attenuation of electromagnetic waves in plasma generated by argon discharge at different pressures.The transmission attenuation decreases with the increase of pressure,because the increase in pressure causes the electron density in the discharge plasma to increase.However,this trend will not always be maintained.It can be seen from Fig.10 that the maximum transmission attenuation under a pressure of 0.3 Torr is higher than 0.5 Torr.The reason is that the increase in pressure leads the mean free path of electrons to decrease,which increases the frequency of electron collisions.At this time,the influence of electron collision frequency is higher than that of the change of electron number density.Therefore,the gas pressure needs to be carefully selected according to actual influence.

    Fig.10.Plots of transmission attenuation of electromagnetic waves in argon discharges at different gas pressures.

    As the discharge gap increases,the thickness of the plasma sheath increases,while the electron number density first increases and then decreases.Therefore,the transmission attenuation of electromagnetic waves does not change monotonically with the discharge gap increasing.Figure 11 shows the transmission attenuation in plasma generated by different discharge gaps.The peaks of transmission attenuation are?3.8 dB,?12.9 dB,and?12.8 dB,corresponding to the discharge gaps of 0.05 m,0.1 m,and 0.15 m,respectively.The transmission attenuation of electromagnetic waves first increases and then decreases with the discharge gap inceasing,and the attenuation reaches a maximum value at L=0.1 m.The transmission attenuation is within?5 dB when the discharge gap is 0.05 m,which shows that the plasma generated at this time has little interference to the signal.

    Fig.11.Plots of transmission attenuation of electromagnetic waves in argon discharges of different discharge gaps.

    Figures 12 and 13 respectively illustrate the transmission attenuation of plasma generated by different values of RF power and RF frequency.It is obvious that the transmission attenuation of electromagnetic waves increases with the augment of RF power and RF frequency.The reason is that the increase of RF power and RF frequency have no effect on the electron collision frequency,but it will increase the electron number density.

    Fig.12.Plots of transmission attenuation of electromagnetic waves in argon discharges of different values of RF power.

    One can observe that higher RF power and RF frequency have a wider strong absorption frequency band for electromagnetic waves.The peaks of transmission attenuation are?3.7 dB,?7.8 dB,and?12.9 dB,corresponding to the RF power of 50 W,150 W,and 300 W,respectively.The plasma generated at power of 50 W has almost no interference to electromagnetic wave transmission in any frequency band.But when the power is increased to 300 W,the wave frequency range that can be absorbed is 0.01 GHZ–9.1 GHz,which includes L-band,S-band,and C-band.When the RF frequency increases from 13.56 MHz to 45 MHz,the transmission attenuation increases from?12.9 dB to?22.5 dB.Meanwhile,the maximum frequency of electromagnetic wave absorption ranges from 9.1 GHz to 13.7 GHz,and the frequency band for electromagnetic wave absorption expands from C-band to X-band,and even Ku-band.

    Fig.13.Plots of transmission attenuation of electromagnetic waves in argon discharges of different RF frequencies.

    4.Conclusions and perspectives

    Based on the CCP discharge method,the effects of different gases and discharge parameters on the electron number density and transmission attenuation are studied in this paper.A large amount of helium and argon plasma are generated between two 30-cm-long parallel rectangular plates where gas pressure is p=0.1 Torr–0.5 Torr,discharge gap is L=0.025 m–0.1 m,RF power is P=50 W–300 W,RF frequency is f=13.56 MHz–45 MHz.The CCP discharge characteristics and electromagnetic wave transmission attenuation under different discharge gases and parameters are obtained by a self-consistent calculation model combining the drift diffusion fluid model and the improved scattering matrix method.Conclusions are summarized below.

    (i)The electron number density increases with the augment of gas pressure,RF power,and RF frequency,while it first increases and then decreases with the increase of discharge gap.In addition,the electron density of argon plasma discharge is much higher than that of helium plasma discharge.

    (ii)The absorption effect of argon discharge plasma on electromagnetic waves is much greater than that of helium discharge plasma,so it will be prioritized as the discharge gas for plasma stealth.Meanwhile,transmission attenuation increases with the augment of RF power and RF frequency.So the RF power and RF frequency should be increased as much as possible without affecting the normal discharge of CCP.However,the choice of gas pressure and discharge gap should be considered based on the actual situation,because the transmission attenuation does not increase or decrease monotonically with the increase of pressure and discharge gap.

    (iii)The maximum transmission attenuation of CCP discharge plasma to electromagnetic waves under the best parameters in this paper is?22.5 dB.The maximum frequency of electromagnetic wave absorption is 13.7 GHz,and the corresponding absorption electromagnetic wave band ranges from S band to Ku band.

    The discharge characteristics of CCP and the corresponding transmission attenuation are of great significance in plasma stealth applications.The experimental platform of microwave chamber for CCP discharge and electromagnetic wave propagation is currently being built.And the two-dimensional and three-dimensional self-consistent models combining CCP discharge and electromagnetic wave propagation will be studied in our future work.

    猜你喜歡
    劉琦文沖歐陽(yáng)
    咕咕叫的肚皮
    初心引航,構(gòu)建“雙減”新樣態(tài)
    勇毅前行開創(chuàng)未來(lái)
    ———記中船黃埔文沖船舶有限公司
    繼往開來(lái)憶往昔砥礪前行譜新篇
    ——記廣州文沖船舶修造有限公司
    我家的健忘老媽
    歐陽(yáng)彥等
    逆勢(shì)而上 奮楫向前
    ——記中船黃埔文沖船舶有限公司
    依依送別歐陽(yáng)鶴先生
    GLOBAL EXISTENCE OF CLASSICAL SOLUTIONS TO THE HYPERBOLIC GEOMETRY FLOW WITH TIME-DEPENDENT DISSIPATION?
    歐陽(yáng)麗作品
    麻豆av在线久日| 久热这里只有精品99| 在线观看一区二区三区激情| 天天添夜夜摸| 国产极品粉嫩免费观看在线| xxxhd国产人妻xxx| 97人妻天天添夜夜摸| 伊人久久国产一区二区| 国产精品一区二区在线观看99| 亚洲人成电影观看| 我的亚洲天堂| 亚洲精品在线美女| 欧美黑人欧美精品刺激| 国产一区二区三区av在线| 亚洲国产欧美在线一区| av电影中文网址| 九九爱精品视频在线观看| 亚洲在久久综合| 最新的欧美精品一区二区| 最近最新中文字幕免费大全7| 国产免费视频播放在线视频| 黑人巨大精品欧美一区二区蜜桃| 欧美激情极品国产一区二区三区| 日韩精品有码人妻一区| 亚洲婷婷狠狠爱综合网| 国产亚洲av片在线观看秒播厂| 日韩熟女老妇一区二区性免费视频| 亚洲色图 男人天堂 中文字幕| 多毛熟女@视频| 下体分泌物呈黄色| 久久天堂一区二区三区四区| 黄片无遮挡物在线观看| 黄色怎么调成土黄色| 秋霞在线观看毛片| 亚洲精华国产精华液的使用体验| 两性夫妻黄色片| 中文字幕最新亚洲高清| 欧美精品亚洲一区二区| 国产一卡二卡三卡精品 | 久久精品久久精品一区二区三区| 在线亚洲精品国产二区图片欧美| 亚洲av电影在线进入| 别揉我奶头~嗯~啊~动态视频 | 午夜激情久久久久久久| 最近2019中文字幕mv第一页| 熟女av电影| 最新的欧美精品一区二区| www.熟女人妻精品国产| 999精品在线视频| 高清视频免费观看一区二区| 中文字幕人妻熟女乱码| 久久精品国产综合久久久| 男人舔女人的私密视频| 成人亚洲欧美一区二区av| 视频区图区小说| 一二三四中文在线观看免费高清| 国产在线一区二区三区精| 亚洲精品美女久久久久99蜜臀 | 9色porny在线观看| 美女视频免费永久观看网站| 亚洲av日韩精品久久久久久密 | 国产 一区精品| 欧美另类一区| 国产精品久久久久成人av| 日本91视频免费播放| 免费女性裸体啪啪无遮挡网站| 一级毛片 在线播放| av国产久精品久网站免费入址| 男人舔女人的私密视频| 欧美日韩综合久久久久久| 亚洲国产av影院在线观看| 亚洲国产欧美网| 亚洲精品一区蜜桃| 叶爱在线成人免费视频播放| 欧美日韩亚洲国产一区二区在线观看 | 美女脱内裤让男人舔精品视频| 国产一区二区三区av在线| av线在线观看网站| 国产男女超爽视频在线观看| 中文字幕色久视频| 在线免费观看不下载黄p国产| 欧美变态另类bdsm刘玥| 视频在线观看一区二区三区| 少妇猛男粗大的猛烈进出视频| 18禁观看日本| 国产成人精品在线电影| 精品午夜福利在线看| 卡戴珊不雅视频在线播放| 免费黄网站久久成人精品| 国产成人精品在线电影| 国产精品免费大片| 国产一级毛片在线| 欧美最新免费一区二区三区| av又黄又爽大尺度在线免费看| www日本在线高清视频| 国产淫语在线视频| 91aial.com中文字幕在线观看| 欧美日韩视频高清一区二区三区二| 亚洲精品在线美女| 国产av精品麻豆| 可以免费在线观看a视频的电影网站 | 人人妻人人澡人人爽人人夜夜| 久久这里只有精品19| 久久综合国产亚洲精品| 欧美日韩精品网址| 不卡视频在线观看欧美| 国产精品亚洲av一区麻豆 | 亚洲精品视频女| 久久人人爽av亚洲精品天堂| 国产亚洲一区二区精品| 99re6热这里在线精品视频| 欧美人与性动交α欧美精品济南到| 校园人妻丝袜中文字幕| 黑人巨大精品欧美一区二区蜜桃| 中文字幕另类日韩欧美亚洲嫩草| 伦理电影免费视频| 啦啦啦啦在线视频资源| 国产高清不卡午夜福利| 爱豆传媒免费全集在线观看| 韩国av在线不卡| a级片在线免费高清观看视频| 亚洲第一区二区三区不卡| 欧美日韩亚洲国产一区二区在线观看 | 啦啦啦视频在线资源免费观看| 狠狠精品人妻久久久久久综合| 黄色视频不卡| 亚洲成国产人片在线观看| 无限看片的www在线观看| 欧美97在线视频| 男女边摸边吃奶| 黑人欧美特级aaaaaa片| 国产野战对白在线观看| 婷婷色麻豆天堂久久| 亚洲av电影在线观看一区二区三区| 国产日韩一区二区三区精品不卡| 丝瓜视频免费看黄片| 欧美激情高清一区二区三区 | 中文字幕人妻丝袜一区二区 | 日韩 欧美 亚洲 中文字幕| 黄频高清免费视频| 欧美日韩一级在线毛片| 国产极品天堂在线| 一级a爱视频在线免费观看| 女人被躁到高潮嗷嗷叫费观| 日韩精品免费视频一区二区三区| 国产xxxxx性猛交| 国产免费现黄频在线看| 美女主播在线视频| 久久国产亚洲av麻豆专区| 久久久久久久国产电影| 国产在线视频一区二区| 国产极品天堂在线| 亚洲情色 制服丝袜| 性色av一级| 中文字幕人妻丝袜一区二区 | 中文精品一卡2卡3卡4更新| 大片电影免费在线观看免费| 国精品久久久久久国模美| 亚洲欧美中文字幕日韩二区| av在线app专区| 黄色视频不卡| 制服诱惑二区| 搡老乐熟女国产| 美女国产高潮福利片在线看| 女人高潮潮喷娇喘18禁视频| www.av在线官网国产| 日韩av在线免费看完整版不卡| 亚洲成国产人片在线观看| 男男h啪啪无遮挡| 黄色视频在线播放观看不卡| 欧美激情极品国产一区二区三区| av网站在线播放免费| 亚洲熟女毛片儿| 亚洲av日韩精品久久久久久密 | 黑人欧美特级aaaaaa片| 久久久国产欧美日韩av| 国产精品久久久久久人妻精品电影 | 黑人欧美特级aaaaaa片| 伊人亚洲综合成人网| 中国三级夫妇交换| av在线播放精品| 国产乱来视频区| 丝瓜视频免费看黄片| 久久天堂一区二区三区四区| 黄色视频不卡| 国产精品成人在线| 国产精品三级大全| 国产片特级美女逼逼视频| 免费黄频网站在线观看国产| 叶爱在线成人免费视频播放| 亚洲免费av在线视频| 王馨瑶露胸无遮挡在线观看| 18禁观看日本| 性高湖久久久久久久久免费观看| 成人手机av| 丰满迷人的少妇在线观看| 久久国产亚洲av麻豆专区| 天天躁日日躁夜夜躁夜夜| 一边摸一边抽搐一进一出视频| 国产精品久久久久久久久免| 一二三四在线观看免费中文在| 精品国产乱码久久久久久男人| 欧美日韩亚洲综合一区二区三区_| 别揉我奶头~嗯~啊~动态视频 | 黑丝袜美女国产一区| bbb黄色大片| 免费观看性生交大片5| 欧美日韩国产mv在线观看视频| 国产麻豆69| 我的亚洲天堂| 秋霞在线观看毛片| 性色av一级| 黄片播放在线免费| 午夜激情av网站| 99久久人妻综合| 国产免费现黄频在线看| 婷婷色综合大香蕉| 国产成人免费观看mmmm| 国产视频首页在线观看| 午夜福利影视在线免费观看| 侵犯人妻中文字幕一二三四区| 久久久国产欧美日韩av| 久久天堂一区二区三区四区| 国产福利在线免费观看视频| 国产极品天堂在线| 在线观看三级黄色| 一二三四中文在线观看免费高清| 中文字幕制服av| 欧美国产精品va在线观看不卡| 久久久亚洲精品成人影院| 色综合欧美亚洲国产小说| 九色亚洲精品在线播放| 男女床上黄色一级片免费看| 亚洲精品,欧美精品| 大片电影免费在线观看免费| 热re99久久国产66热| 国产乱来视频区| avwww免费| 黄色一级大片看看| 日韩精品免费视频一区二区三区| 国产精品国产av在线观看| 捣出白浆h1v1| 国产成人精品无人区| 自拍欧美九色日韩亚洲蝌蚪91| 99久久99久久久精品蜜桃| 天天躁夜夜躁狠狠躁躁| 中文字幕高清在线视频| 18禁观看日本| 天天添夜夜摸| 中文字幕色久视频| 99久国产av精品国产电影| 亚洲欧美精品综合一区二区三区| 日日爽夜夜爽网站| 亚洲av成人不卡在线观看播放网 | 日本黄色日本黄色录像| 国产精品久久久久久人妻精品电影 | 波野结衣二区三区在线| 七月丁香在线播放| 日本欧美国产在线视频| 日韩欧美一区视频在线观看| 哪个播放器可以免费观看大片| 久久久久久久久免费视频了| 精品国产超薄肉色丝袜足j| 看免费成人av毛片| 亚洲av男天堂| 欧美 亚洲 国产 日韩一| 在线亚洲精品国产二区图片欧美| 久热这里只有精品99| 天天影视国产精品| 久久99精品国语久久久| 午夜免费鲁丝| 久久久久久久国产电影| 国产伦理片在线播放av一区| 国产极品粉嫩免费观看在线| 老司机在亚洲福利影院| 青春草视频在线免费观看| 制服丝袜香蕉在线| 国产片内射在线| 啦啦啦啦在线视频资源| 国产精品香港三级国产av潘金莲 | 肉色欧美久久久久久久蜜桃| 大陆偷拍与自拍| 天天躁狠狠躁夜夜躁狠狠躁| 久久精品aⅴ一区二区三区四区| 永久免费av网站大全| 看非洲黑人一级黄片| 日本av手机在线免费观看| 建设人人有责人人尽责人人享有的| 少妇精品久久久久久久| 精品国产乱码久久久久久男人| 日韩一卡2卡3卡4卡2021年| 国产1区2区3区精品| 99热全是精品| 欧美黑人精品巨大| 亚洲av电影在线进入| 在线亚洲精品国产二区图片欧美| 久久亚洲国产成人精品v| 久久性视频一级片| 久久99热这里只频精品6学生| 伊人久久国产一区二区| 老鸭窝网址在线观看| 欧美日韩视频高清一区二区三区二| 最近的中文字幕免费完整| 在线天堂中文资源库| 操美女的视频在线观看| 一区二区三区乱码不卡18| 天天躁狠狠躁夜夜躁狠狠躁| 日韩欧美一区视频在线观看| 久热这里只有精品99| 婷婷成人精品国产| 亚洲,欧美精品.| 日韩伦理黄色片| 制服人妻中文乱码| 天天躁夜夜躁狠狠躁躁| 免费观看人在逋| 亚洲国产av影院在线观看| 国产免费一区二区三区四区乱码| 精品亚洲成a人片在线观看| 午夜福利免费观看在线| 国产熟女午夜一区二区三区| 丰满乱子伦码专区| 亚洲综合精品二区| 晚上一个人看的免费电影| 午夜福利一区二区在线看| 精品国产露脸久久av麻豆| 成人三级做爰电影| 欧美 亚洲 国产 日韩一| 国产精品麻豆人妻色哟哟久久| 夫妻性生交免费视频一级片| 七月丁香在线播放| 最近手机中文字幕大全| 精品一区二区三卡| 777久久人妻少妇嫩草av网站| 国产一区二区三区综合在线观看| 色婷婷av一区二区三区视频| 97精品久久久久久久久久精品| 成人免费观看视频高清| 国产男女内射视频| 亚洲国产成人一精品久久久| 午夜福利,免费看| a级毛片在线看网站| 中文字幕最新亚洲高清| 极品少妇高潮喷水抽搐| 亚洲精品aⅴ在线观看| 久久久久久久精品精品| 在线观看一区二区三区激情| 国产精品成人在线| 亚洲四区av| 亚洲成av片中文字幕在线观看| 国产精品秋霞免费鲁丝片| 9191精品国产免费久久| 男女午夜视频在线观看| 国产女主播在线喷水免费视频网站| 美女扒开内裤让男人捅视频| 欧美日韩亚洲高清精品| 丝袜美腿诱惑在线| 男的添女的下面高潮视频| 看免费av毛片| 国产野战对白在线观看| 成人毛片60女人毛片免费| 国产精品一区二区在线不卡| 母亲3免费完整高清在线观看| 久久精品久久久久久噜噜老黄| 欧美乱码精品一区二区三区| 两个人免费观看高清视频| 在线观看免费午夜福利视频| 欧美日韩av久久| 香蕉丝袜av| 亚洲av电影在线观看一区二区三区| 精品一区二区三卡| 中文欧美无线码| 精品少妇内射三级| 少妇精品久久久久久久| 亚洲色图 男人天堂 中文字幕| 我要看黄色一级片免费的| 国产亚洲av片在线观看秒播厂| 国产精品99久久99久久久不卡 | 免费人妻精品一区二区三区视频| 美女扒开内裤让男人捅视频| 九九爱精品视频在线观看| 亚洲国产欧美一区二区综合| 黄色毛片三级朝国网站| 成人午夜精彩视频在线观看| 成人手机av| 亚洲精品国产av成人精品| 一本一本久久a久久精品综合妖精| 久久久久视频综合| 亚洲精品中文字幕在线视频| 精品国产露脸久久av麻豆| av一本久久久久| 国产精品久久久av美女十八| 亚洲一卡2卡3卡4卡5卡精品中文| 2021少妇久久久久久久久久久| 久久精品国产亚洲av涩爱| 黑人猛操日本美女一级片| 亚洲图色成人| 亚洲人成电影观看| 精品久久久精品久久久| 精品人妻在线不人妻| 国产国语露脸激情在线看| 一本久久精品| 人人妻人人爽人人添夜夜欢视频| av片东京热男人的天堂| 啦啦啦啦在线视频资源| 欧美xxⅹ黑人| 国产一区二区 视频在线| 99久久人妻综合| 这个男人来自地球电影免费观看 | 国产一卡二卡三卡精品 | 亚洲欧美中文字幕日韩二区| 亚洲精品美女久久久久99蜜臀 | 国产高清国产精品国产三级| 男女午夜视频在线观看| 亚洲色图 男人天堂 中文字幕| 欧美 亚洲 国产 日韩一| 久久精品aⅴ一区二区三区四区| 亚洲五月色婷婷综合| 深夜精品福利| 自拍欧美九色日韩亚洲蝌蚪91| 日韩制服丝袜自拍偷拍| 精品国产一区二区三区久久久樱花| 我的亚洲天堂| 欧美老熟妇乱子伦牲交| 亚洲欧洲日产国产| 精品一区二区三卡| 菩萨蛮人人尽说江南好唐韦庄| 久久久久国产精品人妻一区二区| 精品酒店卫生间| 最近中文字幕高清免费大全6| 亚洲成人免费av在线播放| 国产 一区精品| 亚洲熟女精品中文字幕| 欧美精品一区二区免费开放| 欧美国产精品va在线观看不卡| 一级a爱视频在线免费观看| 黄色一级大片看看| 精品第一国产精品| 日韩视频在线欧美| 大码成人一级视频| 波多野结衣av一区二区av| 99久久精品国产亚洲精品| 男人舔女人的私密视频| 亚洲色图 男人天堂 中文字幕| 亚洲五月色婷婷综合| 香蕉丝袜av| 丰满乱子伦码专区| 99香蕉大伊视频| 亚洲一区中文字幕在线| www.av在线官网国产| 免费av中文字幕在线| 国产精品麻豆人妻色哟哟久久| 观看av在线不卡| 日韩 亚洲 欧美在线| 满18在线观看网站| 精品久久久精品久久久| 日韩熟女老妇一区二区性免费视频| 在线观看国产h片| 在线 av 中文字幕| 日本欧美国产在线视频| 亚洲在久久综合| 男女国产视频网站| 久久天堂一区二区三区四区| 国产亚洲最大av| 国产精品久久久av美女十八| 精品一区二区免费观看| 十八禁高潮呻吟视频| 一区在线观看完整版| 在线亚洲精品国产二区图片欧美| 婷婷色综合大香蕉| 中文字幕制服av| 国产熟女午夜一区二区三区| 亚洲欧美日韩另类电影网站| 亚洲欧美精品自产自拍| av电影中文网址| 国产欧美亚洲国产| 国产日韩一区二区三区精品不卡| 精品久久久精品久久久| 少妇 在线观看| 欧美最新免费一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲少妇的诱惑av| 在线观看免费午夜福利视频| 黄色 视频免费看| 日韩一本色道免费dvd| av卡一久久| 国产伦理片在线播放av一区| 2018国产大陆天天弄谢| av在线老鸭窝| 色综合欧美亚洲国产小说| 久久国产精品男人的天堂亚洲| 18禁裸乳无遮挡动漫免费视频| 午夜精品国产一区二区电影| 波多野结衣一区麻豆| 国产欧美日韩一区二区三区在线| 亚洲欧洲国产日韩| 高清在线视频一区二区三区| 亚洲伊人久久精品综合| 无遮挡黄片免费观看| 777米奇影视久久| 国产日韩欧美在线精品| 欧美日韩亚洲国产一区二区在线观看 | 精品第一国产精品| 亚洲婷婷狠狠爱综合网| kizo精华| √禁漫天堂资源中文www| 天天影视国产精品| 18禁裸乳无遮挡动漫免费视频| 极品少妇高潮喷水抽搐| 精品一区二区免费观看| 日日啪夜夜爽| 七月丁香在线播放| 丁香六月天网| 免费不卡黄色视频| 亚洲av在线观看美女高潮| 日本一区二区免费在线视频| 狠狠精品人妻久久久久久综合| 香蕉国产在线看| 秋霞在线观看毛片| 欧美日韩综合久久久久久| 91精品三级在线观看| 精品久久久久久电影网| 天堂俺去俺来也www色官网| 欧美在线一区亚洲| 亚洲四区av| 亚洲国产精品一区二区三区在线| 亚洲精品国产色婷婷电影| 老司机亚洲免费影院| 国产精品.久久久| 亚洲美女黄色视频免费看| 国产成人啪精品午夜网站| 国产精品麻豆人妻色哟哟久久| 中国三级夫妇交换| 亚洲国产毛片av蜜桃av| 高清av免费在线| 国产xxxxx性猛交| 熟女少妇亚洲综合色aaa.| 丁香六月天网| 国产成人欧美在线观看 | 国产精品免费大片| 国产亚洲av高清不卡| 天堂俺去俺来也www色官网| 亚洲av国产av综合av卡| 亚洲一区中文字幕在线| 成人毛片60女人毛片免费| 97人妻天天添夜夜摸| 男女边摸边吃奶| 一级黄片播放器| 欧美精品一区二区大全| 亚洲五月色婷婷综合| 亚洲美女黄色视频免费看| 丝袜在线中文字幕| 亚洲美女视频黄频| 欧美亚洲日本最大视频资源| 另类亚洲欧美激情| 久久久久精品久久久久真实原创| 如何舔出高潮| 黄片无遮挡物在线观看| 久久人人97超碰香蕉20202| 亚洲伊人久久精品综合| 欧美97在线视频| av一本久久久久| 精品酒店卫生间| 99九九在线精品视频| 高清黄色对白视频在线免费看| 国产乱来视频区| 国产极品粉嫩免费观看在线| 日本欧美视频一区| 国产高清国产精品国产三级| 性高湖久久久久久久久免费观看| 欧美国产精品va在线观看不卡| 超色免费av| 亚洲精品一区蜜桃| 亚洲一级一片aⅴ在线观看| 一个人免费看片子| 国产亚洲最大av| 成人免费观看视频高清| 无限看片的www在线观看| 亚洲国产欧美一区二区综合| 老司机靠b影院| av片东京热男人的天堂| 午夜免费观看性视频| 久久综合国产亚洲精品| 黑丝袜美女国产一区| 国产精品99久久99久久久不卡 | 亚洲四区av| 视频在线观看一区二区三区| 丝袜在线中文字幕| 国产成人免费观看mmmm| 日韩一区二区视频免费看| 精品第一国产精品| 亚洲av电影在线进入| a级毛片黄视频| 香蕉国产在线看| 国产乱人偷精品视频| 高清av免费在线| 久久精品国产亚洲av涩爱| 欧美日韩国产mv在线观看视频| 欧美精品人与动牲交sv欧美| 国产精品久久久久久久久免| 女人精品久久久久毛片| 国产午夜精品一二区理论片| 啦啦啦在线免费观看视频4| 51午夜福利影视在线观看| 在线免费观看不下载黄p国产| 操出白浆在线播放| 亚洲第一av免费看| 9色porny在线观看| 免费高清在线观看日韩| 老司机在亚洲福利影院| 欧美日韩视频精品一区| 亚洲av在线观看美女高潮| 国产成人啪精品午夜网站| 不卡视频在线观看欧美| av在线老鸭窝| 久久久久人妻精品一区果冻|