• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Gray code based gradient-free optimization algorithm for parameterized quantum circuit

    2024-02-29 09:16:46AnqiZhang張安琪ChunhuiWu武春輝andShengmeiZhao趙生妹
    Chinese Physics B 2024年2期
    關鍵詞:春輝

    Anqi Zhang(張安琪), Chunhui Wu(武春輝), and Shengmei Zhao(趙生妹),2,?

    1Institute of Signal Processing and Transmission,Nanjing University of Posts and Telecommunications,Nanjing 210003,China

    2Key Laboratory of Broadband Wireless Communication and Sensor Network Technology(Ministry of Education),Nanjing University of Posts and Telecommunications,Nanjing 210003,China

    Keywords: gradient-free optimization,Gray code,genetic-based method

    1.Introduction

    Parameterized quantum circuits (PQCs) offer a useful way to implement quantum algorithms[1–10]and can demonstrate quantum supremacy in the noisy intermediate scale quantum(NISQ)area.[11–15]PQCs are typically composed of fixed gates, e.g., controlled NOTs, or adjustable gates with phase rotations.Even at low circuit depth, some classes of PQCs are capable of generating highly non-trivial outputs.Usually, the parameter optimization in PQCs involves evaluation of the cost functionC(θ) from the quantum circuit and the computation of the cost function gradient ?C(θ) from the classical computer, where the barren plateau, in which the gradient of cost function vanishes exponentially with the size of system, is an important issue that needs to be carefully considered.[1,16]Various strategies have been suggested to tackle this issue.For instance, Skoliket al.[17]proposed a layer-wise learning optimization method where only a subset of all parameters is updated in each iteration.Additionally,clever parameter initialization and ansatz construction have been shown to enhance the stability and efficiency of training parameterized quantum circuits, thus preventing them from getting trapped in regions of vanishing gradients.[18–20]Nevertheless,further research is needed to assess the effectiveness of these strategies across different problem domains.Therefore,for large-scale parameter optimization problems,gradient-free optimization can be a preferable choice to avoid the barren plateau problem,which is promising for the devices in NISQ.For example,based on Gaussian process regression(GPR)and noisy expected improvement (NEI), a Bayesian optimization(BO)was proposed by Iannelliet al.[21]to provide an estimation of the ground state energy.An efficient method for optimizing the values of parameters by finding the direction and angle of rotation of quantum gates that yield minimum energy in PQCs was proposed by Ostaszewskiet al.[22]for variational quantum eigenvalue (VQE) tasks.However, these works are more effective for smooth optimization surfaces,they may lose their effectiveness for tasks with rough optimization surfaces in the presence of noise.In Ref.[23]the authors represented parameters using regular binary strings and performed iterative optimization within a genetic framework for parameter optimization.Nevertheless, the issue that minor parameter changes can trigger multiple bits to switch arises,causing significant step jumps throughout the optimization process.This phenomenon complicates the task of locating the global optimum.

    In this work,we propose a Gray code based gradient-free optimization (GCO) algorithm for optimizing the parameters of parameterized quantum circuits (PQCs).First, for a given PQC, the parameter is encoded into a set of binary strings,called genes.Next, each individual gene is decoded using Gray code into decimal values, which are applied as parameters to the PQC for evaluation,obtaining corresponding cost values for fitness calculation.Then, the fitness values of all individuals are processed as probabilities when the roulettewheel selection strategy is adopted to prepare the parent population.Finally,the crossover and mutation operations are carried out to generate the offspring.The parameters in the PQC are optimized one by one until the cost value satisfies the stop conditions.

    The proposed GCO algorithm offers several advantages:(1) The proposed GCO algorithm utilizes Gray code decoding techniques to optimize the parameters of PQCs,leading to improved optimization results for high-dimensional and nonconvex quantum circuit optimization problems,while avoiding the complexity of gradient computation.(2) The Gray code decoding method ensures that the parameters between two iterations only differ by one bit, helpful to avoid local optima in some optimization problems.Moreover,the proposed GCO algorithm enables the control of parameter precision by adjusting the number of bits in genes, which is particularly useful for quantum optimization tasks that require refining parameter values.(3)In the GCO algorithm,the roulette-wheel selection strategy is employed within the genetic framework to map fitness values to selection probabilities,enabling the selection of individuals with higher fitness as the parent population.Simultaneously,this strategy enhances offspring diversity and helps to prevent the algorithm from getting trapped in local optima.(4) The proposed GCO algorithm can optimize multiple parameters simultaneously,thereby the training time is reduced.

    2.The Gray code based gradient-free optimization algorithm.

    Figure 1 illustrates the framework of the proposed Gray code based optimization algorithm.The optimization process consists of the following steps.In step 1,a group of the initial population ofθmis generated randomly, where each individual is encoded as binary strings termed genes.Hereθmis them-th component of the parameter vectorθ.In step 2, all individuals of genes are decoded into decimals and evaluated in a fixed PQC which is selected according to the optimization task,to achieve cost values costmi(θ),respectively.In step 3,the fitness values are calculated according to the cost with the summation of all the fitness values to 1,and the fitness values are the probabilities to prepare the parent population by using roulette-wheel election strategy.In step 4, the crossover and mutation operations are performed on the parent population to generate the offspring.In step 5,the offspring is decoded and evaluated in the same PQC to check whether the minimum cost min[costm(θ′)] satisfies the stop condition.If the minimum cost does not satisfy the stop condition,updateθm+1;if the minimum cost satisfies the stop condition or the number of iterations is reached, the optimization process is stopped and the optimal parametersθ*are achieved.

    Fig.1.The framework of the GCO algorithm for optimizing parameters in PQC.

    The proposed algorithm is detailed in the following.

    (1) Generation of genes forθmAssume that theθmofθis optimized at the moment.In our proposed algorithm,θmis represented byNbinary Gray code strings which are randomly generated using a classical device in step 1 of Fig.1 askmi,i=1,...,N,each is called a gene.The number of bits in a gene is determined by the precision of the corresponding decimalθm, and the number after the dot specifies the precision.The range of parameters for a quantum gate is[-π,π].To set the precision of a decimal parameter ton, the number of bits required in genes isl,and their relationship can be expressed

    as

    therefore,lcan be

    (2)Evaluation of individualsAll genes ofθmare evaluated in the quantum device to achieve the cost values.

    As shown in step 2 of Fig.1,the genekmiis decoded into decimal value using Gray code and then loaded into the quantum device.Quantum devices in which the quantum gatesGpossess parameters can be referred as parameterized quantum circuits(PQCs).Therefore, when the types of quantum gates are fixed, the result of PQC depends on the parameter vectorθ.The circuit of PQC is determined by the specific optimization task,and as a result,the cost function is also dependent on the optimization task.In the case of a classification task, the optimization typically involves the preparation of the output quantum state of the PQC,denoted asφout,to a particular target quantum state,denoted asφopt.The cost is then calculated by using the fidelity-based approach,

    (3) Selection of parent population In step 3 of Fig.1,the parent population is generated using the roulette-wheel selection[24]sampling strategy.The roulette-wheel selection is a method of sampling with replacement based on the probabilities assigned to each individual.This means that the same individual may be sampled more than once,and the higher the likelihood of an individual,the more times it may be sampled.The fitness values of each individual are determined using the cost values obtained in step 2 as follows:

    where costmiis theith cost value estimated.Then the fitness values are processed so that all values are equal to 1 by the softmax function as

    The parent population is prepared based on their processed fitness values until the sample size reaches the maximum population, as illustrated in step 3 of Fig.1.The processed fitness values are mapped into a circle and the size of area in the circle is corresponding to the probability of selecting individual,kmi,i=1,...,N.As shown in step 3 of Fig.1,km1with the largest size of area in the circle is more likely to be selected;whilekmNwith the lowest probability is less to be selected.

    (4) Crossover and mutation operations The crossover strategy and mutation strategy are presented in step 4 of Fig.1.

    Crossover The two adjacent parents are grouped together, and each bit position of gene is traversed separately.For each bit position,a bit swap with a certain probability may occur between the two adjacent parents.As illustrated in step 4 of Fig.1,the first 6 bit positions of genes of the two adjacent parents,denoted bykiandki+1,are presented.When traverse at the 3rd position,kiandki+1occur in bit swap.

    Mutation Each bit of any gene in the parent population is traversed and may undergo a 0–1 transformation with a certain probability.As illustrated in step 4 of Fig.1,each bit position ofkjis traversed, and 1 to 0 transformation occurs at the 1st bit position and 0 to 1 transformation occurs at the 6th bit position.

    (5) Evaluation of offspring In step 5, all genes of the offspring are evaluated in the same PQC as step 2 to achieve cost values.Then the minimum cost value, denoted by min(costm(θ′)),is selected and checked to determine if it satisfies the stop condition.If the minimum cost satisfies the stop condition, the iteration is stopped, and the optimal parameter vector, represented asθ*, is outputted.If the minimum cost fails to satisfy the stop condition, the next component ofθ,θm+1,is updated,and the optimization process is repeated.

    The processes of the GCO algorithm are shown as algorithm 1.

    Algorithm 1 The Gray code optimization algorithm Require: Initialize the parameters in the PQC randomly;calculate the number of bits used l according to the precise of parameters n;a stop condition 1.loop 2.Calculate the value of cost function as cost-now 3.for m=1 to M 4.Generate N bit strings of θm randomly,in which each individual has l bits Evaluate the cost of each individual Fitness is calculated by using cost values achieved from step 2 and processed as the probabilities of the roulette-wheel selection sampling strategy to sample the parent population Crossover and mutation are carried out in the parent population to achieve the offspring Evaluate the cost of each individual in the offspring and record the minimum value of costs,min(costm(θ′)),as cost-min 5.if cost-min

    3.Result and discussion

    In this section,the feasibility of the proposed GCO algorithm is demonstrated through classification tasks on Iris and MNIST datasets, which are commonly employed in machine learning and deep learning.

    To compare the performance of the proposed GCO algorithm,Bayesian optimization(BO)algorithm,[21]binary code based optimization (BCO) algorithm,[23]and an adam-based optimization method, are simulated simultaneously.In this work, the BCO algorithm is almost identical to the GCO algorithm, with the only difference that BCO uses regular binary conversion when decoding from binary to decimal while GCO utilizes Gray code decoding.Gradient-based parameter optimization is the mainstream optimization approach in machine learning.In this simulation, the results of adam-based method are used as a benchmark, facilitating the understanding of the strengths and limitations of the proposed GCO algorithms.The simulations were realized by the PennyLane[25]module in Python.In the training processes, the number of gene bits for the parameters is 10.The probabilities of crossover and mutation are 0.3 and 0.05, respectively.There are 30 circles of all parameters that are trained at one time during the training process for GCO,BO and BCO,15 circles for the adam-based method.The classification tasks of Iris are achieved in the environment without noise, and the tasks in MNIST are achieved in the environment with four typical quantum noise,[26]i.e., bit flip, depolarizing, phase flip, and amplitude damping,under a probability of 5%.In Pennylane,noises are modeled as unitary operation and introduced into the PQC.The PQC we use[27]for the quantum classifier is shown in the Fig.2, two registers are contained in the PQC,A and B, which are used to store the training data and corresponding labels, respectively.During the training process,the training data of two datasetsX1,X2and parametersθare input into the register A, while the labels are input into the register B.The training objective is to ensure that the quantum state of register A forms the same as of register B, that is,U(X1,θ*)|0〉A=|0〉AandU(X2,θ*)|0〉A=|1〉A,thus the PQC trains data of two datasets simultaneously by creating a unique mapping between the training data and the labels.After training,the final state of the PQC is|00〉AB+|11〉AB.The quantum gateCU(Xi,θ)is composed of multiple controlledphase gates,and each controlled-phase gate contains one component of the training data and parameter vectors.As a result,the depth of the PQC is dependent on the dimensionality of the training data vector.

    Fig.2.The parameterized quantum circuit(PQC)for classification tasks(a)and the details for uploading training data Xi and parameter θ into the PQC(b),where Xi=(x1,x2,...,xn)and θ=(θ1,θ2,...,θn).

    Fig.3.The cost value against the time for the three classification tasks in four types of noise by using GCO (red), BO (blue), BCO (black), and the adam-based method(pink)algorithms.

    Table 1.The accuracy by using GCO and BO for Iris dataset.

    For Iris dataset, we discuss the performance of the GCO and BO algorithms.Here, 40 training samples and 10 testing samples are randomly selected from each class,with three different subsets used.Specifically, the PQC for the classification task on the Iris dataset consists of 2 qubits with 10 serial controlled quantum gates.The numerical experiments are conducted five times, and the average results are listed in Table 1.From Table 1,it is obvious that the GCO algorithm outperforms the BO algorithm in terms of accuracy for all three subsets of the Iris dataset.

    For MNIST dataset, we randomly select 2000 training samples and 500 testing samples for each class,which are subsequently resized into 16 dimensions.Specifically, the PQC for the classification task on the MNIST dataset consists of 2 qubits with 34 serial controlled quantum gates.To evaluate the performance of three optimizing algorithms, we perform numerical simulations on the classification tasks for both similar handwritten digits (1&7) and difficult-to-recognize digits(2&4 and 4&9).

    The results of the proposed GCO, BO, BCO and adambased algorithms for the three classification tasks 1&7, 2&4,and 4&9, are evaluated in terms of cost value against time in Fig.3.In comparison to the BO,BCO and adam-based algorithms, the GCO algorithm maintains the ability for continuous convergence during the training process for four types of noise.It hints that the GCO algorithm is robust and has some resistance to the noisy environment.While the BO algorithm only has good robustness against phase flip and amplitude damping noises, the BCO algorithm exhibits both lower convergence capability and poorer robustness compared to the BO and GCO algorithms.The adam-based optimization method fluctuates in bit flip and depolarizing noises and shows good performances in phase flip and amplitude damping noises.However, overall, the adam-based method consistently converges,indicating robustness to four types of noises.

    Fig.4.The classification accuracy against the time respectively for the three classification tasks in four types of noise by using GCO(red),BO(blue),BCO(black),and the adam-based method(pink)algorithms.

    The classification accuracies of the GCO,BO,BCO and adam-based algorithms against time during the training process are shown in Fig.4.In comparison to the BO, BCO and adam-based algorithms, the GCO algorithm consistently demonstrates enhanced classification accuracy regardless of the noise type.Notably, the GCO algorithm achieves accuracy levels of around 0.8 for the 1&7 task, over 0.7 for the 2&4 task, and around 0.8 for the 4&9 task.It indicates the effectiveness of the GCO algorithm in noisy environments for the three classification tasks.Conversely, the BO algorithm’s performance is influenced by both the classification task and the specific noise type.It exhibits significant accuracy fluctuations when subjected to bit flip and depolarizing noise environments.Moreover,in comparison to the 1&7 and 4&9 tasks,the BO algorithm achieves lower accuracy in the 2&4 task,reaching below 0.65.Meanwhile, the BCO algorithm consistently shows poor accuracy performance across various noise types and classification tasks.The adam-based optimization method shows less improvement in the early stages of training processing in environments with four types of noise,but it eventually achieves higher classification accuracy than other optimization methods.Additionally, in some classification tasks, such as the task 4&9,it can achieve higher accuracy.This is due to the fact that gradient-based optimization methods are better suited for searching within local regions, allowing for more precise parameter optimization values.

    4.Conclusion

    In this work, we have proposed a GCO algorithm for a parameterized quantum circuits(PQCs).The parameters in a PQC are expressed as binary strings and are decoded in Gray code way to keep Hamming distance.In the training process,an genetic-based method is adopted to generate the next generation so as to update the parameters of the PQC iteratively.One parameter is optimized in each iteration, so that the proposed GCO algorithm has a shorter time for optimization.Furthermore, we simulate the GCO algorithm for classification tasks in two datasets,and compare the results with those using the BO algorithm and the GCO algorithm.The simulation results show that the GCO algorithm has a good ability to resist the noises and makes better optimization performance in the optimizing processes, both for the similar handwritten digits and the difficult-to-distinguish handwritten digits.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (Grant Nos.61871234 and 62375140),and Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX190900).

    猜你喜歡
    春輝
    背著“房子”的二次根式
    Quantum synchronization with correlated baths
    Improved decoy-state quantum key distribution with uncharacterized heralded single-photon sources
    城市軌道交通員工專業(yè)英語素養(yǎng)構建探討
    Performance of passive decoy-state quantum key distribution with mismatched local detectors
    解答抽象函數(shù)問題的兩個策略
    Improving the purity of heralded single-photon sources through spontaneous parametric down-conversion process*
    羅綺映春輝——張萱《虢國夫人游春圖》品鑒
    藝術品鑒(2020年10期)2020-11-27 01:54:22
    4 萬公里騎行:只為了滿滿的母愛
    Improving the Performance of Practical Decoy-State Measurement-Device-Independent Quantum Key Distribution with Biased Basis Choice?
    中文亚洲av片在线观看爽| 欧美性长视频在线观看| 精品国产国语对白av| 婷婷亚洲欧美| 国产男靠女视频免费网站| 精品国产一区二区三区四区第35| 亚洲国产欧洲综合997久久, | 男女那种视频在线观看| 久久精品国产综合久久久| av免费在线观看网站| 婷婷精品国产亚洲av| 亚洲成人久久性| 天天躁狠狠躁夜夜躁狠狠躁| 波多野结衣高清作品| 久久中文字幕人妻熟女| 国产亚洲av嫩草精品影院| 99久久国产精品久久久| 欧美大码av| 黑人操中国人逼视频| 久久国产精品影院| 啦啦啦免费观看视频1| 免费高清视频大片| cao死你这个sao货| 亚洲成a人片在线一区二区| 亚洲avbb在线观看| 精品久久久久久久人妻蜜臀av| 白带黄色成豆腐渣| 91成人精品电影| 91字幕亚洲| 国产欧美日韩一区二区三| 国产一区二区三区在线臀色熟女| 国产欧美日韩一区二区精品| 国产av一区在线观看免费| 精品高清国产在线一区| 动漫黄色视频在线观看| 国产精品久久久久久精品电影 | 一级毛片女人18水好多| 又紧又爽又黄一区二区| www日本黄色视频网| 变态另类丝袜制服| 制服诱惑二区| 亚洲第一欧美日韩一区二区三区| 中文资源天堂在线| 99久久99久久久精品蜜桃| 国产精品亚洲一级av第二区| 久久狼人影院| 免费高清在线观看日韩| 1024视频免费在线观看| 国产日本99.免费观看| 午夜久久久久精精品| 一本综合久久免费| 999久久久精品免费观看国产| 村上凉子中文字幕在线| 91成年电影在线观看| 男人的好看免费观看在线视频 | 国产精品电影一区二区三区| 亚洲电影在线观看av| 97人妻精品一区二区三区麻豆 | 国产精品美女特级片免费视频播放器 | 欧美性长视频在线观看| 一级a爱片免费观看的视频| 亚洲精品国产精品久久久不卡| a级毛片在线看网站| 欧美久久黑人一区二区| 色综合婷婷激情| 在线观看www视频免费| 美女午夜性视频免费| 国产亚洲欧美在线一区二区| 99精品久久久久人妻精品| 成人亚洲精品av一区二区| 亚洲中文日韩欧美视频| 欧美一区二区精品小视频在线| 午夜福利一区二区在线看| 欧美日韩亚洲综合一区二区三区_| 成年人黄色毛片网站| www.精华液| 国产伦一二天堂av在线观看| 2021天堂中文幕一二区在线观 | 男女那种视频在线观看| 熟妇人妻久久中文字幕3abv| 国产爱豆传媒在线观看 | 日本a在线网址| 久久久久国内视频| 天堂影院成人在线观看| 久久国产精品影院| 亚洲激情在线av| 一夜夜www| 无人区码免费观看不卡| 人人妻人人看人人澡| 日本黄色视频三级网站网址| 久久久久久久久久黄片| 母亲3免费完整高清在线观看| 老司机午夜十八禁免费视频| 夜夜躁狠狠躁天天躁| 亚洲午夜理论影院| 757午夜福利合集在线观看| 欧美精品啪啪一区二区三区| 亚洲真实伦在线观看| 哪里可以看免费的av片| 国产真实乱freesex| 久久人妻av系列| 777久久人妻少妇嫩草av网站| av中文乱码字幕在线| 99在线人妻在线中文字幕| 久久久久国内视频| 91老司机精品| 国产成人欧美| 琪琪午夜伦伦电影理论片6080| 午夜福利视频1000在线观看| 日本在线视频免费播放| 日本成人三级电影网站| 宅男免费午夜| 别揉我奶头~嗯~啊~动态视频| 国产又黄又爽又无遮挡在线| 在线观看www视频免费| 亚洲激情在线av| 午夜福利在线观看吧| 亚洲男人的天堂狠狠| 国产伦在线观看视频一区| 欧美一区二区精品小视频在线| 亚洲久久久国产精品| 1024视频免费在线观看| 亚洲欧美日韩高清在线视频| 天天躁夜夜躁狠狠躁躁| 亚洲狠狠婷婷综合久久图片| 国产区一区二久久| 国产亚洲精品综合一区在线观看 | 久久精品夜夜夜夜夜久久蜜豆 | 国产精品久久久久久精品电影 | 白带黄色成豆腐渣| 亚洲av成人不卡在线观看播放网| 国产精品爽爽va在线观看网站 | 老司机午夜福利在线观看视频| 亚洲午夜理论影院| 精华霜和精华液先用哪个| 香蕉丝袜av| 非洲黑人性xxxx精品又粗又长| 99精品在免费线老司机午夜| 大型黄色视频在线免费观看| 免费高清在线观看日韩| 人妻久久中文字幕网| 熟妇人妻久久中文字幕3abv| 欧美在线黄色| 老鸭窝网址在线观看| 欧美中文日本在线观看视频| 色播在线永久视频| 悠悠久久av| 麻豆成人av在线观看| 中文字幕人成人乱码亚洲影| 日韩三级视频一区二区三区| 成人手机av| 成人18禁高潮啪啪吃奶动态图| 在线观看66精品国产| 国内揄拍国产精品人妻在线 | 亚洲男人的天堂狠狠| 欧美精品啪啪一区二区三区| 他把我摸到了高潮在线观看| 成年人黄色毛片网站| 50天的宝宝边吃奶边哭怎么回事| 国产视频一区二区在线看| 一区二区日韩欧美中文字幕| 午夜福利在线观看吧| 国产片内射在线| 久久国产精品影院| 午夜福利18| 日韩精品免费视频一区二区三区| 免费高清视频大片| 视频区欧美日本亚洲| av视频在线观看入口| 久久久久九九精品影院| 国产精品美女特级片免费视频播放器 | 日韩精品中文字幕看吧| 丰满的人妻完整版| 国产av又大| 啦啦啦观看免费观看视频高清| 亚洲精品国产区一区二| a级毛片a级免费在线| 日本撒尿小便嘘嘘汇集6| 国产伦在线观看视频一区| 欧美av亚洲av综合av国产av| 啪啪无遮挡十八禁网站| 国产不卡一卡二| 国产精品自产拍在线观看55亚洲| 久久草成人影院| 欧美性长视频在线观看| 精华霜和精华液先用哪个| 欧美在线一区亚洲| 国产高清videossex| 成人特级黄色片久久久久久久| 亚洲av美国av| 99精品久久久久人妻精品| 一级毛片高清免费大全| 午夜福利18| 久久人妻福利社区极品人妻图片| www.精华液| 日韩中文字幕欧美一区二区| 国产精品一区二区三区四区久久 | 国产成人欧美在线观看| 欧美不卡视频在线免费观看 | 亚洲久久久国产精品| 欧美日韩一级在线毛片| 国产伦在线观看视频一区| 国产又色又爽无遮挡免费看| 亚洲成av人片免费观看| 99久久99久久久精品蜜桃| 国产蜜桃级精品一区二区三区| 在线观看日韩欧美| 国产视频一区二区在线看| 嫩草影院精品99| 日韩欧美国产在线观看| 亚洲国产精品999在线| 桃红色精品国产亚洲av| 国产精品国产高清国产av| 国产av一区二区精品久久| 午夜免费激情av| 一级毛片女人18水好多| 国产精品久久久av美女十八| 国产亚洲av嫩草精品影院| 高潮久久久久久久久久久不卡| 大型黄色视频在线免费观看| 亚洲黑人精品在线| 久久青草综合色| 波多野结衣高清无吗| 精品国产乱码久久久久久男人| 成年女人毛片免费观看观看9| 777久久人妻少妇嫩草av网站| 美女大奶头视频| 国产一卡二卡三卡精品| 亚洲一码二码三码区别大吗| 老司机午夜十八禁免费视频| 一本大道久久a久久精品| 欧美av亚洲av综合av国产av| 国产精品久久视频播放| 成人精品一区二区免费| 搡老岳熟女国产| 18禁裸乳无遮挡免费网站照片 | 国产精品久久久久久亚洲av鲁大| 午夜福利免费观看在线| 一卡2卡三卡四卡精品乱码亚洲| 熟女电影av网| 美女高潮到喷水免费观看| 两性夫妻黄色片| 精品高清国产在线一区| 日韩欧美一区二区三区在线观看| 麻豆成人午夜福利视频| 国产免费男女视频| 黄色女人牲交| 国产精品美女特级片免费视频播放器 | 天堂√8在线中文| 人人妻人人澡人人看| av电影中文网址| 精品国产超薄肉色丝袜足j| 一a级毛片在线观看| 久久精品国产亚洲av高清一级| 日本在线视频免费播放| 成人国产一区最新在线观看| 日本a在线网址| 久久久久精品国产欧美久久久| 99久久久亚洲精品蜜臀av| 一个人免费在线观看的高清视频| 成年女人毛片免费观看观看9| 亚洲自偷自拍图片 自拍| 午夜激情av网站| 色av中文字幕| 在线播放国产精品三级| 黑人操中国人逼视频| 一级a爱视频在线免费观看| 国产精品久久久久久亚洲av鲁大| 国产一卡二卡三卡精品| 两个人视频免费观看高清| 成人国语在线视频| 9191精品国产免费久久| 午夜两性在线视频| 亚洲国产精品sss在线观看| 国产精品一区二区三区四区久久 | 国产高清激情床上av| 国产一区二区三区在线臀色熟女| 日韩高清综合在线| 美女 人体艺术 gogo| 午夜成年电影在线免费观看| 国内精品久久久久精免费| 日韩国内少妇激情av| 人人妻,人人澡人人爽秒播| 国产主播在线观看一区二区| 淫秽高清视频在线观看| 1024视频免费在线观看| 99久久综合精品五月天人人| 国产亚洲精品一区二区www| 男女做爰动态图高潮gif福利片| av福利片在线| 久热爱精品视频在线9| 欧美性猛交黑人性爽| 亚洲国产精品久久男人天堂| 激情在线观看视频在线高清| 久久久久久人人人人人| 99re在线观看精品视频| 亚洲第一青青草原| 欧美激情高清一区二区三区| 又大又爽又粗| 精品一区二区三区av网在线观看| 国语自产精品视频在线第100页| 日本五十路高清| 99热只有精品国产| 一本一本综合久久| 制服人妻中文乱码| 国产精品亚洲一级av第二区| 国产精品久久久久久人妻精品电影| 久久久久久久久中文| 久久久久久久久久黄片| 在线av久久热| 777久久人妻少妇嫩草av网站| 在线观看66精品国产| 欧美日本亚洲视频在线播放| 丝袜美腿诱惑在线| 亚洲国产精品久久男人天堂| 午夜视频精品福利| 免费女性裸体啪啪无遮挡网站| 级片在线观看| 久久精品人妻少妇| 99国产综合亚洲精品| 亚洲第一欧美日韩一区二区三区| 丝袜在线中文字幕| 人成视频在线观看免费观看| 黄色a级毛片大全视频| 国产真人三级小视频在线观看| 欧美人与性动交α欧美精品济南到| 国产亚洲精品综合一区在线观看 | 悠悠久久av| 久久久精品欧美日韩精品| 成人国语在线视频| 黑人巨大精品欧美一区二区mp4| 久久久久久国产a免费观看| 久久草成人影院| 亚洲中文字幕一区二区三区有码在线看 | 欧美黄色淫秽网站| 精品国产国语对白av| 97人妻精品一区二区三区麻豆 | 国产97色在线日韩免费| 女性被躁到高潮视频| 精品久久久久久,| 色精品久久人妻99蜜桃| 成人一区二区视频在线观看| 2021天堂中文幕一二区在线观 | 成人特级黄色片久久久久久久| 精品国产乱码久久久久久男人| xxx96com| 久久久国产欧美日韩av| 国产黄色小视频在线观看| 午夜成年电影在线免费观看| 最好的美女福利视频网| 99久久无色码亚洲精品果冻| 国产成人av激情在线播放| 亚洲电影在线观看av| 国产av不卡久久| 老司机福利观看| 亚洲成人久久性| 99在线人妻在线中文字幕| 这个男人来自地球电影免费观看| 啦啦啦韩国在线观看视频| 国产亚洲精品第一综合不卡| 在线观看日韩欧美| 在线观看www视频免费| 国产欧美日韩一区二区三| 国产日本99.免费观看| 熟女电影av网| a级毛片a级免费在线| 精品午夜福利视频在线观看一区| 婷婷精品国产亚洲av在线| 久久中文字幕人妻熟女| 男女那种视频在线观看| 亚洲欧美日韩无卡精品| 免费看十八禁软件| 久久青草综合色| 色在线成人网| 日韩欧美免费精品| 国产在线精品亚洲第一网站| 女人高潮潮喷娇喘18禁视频| 精品熟女少妇八av免费久了| 国产人伦9x9x在线观看| 色在线成人网| 男人的好看免费观看在线视频 | 日韩中文字幕欧美一区二区| 老鸭窝网址在线观看| 中文字幕高清在线视频| 久久精品aⅴ一区二区三区四区| 无人区码免费观看不卡| av免费在线观看网站| 淫秽高清视频在线观看| 久久热在线av| 欧美av亚洲av综合av国产av| 操出白浆在线播放| www日本在线高清视频| 国产欧美日韩精品亚洲av| 亚洲精品国产一区二区精华液| 天天躁夜夜躁狠狠躁躁| 露出奶头的视频| 91麻豆av在线| 欧美又色又爽又黄视频| 久久性视频一级片| 777久久人妻少妇嫩草av网站| 免费观看人在逋| 搡老熟女国产l中国老女人| 国产精品,欧美在线| 亚洲成a人片在线一区二区| 黄色 视频免费看| 亚洲性夜色夜夜综合| 免费在线观看日本一区| 男人舔女人下体高潮全视频| 日本一区二区免费在线视频| 熟女电影av网| 一进一出抽搐动态| 超碰成人久久| 日韩av在线大香蕉| 又紧又爽又黄一区二区| 真人一进一出gif抽搐免费| 不卡一级毛片| 一进一出抽搐动态| 天天躁狠狠躁夜夜躁狠狠躁| 久久伊人香网站| 日韩欧美一区二区三区在线观看| 黄片播放在线免费| 露出奶头的视频| 无限看片的www在线观看| av视频在线观看入口| 白带黄色成豆腐渣| 久久九九热精品免费| 精品国产亚洲在线| 国产成人一区二区三区免费视频网站| 波多野结衣av一区二区av| 特大巨黑吊av在线直播 | 国产熟女午夜一区二区三区| 自线自在国产av| 日本撒尿小便嘘嘘汇集6| 在线视频色国产色| √禁漫天堂资源中文www| 国产91精品成人一区二区三区| 精品久久久久久成人av| 麻豆国产av国片精品| 久久伊人香网站| 亚洲精品在线观看二区| 香蕉国产在线看| 亚洲av五月六月丁香网| 精品国产乱码久久久久久男人| 亚洲 欧美一区二区三区| 黄色女人牲交| 免费看日本二区| 伊人久久大香线蕉亚洲五| 91国产中文字幕| 国产黄片美女视频| 制服丝袜大香蕉在线| 免费一级毛片在线播放高清视频| 丰满的人妻完整版| 国产v大片淫在线免费观看| 久久久久久人人人人人| 在线观看免费日韩欧美大片| 欧美不卡视频在线免费观看 | 国产精品久久久久久人妻精品电影| 国产亚洲av高清不卡| 午夜精品久久久久久毛片777| 亚洲真实伦在线观看| 熟女少妇亚洲综合色aaa.| 国产av一区二区精品久久| 成人三级做爰电影| 在线观看www视频免费| 91字幕亚洲| 男人的好看免费观看在线视频 | 两个人看的免费小视频| 波多野结衣av一区二区av| 最近在线观看免费完整版| 亚洲av五月六月丁香网| 久久人妻福利社区极品人妻图片| 香蕉久久夜色| 1024视频免费在线观看| 999久久久国产精品视频| www国产在线视频色| 一进一出好大好爽视频| 窝窝影院91人妻| 丝袜美腿诱惑在线| 国产视频一区二区在线看| 免费在线观看黄色视频的| 美女大奶头视频| 久久精品国产99精品国产亚洲性色| 亚洲精品在线观看二区| 亚洲黑人精品在线| 在线看三级毛片| 色哟哟哟哟哟哟| 国产亚洲av嫩草精品影院| 在线观看免费视频日本深夜| 18禁裸乳无遮挡免费网站照片 | 韩国精品一区二区三区| 欧美乱妇无乱码| 国产亚洲av高清不卡| 极品教师在线免费播放| 色综合婷婷激情| 国产精品日韩av在线免费观看| 50天的宝宝边吃奶边哭怎么回事| 国产91精品成人一区二区三区| 日韩欧美在线二视频| 巨乳人妻的诱惑在线观看| 成人国语在线视频| 亚洲国产高清在线一区二区三 | 高清在线国产一区| 日韩精品免费视频一区二区三区| 国产97色在线日韩免费| 日本五十路高清| 日韩一卡2卡3卡4卡2021年| 欧美三级亚洲精品| 高清毛片免费观看视频网站| 女同久久另类99精品国产91| 十八禁人妻一区二区| 一级黄色大片毛片| 色精品久久人妻99蜜桃| 国语自产精品视频在线第100页| 日日干狠狠操夜夜爽| 国产精品国产高清国产av| 夜夜爽天天搞| 欧美成人午夜精品| 亚洲五月婷婷丁香| 老汉色∧v一级毛片| 国产真实乱freesex| 伊人久久大香线蕉亚洲五| 国产亚洲欧美98| 99re在线观看精品视频| 法律面前人人平等表现在哪些方面| avwww免费| 国产aⅴ精品一区二区三区波| 日韩欧美三级三区| 欧美最黄视频在线播放免费| 90打野战视频偷拍视频| 国产亚洲精品av在线| 搡老妇女老女人老熟妇| 曰老女人黄片| 男人的好看免费观看在线视频 | 人人妻,人人澡人人爽秒播| 国产区一区二久久| 国产又色又爽无遮挡免费看| 黄色丝袜av网址大全| 久热这里只有精品99| 欧美中文综合在线视频| 久久天堂一区二区三区四区| 国产aⅴ精品一区二区三区波| 美女高潮喷水抽搐中文字幕| 久久国产精品人妻蜜桃| 老汉色av国产亚洲站长工具| 国产99久久九九免费精品| 淫秽高清视频在线观看| 少妇 在线观看| aaaaa片日本免费| 他把我摸到了高潮在线观看| 久久久久免费精品人妻一区二区 | 又黄又爽又免费观看的视频| 欧美日韩福利视频一区二区| 国产高清激情床上av| 在线国产一区二区在线| 嫁个100分男人电影在线观看| 女人高潮潮喷娇喘18禁视频| 国产在线精品亚洲第一网站| 亚洲精品中文字幕一二三四区| 每晚都被弄得嗷嗷叫到高潮| 99热这里只有精品一区 | 一区二区三区激情视频| 大香蕉久久成人网| 黄色 视频免费看| 日韩一卡2卡3卡4卡2021年| 亚洲第一av免费看| 国产精品 欧美亚洲| 亚洲男人天堂网一区| 国内精品久久久久精免费| 国产黄a三级三级三级人| 精品高清国产在线一区| 成人午夜高清在线视频 | 成熟少妇高潮喷水视频| 国产黄a三级三级三级人| 欧美精品亚洲一区二区| av片东京热男人的天堂| 亚洲精品美女久久久久99蜜臀| 婷婷亚洲欧美| 久久这里只有精品19| 久久天堂一区二区三区四区| 中文字幕精品免费在线观看视频| 国产熟女午夜一区二区三区| 婷婷六月久久综合丁香| 精品卡一卡二卡四卡免费| 青草久久国产| 国产又爽黄色视频| 99国产精品99久久久久| 男人的好看免费观看在线视频 | 人成视频在线观看免费观看| 欧美又色又爽又黄视频| 精品久久久久久久久久免费视频| 国产成人精品久久二区二区91| 日韩免费av在线播放| 一本精品99久久精品77| 亚洲精品中文字幕一二三四区| 大型黄色视频在线免费观看| 观看免费一级毛片| 国产成人精品无人区| 国产精品影院久久| 精品久久久久久久久久免费视频| 免费人成视频x8x8入口观看| 国产av在哪里看| 久久久久久久久免费视频了| 两个人视频免费观看高清| 亚洲av成人不卡在线观看播放网| 人人澡人人妻人| a级毛片在线看网站| 波多野结衣av一区二区av| 丁香六月欧美| 男人的好看免费观看在线视频 | 母亲3免费完整高清在线观看| 女人高潮潮喷娇喘18禁视频| 精品国内亚洲2022精品成人| 在线观看午夜福利视频| 国产一区在线观看成人免费| 人人妻人人看人人澡|