• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Gray code based gradient-free optimization algorithm for parameterized quantum circuit

    2024-02-29 09:16:46AnqiZhang張安琪ChunhuiWu武春輝andShengmeiZhao趙生妹
    Chinese Physics B 2024年2期
    關鍵詞:春輝

    Anqi Zhang(張安琪), Chunhui Wu(武春輝), and Shengmei Zhao(趙生妹),2,?

    1Institute of Signal Processing and Transmission,Nanjing University of Posts and Telecommunications,Nanjing 210003,China

    2Key Laboratory of Broadband Wireless Communication and Sensor Network Technology(Ministry of Education),Nanjing University of Posts and Telecommunications,Nanjing 210003,China

    Keywords: gradient-free optimization,Gray code,genetic-based method

    1.Introduction

    Parameterized quantum circuits (PQCs) offer a useful way to implement quantum algorithms[1–10]and can demonstrate quantum supremacy in the noisy intermediate scale quantum(NISQ)area.[11–15]PQCs are typically composed of fixed gates, e.g., controlled NOTs, or adjustable gates with phase rotations.Even at low circuit depth, some classes of PQCs are capable of generating highly non-trivial outputs.Usually, the parameter optimization in PQCs involves evaluation of the cost functionC(θ) from the quantum circuit and the computation of the cost function gradient ?C(θ) from the classical computer, where the barren plateau, in which the gradient of cost function vanishes exponentially with the size of system, is an important issue that needs to be carefully considered.[1,16]Various strategies have been suggested to tackle this issue.For instance, Skoliket al.[17]proposed a layer-wise learning optimization method where only a subset of all parameters is updated in each iteration.Additionally,clever parameter initialization and ansatz construction have been shown to enhance the stability and efficiency of training parameterized quantum circuits, thus preventing them from getting trapped in regions of vanishing gradients.[18–20]Nevertheless,further research is needed to assess the effectiveness of these strategies across different problem domains.Therefore,for large-scale parameter optimization problems,gradient-free optimization can be a preferable choice to avoid the barren plateau problem,which is promising for the devices in NISQ.For example,based on Gaussian process regression(GPR)and noisy expected improvement (NEI), a Bayesian optimization(BO)was proposed by Iannelliet al.[21]to provide an estimation of the ground state energy.An efficient method for optimizing the values of parameters by finding the direction and angle of rotation of quantum gates that yield minimum energy in PQCs was proposed by Ostaszewskiet al.[22]for variational quantum eigenvalue (VQE) tasks.However, these works are more effective for smooth optimization surfaces,they may lose their effectiveness for tasks with rough optimization surfaces in the presence of noise.In Ref.[23]the authors represented parameters using regular binary strings and performed iterative optimization within a genetic framework for parameter optimization.Nevertheless, the issue that minor parameter changes can trigger multiple bits to switch arises,causing significant step jumps throughout the optimization process.This phenomenon complicates the task of locating the global optimum.

    In this work,we propose a Gray code based gradient-free optimization (GCO) algorithm for optimizing the parameters of parameterized quantum circuits (PQCs).First, for a given PQC, the parameter is encoded into a set of binary strings,called genes.Next, each individual gene is decoded using Gray code into decimal values, which are applied as parameters to the PQC for evaluation,obtaining corresponding cost values for fitness calculation.Then, the fitness values of all individuals are processed as probabilities when the roulettewheel selection strategy is adopted to prepare the parent population.Finally,the crossover and mutation operations are carried out to generate the offspring.The parameters in the PQC are optimized one by one until the cost value satisfies the stop conditions.

    The proposed GCO algorithm offers several advantages:(1) The proposed GCO algorithm utilizes Gray code decoding techniques to optimize the parameters of PQCs,leading to improved optimization results for high-dimensional and nonconvex quantum circuit optimization problems,while avoiding the complexity of gradient computation.(2) The Gray code decoding method ensures that the parameters between two iterations only differ by one bit, helpful to avoid local optima in some optimization problems.Moreover,the proposed GCO algorithm enables the control of parameter precision by adjusting the number of bits in genes, which is particularly useful for quantum optimization tasks that require refining parameter values.(3)In the GCO algorithm,the roulette-wheel selection strategy is employed within the genetic framework to map fitness values to selection probabilities,enabling the selection of individuals with higher fitness as the parent population.Simultaneously,this strategy enhances offspring diversity and helps to prevent the algorithm from getting trapped in local optima.(4) The proposed GCO algorithm can optimize multiple parameters simultaneously,thereby the training time is reduced.

    2.The Gray code based gradient-free optimization algorithm.

    Figure 1 illustrates the framework of the proposed Gray code based optimization algorithm.The optimization process consists of the following steps.In step 1,a group of the initial population ofθmis generated randomly, where each individual is encoded as binary strings termed genes.Hereθmis them-th component of the parameter vectorθ.In step 2, all individuals of genes are decoded into decimals and evaluated in a fixed PQC which is selected according to the optimization task,to achieve cost values costmi(θ),respectively.In step 3,the fitness values are calculated according to the cost with the summation of all the fitness values to 1,and the fitness values are the probabilities to prepare the parent population by using roulette-wheel election strategy.In step 4, the crossover and mutation operations are performed on the parent population to generate the offspring.In step 5,the offspring is decoded and evaluated in the same PQC to check whether the minimum cost min[costm(θ′)] satisfies the stop condition.If the minimum cost does not satisfy the stop condition,updateθm+1;if the minimum cost satisfies the stop condition or the number of iterations is reached, the optimization process is stopped and the optimal parametersθ*are achieved.

    Fig.1.The framework of the GCO algorithm for optimizing parameters in PQC.

    The proposed algorithm is detailed in the following.

    (1) Generation of genes forθmAssume that theθmofθis optimized at the moment.In our proposed algorithm,θmis represented byNbinary Gray code strings which are randomly generated using a classical device in step 1 of Fig.1 askmi,i=1,...,N,each is called a gene.The number of bits in a gene is determined by the precision of the corresponding decimalθm, and the number after the dot specifies the precision.The range of parameters for a quantum gate is[-π,π].To set the precision of a decimal parameter ton, the number of bits required in genes isl,and their relationship can be expressed

    as

    therefore,lcan be

    (2)Evaluation of individualsAll genes ofθmare evaluated in the quantum device to achieve the cost values.

    As shown in step 2 of Fig.1,the genekmiis decoded into decimal value using Gray code and then loaded into the quantum device.Quantum devices in which the quantum gatesGpossess parameters can be referred as parameterized quantum circuits(PQCs).Therefore, when the types of quantum gates are fixed, the result of PQC depends on the parameter vectorθ.The circuit of PQC is determined by the specific optimization task,and as a result,the cost function is also dependent on the optimization task.In the case of a classification task, the optimization typically involves the preparation of the output quantum state of the PQC,denoted asφout,to a particular target quantum state,denoted asφopt.The cost is then calculated by using the fidelity-based approach,

    (3) Selection of parent population In step 3 of Fig.1,the parent population is generated using the roulette-wheel selection[24]sampling strategy.The roulette-wheel selection is a method of sampling with replacement based on the probabilities assigned to each individual.This means that the same individual may be sampled more than once,and the higher the likelihood of an individual,the more times it may be sampled.The fitness values of each individual are determined using the cost values obtained in step 2 as follows:

    where costmiis theith cost value estimated.Then the fitness values are processed so that all values are equal to 1 by the softmax function as

    The parent population is prepared based on their processed fitness values until the sample size reaches the maximum population, as illustrated in step 3 of Fig.1.The processed fitness values are mapped into a circle and the size of area in the circle is corresponding to the probability of selecting individual,kmi,i=1,...,N.As shown in step 3 of Fig.1,km1with the largest size of area in the circle is more likely to be selected;whilekmNwith the lowest probability is less to be selected.

    (4) Crossover and mutation operations The crossover strategy and mutation strategy are presented in step 4 of Fig.1.

    Crossover The two adjacent parents are grouped together, and each bit position of gene is traversed separately.For each bit position,a bit swap with a certain probability may occur between the two adjacent parents.As illustrated in step 4 of Fig.1,the first 6 bit positions of genes of the two adjacent parents,denoted bykiandki+1,are presented.When traverse at the 3rd position,kiandki+1occur in bit swap.

    Mutation Each bit of any gene in the parent population is traversed and may undergo a 0–1 transformation with a certain probability.As illustrated in step 4 of Fig.1,each bit position ofkjis traversed, and 1 to 0 transformation occurs at the 1st bit position and 0 to 1 transformation occurs at the 6th bit position.

    (5) Evaluation of offspring In step 5, all genes of the offspring are evaluated in the same PQC as step 2 to achieve cost values.Then the minimum cost value, denoted by min(costm(θ′)),is selected and checked to determine if it satisfies the stop condition.If the minimum cost satisfies the stop condition, the iteration is stopped, and the optimal parameter vector, represented asθ*, is outputted.If the minimum cost fails to satisfy the stop condition, the next component ofθ,θm+1,is updated,and the optimization process is repeated.

    The processes of the GCO algorithm are shown as algorithm 1.

    Algorithm 1 The Gray code optimization algorithm Require: Initialize the parameters in the PQC randomly;calculate the number of bits used l according to the precise of parameters n;a stop condition 1.loop 2.Calculate the value of cost function as cost-now 3.for m=1 to M 4.Generate N bit strings of θm randomly,in which each individual has l bits Evaluate the cost of each individual Fitness is calculated by using cost values achieved from step 2 and processed as the probabilities of the roulette-wheel selection sampling strategy to sample the parent population Crossover and mutation are carried out in the parent population to achieve the offspring Evaluate the cost of each individual in the offspring and record the minimum value of costs,min(costm(θ′)),as cost-min 5.if cost-min

    3.Result and discussion

    In this section,the feasibility of the proposed GCO algorithm is demonstrated through classification tasks on Iris and MNIST datasets, which are commonly employed in machine learning and deep learning.

    To compare the performance of the proposed GCO algorithm,Bayesian optimization(BO)algorithm,[21]binary code based optimization (BCO) algorithm,[23]and an adam-based optimization method, are simulated simultaneously.In this work, the BCO algorithm is almost identical to the GCO algorithm, with the only difference that BCO uses regular binary conversion when decoding from binary to decimal while GCO utilizes Gray code decoding.Gradient-based parameter optimization is the mainstream optimization approach in machine learning.In this simulation, the results of adam-based method are used as a benchmark, facilitating the understanding of the strengths and limitations of the proposed GCO algorithms.The simulations were realized by the PennyLane[25]module in Python.In the training processes, the number of gene bits for the parameters is 10.The probabilities of crossover and mutation are 0.3 and 0.05, respectively.There are 30 circles of all parameters that are trained at one time during the training process for GCO,BO and BCO,15 circles for the adam-based method.The classification tasks of Iris are achieved in the environment without noise, and the tasks in MNIST are achieved in the environment with four typical quantum noise,[26]i.e., bit flip, depolarizing, phase flip, and amplitude damping,under a probability of 5%.In Pennylane,noises are modeled as unitary operation and introduced into the PQC.The PQC we use[27]for the quantum classifier is shown in the Fig.2, two registers are contained in the PQC,A and B, which are used to store the training data and corresponding labels, respectively.During the training process,the training data of two datasetsX1,X2and parametersθare input into the register A, while the labels are input into the register B.The training objective is to ensure that the quantum state of register A forms the same as of register B, that is,U(X1,θ*)|0〉A=|0〉AandU(X2,θ*)|0〉A=|1〉A,thus the PQC trains data of two datasets simultaneously by creating a unique mapping between the training data and the labels.After training,the final state of the PQC is|00〉AB+|11〉AB.The quantum gateCU(Xi,θ)is composed of multiple controlledphase gates,and each controlled-phase gate contains one component of the training data and parameter vectors.As a result,the depth of the PQC is dependent on the dimensionality of the training data vector.

    Fig.2.The parameterized quantum circuit(PQC)for classification tasks(a)and the details for uploading training data Xi and parameter θ into the PQC(b),where Xi=(x1,x2,...,xn)and θ=(θ1,θ2,...,θn).

    Fig.3.The cost value against the time for the three classification tasks in four types of noise by using GCO (red), BO (blue), BCO (black), and the adam-based method(pink)algorithms.

    Table 1.The accuracy by using GCO and BO for Iris dataset.

    For Iris dataset, we discuss the performance of the GCO and BO algorithms.Here, 40 training samples and 10 testing samples are randomly selected from each class,with three different subsets used.Specifically, the PQC for the classification task on the Iris dataset consists of 2 qubits with 10 serial controlled quantum gates.The numerical experiments are conducted five times, and the average results are listed in Table 1.From Table 1,it is obvious that the GCO algorithm outperforms the BO algorithm in terms of accuracy for all three subsets of the Iris dataset.

    For MNIST dataset, we randomly select 2000 training samples and 500 testing samples for each class,which are subsequently resized into 16 dimensions.Specifically, the PQC for the classification task on the MNIST dataset consists of 2 qubits with 34 serial controlled quantum gates.To evaluate the performance of three optimizing algorithms, we perform numerical simulations on the classification tasks for both similar handwritten digits (1&7) and difficult-to-recognize digits(2&4 and 4&9).

    The results of the proposed GCO, BO, BCO and adambased algorithms for the three classification tasks 1&7, 2&4,and 4&9, are evaluated in terms of cost value against time in Fig.3.In comparison to the BO,BCO and adam-based algorithms, the GCO algorithm maintains the ability for continuous convergence during the training process for four types of noise.It hints that the GCO algorithm is robust and has some resistance to the noisy environment.While the BO algorithm only has good robustness against phase flip and amplitude damping noises, the BCO algorithm exhibits both lower convergence capability and poorer robustness compared to the BO and GCO algorithms.The adam-based optimization method fluctuates in bit flip and depolarizing noises and shows good performances in phase flip and amplitude damping noises.However, overall, the adam-based method consistently converges,indicating robustness to four types of noises.

    Fig.4.The classification accuracy against the time respectively for the three classification tasks in four types of noise by using GCO(red),BO(blue),BCO(black),and the adam-based method(pink)algorithms.

    The classification accuracies of the GCO,BO,BCO and adam-based algorithms against time during the training process are shown in Fig.4.In comparison to the BO, BCO and adam-based algorithms, the GCO algorithm consistently demonstrates enhanced classification accuracy regardless of the noise type.Notably, the GCO algorithm achieves accuracy levels of around 0.8 for the 1&7 task, over 0.7 for the 2&4 task, and around 0.8 for the 4&9 task.It indicates the effectiveness of the GCO algorithm in noisy environments for the three classification tasks.Conversely, the BO algorithm’s performance is influenced by both the classification task and the specific noise type.It exhibits significant accuracy fluctuations when subjected to bit flip and depolarizing noise environments.Moreover,in comparison to the 1&7 and 4&9 tasks,the BO algorithm achieves lower accuracy in the 2&4 task,reaching below 0.65.Meanwhile, the BCO algorithm consistently shows poor accuracy performance across various noise types and classification tasks.The adam-based optimization method shows less improvement in the early stages of training processing in environments with four types of noise,but it eventually achieves higher classification accuracy than other optimization methods.Additionally, in some classification tasks, such as the task 4&9,it can achieve higher accuracy.This is due to the fact that gradient-based optimization methods are better suited for searching within local regions, allowing for more precise parameter optimization values.

    4.Conclusion

    In this work, we have proposed a GCO algorithm for a parameterized quantum circuits(PQCs).The parameters in a PQC are expressed as binary strings and are decoded in Gray code way to keep Hamming distance.In the training process,an genetic-based method is adopted to generate the next generation so as to update the parameters of the PQC iteratively.One parameter is optimized in each iteration, so that the proposed GCO algorithm has a shorter time for optimization.Furthermore, we simulate the GCO algorithm for classification tasks in two datasets,and compare the results with those using the BO algorithm and the GCO algorithm.The simulation results show that the GCO algorithm has a good ability to resist the noises and makes better optimization performance in the optimizing processes, both for the similar handwritten digits and the difficult-to-distinguish handwritten digits.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (Grant Nos.61871234 and 62375140),and Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX190900).

    猜你喜歡
    春輝
    背著“房子”的二次根式
    Quantum synchronization with correlated baths
    Improved decoy-state quantum key distribution with uncharacterized heralded single-photon sources
    城市軌道交通員工專業(yè)英語素養(yǎng)構建探討
    Performance of passive decoy-state quantum key distribution with mismatched local detectors
    解答抽象函數(shù)問題的兩個策略
    Improving the purity of heralded single-photon sources through spontaneous parametric down-conversion process*
    羅綺映春輝——張萱《虢國夫人游春圖》品鑒
    藝術品鑒(2020年10期)2020-11-27 01:54:22
    4 萬公里騎行:只為了滿滿的母愛
    Improving the Performance of Practical Decoy-State Measurement-Device-Independent Quantum Key Distribution with Biased Basis Choice?
    毛片一级片免费看久久久久| 亚洲精品一区蜜桃| 国产成人一区二区在线| 精品福利永久在线观看| 99热网站在线观看| 午夜91福利影院| 国产精品久久久久久精品古装| 精品人妻在线不人妻| 免费女性裸体啪啪无遮挡网站| 视频区图区小说| 欧美精品av麻豆av| 麻豆乱淫一区二区| 亚洲视频免费观看视频| 午夜日本视频在线| 久久影院123| 777久久人妻少妇嫩草av网站| 日本91视频免费播放| 伦理电影大哥的女人| 男人操女人黄网站| 亚洲av电影在线观看一区二区三区| 久久久久精品性色| 国产xxxxx性猛交| 国产熟女欧美一区二区| 一本色道久久久久久精品综合| 久久国产亚洲av麻豆专区| 精品国产超薄肉色丝袜足j| 国产成人午夜福利电影在线观看| 18在线观看网站| 高清av免费在线| 亚洲自偷自拍图片 自拍| 国产精品蜜桃在线观看| 国产一区二区激情短视频 | 天堂中文最新版在线下载| 亚洲美女视频黄频| 美国免费a级毛片| 丝瓜视频免费看黄片| 国产一区二区激情短视频 | 视频在线观看一区二区三区| 久久影院123| 麻豆乱淫一区二区| 久久久久精品人妻al黑| 哪个播放器可以免费观看大片| 欧美另类一区| 亚洲成人手机| 夜夜骑夜夜射夜夜干| 老司机亚洲免费影院| 91精品伊人久久大香线蕉| 精品卡一卡二卡四卡免费| 久热爱精品视频在线9| 丝瓜视频免费看黄片| 日韩精品免费视频一区二区三区| 亚洲精品一二三| 国产男女超爽视频在线观看| 美女大奶头黄色视频| 日韩伦理黄色片| 国产亚洲欧美精品永久| 久久影院123| 人妻人人澡人人爽人人| 97人妻天天添夜夜摸| 悠悠久久av| 亚洲国产看品久久| 国产女主播在线喷水免费视频网站| 在线观看三级黄色| 少妇人妻精品综合一区二区| 十八禁网站网址无遮挡| 欧美日韩视频精品一区| 久久国产亚洲av麻豆专区| 日韩制服丝袜自拍偷拍| 欧美xxⅹ黑人| 中文字幕最新亚洲高清| 女的被弄到高潮叫床怎么办| 欧美日本中文国产一区发布| 精品一区二区免费观看| 免费日韩欧美在线观看| 亚洲人成网站在线观看播放| 欧美日韩成人在线一区二区| 久久久久久久精品精品| videos熟女内射| 免费观看人在逋| 久久久久视频综合| 最近2019中文字幕mv第一页| 精品少妇黑人巨大在线播放| 少妇人妻 视频| 99久久99久久久精品蜜桃| 高清在线视频一区二区三区| 男女下面插进去视频免费观看| 大片电影免费在线观看免费| 国产亚洲av高清不卡| 亚洲第一青青草原| av免费观看日本| 啦啦啦在线免费观看视频4| 久久久久久久大尺度免费视频| 19禁男女啪啪无遮挡网站| 又大又黄又爽视频免费| 国产精品久久久久成人av| 少妇精品久久久久久久| 久久久亚洲精品成人影院| 欧美精品av麻豆av| 一级黄片播放器| 亚洲视频免费观看视频| 精品国产乱码久久久久久小说| 丝袜美足系列| 十八禁高潮呻吟视频| 天天添夜夜摸| 成人国语在线视频| 秋霞在线观看毛片| 国产精品二区激情视频| 精品久久久久久电影网| av女优亚洲男人天堂| 国产成人系列免费观看| 狠狠婷婷综合久久久久久88av| 青草久久国产| 国产成人系列免费观看| 精品一区二区三卡| 亚洲成人国产一区在线观看 | 国产亚洲一区二区精品| 在线观看www视频免费| 人人妻人人爽人人添夜夜欢视频| 丰满少妇做爰视频| 好男人视频免费观看在线| 精品卡一卡二卡四卡免费| 悠悠久久av| 国产免费又黄又爽又色| 尾随美女入室| 亚洲国产精品一区二区三区在线| 欧美日韩福利视频一区二区| 色吧在线观看| 日本猛色少妇xxxxx猛交久久| 免费观看性生交大片5| 一本大道久久a久久精品| 超碰97精品在线观看| 亚洲国产看品久久| 日韩欧美一区视频在线观看| 精品免费久久久久久久清纯 | 香蕉国产在线看| 男女边吃奶边做爰视频| 国产精品99久久99久久久不卡 | 欧美国产精品一级二级三级| 久久久久国产精品人妻一区二区| 精品人妻一区二区三区麻豆| 久久亚洲国产成人精品v| 十八禁人妻一区二区| 亚洲欧洲国产日韩| av一本久久久久| 国产精品熟女久久久久浪| 在线观看人妻少妇| 成人免费观看视频高清| 老司机影院毛片| av网站免费在线观看视频| 少妇人妻久久综合中文| 亚洲国产欧美在线一区| 黄色毛片三级朝国网站| a级毛片黄视频| 悠悠久久av| 国产午夜精品一二区理论片| 精品国产露脸久久av麻豆| 看非洲黑人一级黄片| 国产亚洲最大av| 中文乱码字字幕精品一区二区三区| 美女午夜性视频免费| 伊人亚洲综合成人网| 午夜福利网站1000一区二区三区| 麻豆乱淫一区二区| 免费黄网站久久成人精品| 国产午夜精品一二区理论片| 天堂中文最新版在线下载| 日韩制服骚丝袜av| 国精品久久久久久国模美| 一区二区三区激情视频| 午夜福利一区二区在线看| 亚洲av日韩在线播放| 精品一区二区免费观看| 啦啦啦在线免费观看视频4| 丰满饥渴人妻一区二区三| 赤兔流量卡办理| 伊人亚洲综合成人网| 国产男人的电影天堂91| 国产在视频线精品| 国产亚洲av片在线观看秒播厂| 欧美在线一区亚洲| 国产成人a∨麻豆精品| 久久婷婷青草| 精品一区二区免费观看| 婷婷色av中文字幕| 交换朋友夫妻互换小说| 亚洲欧美一区二区三区久久| 国产精品二区激情视频| 亚洲欧洲日产国产| 亚洲成人免费av在线播放| 国产成人精品无人区| 国产高清国产精品国产三级| 精品亚洲成a人片在线观看| 人成视频在线观看免费观看| 毛片一级片免费看久久久久| 午夜福利,免费看| 少妇人妻 视频| 亚洲欧美一区二区三区国产| 久久国产精品大桥未久av| 国产精品三级大全| 国产野战对白在线观看| 别揉我奶头~嗯~啊~动态视频 | 久久久久国产一级毛片高清牌| 国产亚洲av高清不卡| 亚洲国产日韩一区二区| 国产高清国产精品国产三级| 美女午夜性视频免费| 国产熟女午夜一区二区三区| 一本大道久久a久久精品| 亚洲男人天堂网一区| 亚洲一级一片aⅴ在线观看| 亚洲三区欧美一区| 国产女主播在线喷水免费视频网站| 久久97久久精品| 日韩精品免费视频一区二区三区| 桃花免费在线播放| 丰满饥渴人妻一区二区三| 免费观看人在逋| 国产成人av激情在线播放| 少妇精品久久久久久久| 一区在线观看完整版| 夜夜骑夜夜射夜夜干| 亚洲成av片中文字幕在线观看| 大码成人一级视频| 人人妻,人人澡人人爽秒播 | 成年女人毛片免费观看观看9 | 日本欧美视频一区| 亚洲国产av影院在线观看| 一边摸一边做爽爽视频免费| 天堂中文最新版在线下载| av国产精品久久久久影院| 国产色婷婷99| 七月丁香在线播放| 狠狠精品人妻久久久久久综合| 天天躁夜夜躁狠狠久久av| 好男人视频免费观看在线| 熟女av电影| 亚洲成国产人片在线观看| 热re99久久精品国产66热6| 中文字幕人妻丝袜制服| 中文字幕高清在线视频| 亚洲久久久国产精品| 亚洲国产欧美在线一区| 男女午夜视频在线观看| 别揉我奶头~嗯~啊~动态视频 | 午夜福利乱码中文字幕| 日韩制服骚丝袜av| 亚洲精品国产av蜜桃| 视频在线观看一区二区三区| av女优亚洲男人天堂| 国产成人精品在线电影| 国产成人av激情在线播放| 日韩视频在线欧美| 成人国产av品久久久| 精品福利永久在线观看| 美国免费a级毛片| 99re6热这里在线精品视频| 又粗又硬又长又爽又黄的视频| 久久久久久久国产电影| 18在线观看网站| 国产精品久久久久成人av| 岛国毛片在线播放| 久久久久精品国产欧美久久久 | 夜夜骑夜夜射夜夜干| 捣出白浆h1v1| 国产精品女同一区二区软件| 国产成人午夜福利电影在线观看| 欧美中文综合在线视频| 久久久国产欧美日韩av| 视频区图区小说| 久久久精品区二区三区| 这个男人来自地球电影免费观看 | 亚洲人成电影观看| 丝袜脚勾引网站| 老司机影院毛片| 亚洲精品久久午夜乱码| 中文字幕人妻丝袜一区二区 | 在线天堂中文资源库| 久久久精品94久久精品| 午夜免费观看性视频| 国产国语露脸激情在线看| 黄网站色视频无遮挡免费观看| 亚洲国产精品一区二区三区在线| 亚洲自偷自拍图片 自拍| 日韩熟女老妇一区二区性免费视频| 久久久久人妻精品一区果冻| av视频免费观看在线观看| 少妇的丰满在线观看| 久久久久久久国产电影| av福利片在线| 亚洲国产成人一精品久久久| 别揉我奶头~嗯~啊~动态视频 | 国产 精品1| 精品酒店卫生间| 欧美久久黑人一区二区| 国产不卡av网站在线观看| 大码成人一级视频| 丁香六月天网| 日韩大片免费观看网站| 精品亚洲成国产av| 中国三级夫妇交换| 十八禁高潮呻吟视频| 中文字幕人妻熟女乱码| 久久久久久免费高清国产稀缺| 交换朋友夫妻互换小说| av女优亚洲男人天堂| 精品国产乱码久久久久久男人| 久久精品久久精品一区二区三区| 亚洲图色成人| 最近最新中文字幕大全免费视频 | 别揉我奶头~嗯~啊~动态视频 | 看免费成人av毛片| 亚洲一卡2卡3卡4卡5卡精品中文| 热re99久久国产66热| 久久精品熟女亚洲av麻豆精品| 久久天躁狠狠躁夜夜2o2o | 久久 成人 亚洲| 国产精品久久久av美女十八| 一级片免费观看大全| 国产精品女同一区二区软件| 亚洲av在线观看美女高潮| 99精国产麻豆久久婷婷| av一本久久久久| 免费少妇av软件| 日日撸夜夜添| av在线app专区| bbb黄色大片| 亚洲av综合色区一区| 麻豆av在线久日| 在线 av 中文字幕| 国产伦人伦偷精品视频| 一本久久精品| 男女之事视频高清在线观看 | 九色亚洲精品在线播放| 制服丝袜香蕉在线| 欧美国产精品va在线观看不卡| 亚洲av电影在线进入| 日本爱情动作片www.在线观看| 久久亚洲国产成人精品v| 国产成人啪精品午夜网站| 一级爰片在线观看| 亚洲国产欧美在线一区| 日韩视频在线欧美| 日韩av免费高清视频| 波多野结衣av一区二区av| 国产一区二区在线观看av| 国产欧美日韩一区二区三区在线| 99热国产这里只有精品6| 久久久精品区二区三区| 亚洲天堂av无毛| 韩国高清视频一区二区三区| 亚洲色图 男人天堂 中文字幕| 少妇人妻精品综合一区二区| 只有这里有精品99| 国产精品一二三区在线看| 18在线观看网站| 九色亚洲精品在线播放| 18在线观看网站| 国产黄色视频一区二区在线观看| 男的添女的下面高潮视频| 欧美 亚洲 国产 日韩一| 欧美日韩一区二区视频在线观看视频在线| 最近手机中文字幕大全| 制服丝袜香蕉在线| 男人爽女人下面视频在线观看| 中文字幕另类日韩欧美亚洲嫩草| 亚洲精品国产av成人精品| 国产精品一区二区在线观看99| 日日爽夜夜爽网站| 夫妻性生交免费视频一级片| 精品国产国语对白av| 波野结衣二区三区在线| 丰满少妇做爰视频| 大话2 男鬼变身卡| 女性被躁到高潮视频| 最近最新中文字幕大全免费视频 | 精品视频人人做人人爽| 一本色道久久久久久精品综合| 伊人久久国产一区二区| 中文字幕色久视频| 精品国产一区二区三区四区第35| 一边亲一边摸免费视频| 欧美变态另类bdsm刘玥| 国产视频首页在线观看| 欧美激情 高清一区二区三区| 欧美久久黑人一区二区| 捣出白浆h1v1| 热re99久久国产66热| 看十八女毛片水多多多| 大片免费播放器 马上看| 精品酒店卫生间| 丝袜美足系列| 欧美激情高清一区二区三区 | 亚洲精品,欧美精品| 欧美成人午夜精品| 如日韩欧美国产精品一区二区三区| 啦啦啦啦在线视频资源| 69精品国产乱码久久久| 国产深夜福利视频在线观看| 爱豆传媒免费全集在线观看| 久久国产精品男人的天堂亚洲| 午夜激情久久久久久久| 久久久精品免费免费高清| 夫妻午夜视频| 欧美老熟妇乱子伦牲交| 亚洲精品av麻豆狂野| 九草在线视频观看| 咕卡用的链子| 亚洲av日韩在线播放| 午夜激情av网站| 亚洲激情五月婷婷啪啪| 999精品在线视频| 观看av在线不卡| 丝袜在线中文字幕| 视频区图区小说| 男女午夜视频在线观看| xxx大片免费视频| 久久精品aⅴ一区二区三区四区| 国产精品欧美亚洲77777| 午夜福利一区二区在线看| 精品第一国产精品| 捣出白浆h1v1| 天天躁日日躁夜夜躁夜夜| 精品国产乱码久久久久久男人| 老司机亚洲免费影院| 国产精品久久久久久人妻精品电影 | 亚洲五月色婷婷综合| 久久免费观看电影| 999精品在线视频| 美女主播在线视频| 精品亚洲成国产av| svipshipincom国产片| 午夜免费男女啪啪视频观看| 久久精品久久精品一区二区三区| 波野结衣二区三区在线| 亚洲一区中文字幕在线| 汤姆久久久久久久影院中文字幕| 韩国高清视频一区二区三区| 免费在线观看黄色视频的| 新久久久久国产一级毛片| 一本色道久久久久久精品综合| 久久av网站| 搡老乐熟女国产| 亚洲久久久国产精品| av卡一久久| 在线天堂最新版资源| a级毛片黄视频| 亚洲av中文av极速乱| 婷婷成人精品国产| 精品一区二区三区四区五区乱码 | 亚洲欧美日韩另类电影网站| 欧美激情极品国产一区二区三区| 青青草视频在线视频观看| 久久毛片免费看一区二区三区| 日日撸夜夜添| 亚洲少妇的诱惑av| 99精品久久久久人妻精品| 999精品在线视频| 亚洲精品自拍成人| 热99国产精品久久久久久7| av有码第一页| 青春草亚洲视频在线观看| 国产日韩欧美在线精品| 亚洲熟女精品中文字幕| 国产黄色视频一区二区在线观看| 欧美精品一区二区大全| 午夜激情av网站| 亚洲国产欧美一区二区综合| www日本在线高清视频| 久久久久精品人妻al黑| 夫妻午夜视频| 亚洲精品久久成人aⅴ小说| 一本色道久久久久久精品综合| 亚洲美女搞黄在线观看| 亚洲天堂av无毛| 国产亚洲av高清不卡| 人成视频在线观看免费观看| 人妻人人澡人人爽人人| 不卡视频在线观看欧美| 亚洲精品国产色婷婷电影| 久久人人97超碰香蕉20202| 十八禁人妻一区二区| 日韩 亚洲 欧美在线| 久久国产精品大桥未久av| 精品一区二区三区av网在线观看 | 精品人妻一区二区三区麻豆| 久久久久精品久久久久真实原创| 亚洲熟女毛片儿| 国产精品久久久久久人妻精品电影 | 国产视频首页在线观看| h视频一区二区三区| 国产一区亚洲一区在线观看| 在线观看免费视频网站a站| 天美传媒精品一区二区| 国产精品av久久久久免费| 国产精品免费视频内射| 亚洲一卡2卡3卡4卡5卡精品中文| 一级爰片在线观看| 青春草亚洲视频在线观看| 久久女婷五月综合色啪小说| a级毛片黄视频| 男人操女人黄网站| 日本91视频免费播放| 成人影院久久| 久久久久久久久久久免费av| 午夜激情av网站| 看非洲黑人一级黄片| 欧美av亚洲av综合av国产av | 久久国产精品大桥未久av| 男人爽女人下面视频在线观看| 在线观看免费日韩欧美大片| 久久精品国产a三级三级三级| 啦啦啦在线观看免费高清www| 深夜精品福利| 国语对白做爰xxxⅹ性视频网站| 电影成人av| 狠狠精品人妻久久久久久综合| 中文字幕色久视频| 亚洲在久久综合| 国语对白做爰xxxⅹ性视频网站| 日韩大码丰满熟妇| 乱人伦中国视频| svipshipincom国产片| 啦啦啦 在线观看视频| 2021少妇久久久久久久久久久| 成人手机av| av线在线观看网站| 欧美精品av麻豆av| 成人亚洲精品一区在线观看| 亚洲欧美一区二区三区国产| 一区二区av电影网| 久久久精品免费免费高清| 国产免费视频播放在线视频| 人成视频在线观看免费观看| 国产爽快片一区二区三区| 美女扒开内裤让男人捅视频| 在线天堂中文资源库| 一边摸一边抽搐一进一出视频| 男人操女人黄网站| 久久狼人影院| av在线播放精品| 亚洲精品aⅴ在线观看| 纯流量卡能插随身wifi吗| 又粗又硬又长又爽又黄的视频| 亚洲国产日韩一区二区| 2021少妇久久久久久久久久久| 日本av免费视频播放| 无遮挡黄片免费观看| 亚洲情色 制服丝袜| 国产熟女欧美一区二区| 韩国高清视频一区二区三区| 中文字幕色久视频| 亚洲在久久综合| 亚洲一区中文字幕在线| 别揉我奶头~嗯~啊~动态视频 | 男女午夜视频在线观看| 久久久久人妻精品一区果冻| 欧美激情高清一区二区三区 | 中国三级夫妇交换| 欧美黄色片欧美黄色片| 日韩欧美精品免费久久| 国产黄频视频在线观看| 亚洲成人免费av在线播放| 观看美女的网站| 成人毛片60女人毛片免费| 婷婷色av中文字幕| 国产亚洲欧美精品永久| 美女高潮到喷水免费观看| 国产精品99久久99久久久不卡 | 考比视频在线观看| 精品卡一卡二卡四卡免费| 亚洲av中文av极速乱| 亚洲成人免费av在线播放| 亚洲情色 制服丝袜| 满18在线观看网站| 九九爱精品视频在线观看| 男女高潮啪啪啪动态图| 精品国产露脸久久av麻豆| 久久精品久久久久久久性| 日韩中文字幕视频在线看片| 国产欧美亚洲国产| 国产精品99久久99久久久不卡 | 热99久久久久精品小说推荐| 亚洲国产最新在线播放| 中文欧美无线码| 国产亚洲av片在线观看秒播厂| 精品少妇久久久久久888优播| 大话2 男鬼变身卡| 韩国精品一区二区三区| 搡老乐熟女国产| 精品免费久久久久久久清纯 | 久久女婷五月综合色啪小说| 韩国av在线不卡| 久久久久国产一级毛片高清牌| 亚洲国产日韩一区二区| 侵犯人妻中文字幕一二三四区| 中国三级夫妇交换| 捣出白浆h1v1| 最近的中文字幕免费完整| e午夜精品久久久久久久| 十八禁网站网址无遮挡| 最近2019中文字幕mv第一页| 精品亚洲成a人片在线观看| 国产精品女同一区二区软件| 人成视频在线观看免费观看| 伊人久久国产一区二区| 久久人人爽av亚洲精品天堂| 精品福利永久在线观看| 亚洲少妇的诱惑av| 亚洲av电影在线观看一区二区三区| 男女免费视频国产| 中文字幕制服av| 久久影院123| 亚洲精品aⅴ在线观看| 日韩制服丝袜自拍偷拍| 久久人人爽av亚洲精品天堂|