• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Improving the purity of heralded single-photon sources through spontaneous parametric down-conversion process*

    2021-07-30 07:35:32JingWang王靜ChunHuiZhang張春輝JingYangLiu劉靖陽(yáng)XueRuiQian錢(qián)雪瑞JianLi李劍andQinWang王琴
    Chinese Physics B 2021年7期
    關(guān)鍵詞:李劍春輝王靜

    Jing Wang(王靜) Chun-Hui Zhang(張春輝) Jing-Yang Liu(劉靖陽(yáng))Xue-Rui Qian(錢(qián)雪瑞) Jian Li(李劍) and Qin Wang(王琴)

    1Institute of Quantum Information and Technology,Nanjing University of Posts and Telecommunications,Nanjing 210003,China

    2Broadband Wireless Communication and Sensor Network Technology,Key Laboratory of Ministry of Education,Nanjing University of Posts and Telecommunications,Nanjing 210003,China

    Keywords: quantum information,quantum communication,nonlinear optics

    1. Introduction

    Spectrally factorable photon pair has attracted a lot of attention from scientists since it can furnish a highpurity heralded single-photon source, which is essential for the application of quantum information processing,e.g., quantum cryptography,[1,2]quantum teleportation,[3]and quantum dense coding.[4]Both spontaneous parametric down-conversion(SPDC)and spontaneous four-wave-mixing(SFWM) can generate photon pairs, and the former is more widely utilized compared with the latter due to its simplicity and convenience in experimental preparations.In a SPDC process,when a laser incidents onto a piece of nonlinear crystal,it spontaneously generates photon pairs,one is denoted as the signal photon and the other is named the idle photon. It obeys both the laws of energy conservation and momentum conservation during the SPDC process. In most cases, the signal and the idler photons are spectrally correlated,then one might gather information of one photon after carrying out monitoring on the other one,resulting in side-channel information leakage in some applications, e.g., the quantum key distribution, the quantum random number generator. Therefore, it is very important to obtain spectrally or frequently uncorrelated photon pairs. Usually, purity is used to characterize the correlation degree of a photon pair, and the higher the purity, the lower the correlation in frequency.

    To date,different methods for improving the spectral purity of photon pairs have been put forward. For example,Mosleyet al.and Meyer-Scottet al.[5,6]proposed to improve the spectral purity by using narrow bandpass filters,since narrow bandpass filters can effectively filter out unwanted frequencies, and thus destroy the spectral correlations in SPDC sources.[7,8]However, narrow bandpass filters will inevitably bring into extra insertion loss, causing a lower photon counting rate in practical experiments.[6]Moreover,it is difficult to make the spectral shape of each filter identically matched with the photons passing by,since they might come from different crystals.[9]In contrast,another good choice is to select proper nonlinear crystal,pumping laser,and phase-match conditions for improving the spectral purity.

    There have been a lot of works addressing this aspect,and in general they can be divided into four categories: (i)to apply Gaussian approximation on the phase matching amplitude and then decompose the joint spectral amplitude (JSA)by selecting proper pump bandwidths and crystal lengths for spectral uncorrelation;[10-13](ii)to achieve frequency uncorrelated biphotons with group velocity matching (GVM)condition;[13-20](iii)to process optimizations by adjusting the ratio between the width of the pump envelope amplitude and the width of the phase-matching amplitude;[21](iv) to implement joint optimizations on both the pump bandwidth and the crystal length.[22]In this paper, we systematically study and summarize these existing methods, and further present improved techniques. By re-defining the formula of the ratio between the widths of the phase matching amplitude and the pump envelope amplitude, we can obtain an improved purity with the third method compared with former work. Moreover,by implementing the local search algorithm into the joint optimization process for the fourth approach,we can greatly reduce the time cost on searching the optimal values. We first describe the theory, then carry out corresponding numerical simulations,and finally discuss advantages and disadvantages of each method. To be noted, in principle, the introduced methods can be implemented on any kind of periodically poled nonlinear crystals. Here for simplicity, we just employ the periodically-poled potassium titanylphosphate(PPKTP)crystal and the periodically-poled lithium niobate (PPLN) crystal as examples for illustration.

    2. Theory

    For a collinear SPDC process, the signal photon and the idle photon are created by driving pump photon into a nonlinear crystal. At the output of the crystal,the biphoton state can be written as

    By Schmidt decomposition,[23,24]JSA can be decomposed into the product of two orthogonal basis sets,μn(ωs) andυn(ωi),as

    As a result, the spectral puritypof the biphoton state can be calculated by

    The PEA can be described by a Gaussian function as

    whereωp0andσpare the central frequency and the bandwidth in frequency of the pump photon.σpcan be converted into the bandwidth in wavelength Δλby

    whereλpis the wavelength of the pump. Due to the energy conservation

    whereωs0andωi0are the central frequencies of the signal photon and idle photon,and we can obtain

    whereνsandνiare the frequency differences between their respective frequencies and central frequencies,i.e.,νs=ωsωs0 andνi=ωi-ωi0.

    The PMA in a nonlinear crystal can be written as

    whereLis the crystal length,and Δkis the difference between the wave-vectors. The wave-vector is given by

    wherenis the refractive index. And the difference between the wave-vectors in s periodically poled crystal can be written as

    whereΛis the poling period of the periodically poled crystal.

    2.1. Uncorrelation obtained from JSA

    To reach spectral uncorrelation, the spectral distribution of PEA and PMA should be concentrated near the central frequency. Compared with sinc function, Gaussian function has less sideband. We can use the Gaussian approximation(sinc(x)≈e-γx2,γ= 0.193) to replace the sinc function of PMA,then JSA is updated with

    For Eq. (15), to acquire the spectrally uncorrelated state, the last item of the equation should be eliminated,thus we have

    Given determinate wavelengths of pump,signal,and idler,we can select the suitable pump bandwidth and crystal length to make Eq. (16) hold. As a result, the spectrally uncorrelated state can be achieved.

    This is the first method on how to improve the photon purity.It is easy to understand,and can also help us to learn other methods.Moreover,as long as Eq.(16)holds,it should satisfy

    That is to say, the group velocity of the pump should lie between the group velocities of the signal and the idler.

    Graphically, the width of PEA’s contour is in proportion to the pump bandwidth, and the angle between the contour line and theXaxis is 135°due to the law of energy conservation.[15]Here the width of PMA’s contour is inversely proportional to the length of the crystal. And its pinchθis not a fixed value and can be calculated. The tangent for the pinch of PMA can be defined as

    When Eq.(17)holds,the pinch of PMA will be positive.

    2.2. Engineering with the group velocity matching condition

    We now discuss the second method,to engineer with the GVM conditions.[25-27]GVM conditions can be applied on the pump pulse and at least one daughter photon. The photon pairs are generated in the spectral mode,where the velocity of the pump photon is equal to the group velocity of one daughter photon or the average group velocity of both daughter photons.[5]As a result, spectrally uncorrelated biphoton state and pure heralded single photon are directly generated at several fixed wavelengths. There are three types of GVM conditions[18]

    Equations (19)-(21) are symbolically represented by GVM1,GVM2, and GVM3, respectively. And they are individually consistent with

    2.3. Uncorrelation by adjusting the width ratio

    As addressed in Ref.[28],the formula of JSA can be decomposable only when doing approximation on PMA with Gaussian function,and the purity reaches its maximum value whenξ=1. However,without Gaussian approximation,the purity may not be optimal whenξ=1.

    Below let us present an improved method on increasing the photon purity. Considering that the expression ofξin Eq.(27)is asymmetric for the signal and the idler,we re-define an intermediate variableζ,

    Obviously, hereζis only related with the pump wavelengthσpand the crystal lengthL. Then the optimal experimental conditions can be found to get the maximum purity.

    2.4. Joint optimization of both the pump wavelength and the crystal length

    The fourth method is to directly implement joint optimizations on the pump bandwidth and the crystal length in order to obtain the highest purity value within certain spectral ranges. Here we propose to implement the local search algorithm(LSA)into the joint optimization process to replace the trivial exhaustive search method, which can simplify akdimensional optimization problem intokone-dimensional optimization problems, greatly reducing the time to search for the optimal values. Though the purity is not able to reach 1 even after applying this method, a proper interference filter can be employed to narrow the bandwidth and further improve the purity.

    3. Simulation

    Second-order nonlinear optical materials are excellent platforms for quantum optics. For example, potassium titanylphosphate(KTP)and lithium niobate(LN)not only have excellent second-order/third-order nonlinear coefficient and electro-optic effect, but also possess very mature technology on waveguide fabrication. These merits make them very promising candidates for applications in parametric downconversion, frequency conversion, modulation processes, etc.Here for simplicity,we take periodically poled KTiOPO4(PPKTP)and periodically poled lithium niobate(PPLN)crystals as examples for descriptions. Their refractive index and Sellmeier equations are referring from Refs.[30,31].

    For the first method addressed in Section 2, in order to satisfy the condition(17),we consider the case of type-I nondegenerate PDC. Moreover, for practical application requirements, one of the daughter photons is assumed being located in the communication band(1.3 μm-1.55 μm),then the range of the pump wavelength should lie within 546 nm-632 nm for PPLN and in the range of 756 nm-797 nm for PPKTP.For easy description, we first choose PPKTP as an example,the central wavelengths are chosen as 552 nm,857.3 nm,and 1550 nm, for the pump, the signal, and the idler photons, respectively. Then the period of the periodically poled is calculated asΛ= 11.6604 μm,k′s-k′p= 5.782×10-12s/m,andk′i-k′p=-1.507×10-10s/m. To satisfy Eq. (16),σpL=1.0906×1011Hz·m. If the pump bandwidth Δλand the crystal lengthLare set as 1.5915 nm and 1.1077 cm, respectively, the purity will be 0.99967 when applying Gaussian PMA,while the purity will be 0.96931 when implementing sinc PMA.Accordingly,we plot out corresponding PMA,PEA,and JSA in Fig.1. Besides,we choose another example of PPLN,the central wavelengths of the pump,the signal,and the idler are set as 775 nm, 1320 nm, and 1877 nm, respectively. Here,Λ=20.4014 μm,k′s-k′p=2.014×10-11s/m,andk′i-k′p=-2.488×10-11s/m. Accordingly, we obtainσpL=1.4379×1011Hz·m. When the pump bandwidth Δλand the crystal lengthLare 3.1831 nm and 1.4394 cm,respectively, the purity is 0.99877 with Gaussian PMA and 0.94746 with sinc PMA.Corresponding PMA,PEA,and JSA are shown in Fig.2.

    Fig.1. The contours of PMA,PEA,and JSA in PPKTP simulating with the first method. The biphoton is generated from type-I 552 nm(o)→857.3 nm(e)+1550 nm(e), when the bandwidth Δλ and the crystal length L are 1.5915 nm and 1.1077 cm, respectively. When PMA is approximated as Gaussian function,PMA,PEA,and JSA are shown in the first row,and the purity is 0.99967. When PMA is adopted with sinc function,PMA,PEA,and JSA are shown in the second row,and the purity is 0.96931.

    Fig.2. The contours of PMA,PEA,and JSA in PPLN simulating with the first method. The biphoton is generated from type-I 775 nm(e)→1320 nm(o)+1877 nm(o),when the bandwidth Δλ,the crystal length L,and temperature are 3.1831 nm,1.4394 cm,and 30 °C,respectively.When PMA is approximated as Gaussian function, PMA,PEA,and JSA are shown in the first row, and the corresponding purity is 0.99877.When PMA is adopted with sinc function,PMA,PEA,and JSA are shown in the second row,and accordingly,the purity is 0.94746.

    For the second method, we consider type-II degenerate SPDC.We find that GVM1is satisfied when the pump wavelength is 612 nm and GVM3is satisfied when the pump wavelength is 791 nm in PPKTP crystal. For GVM1or GVM2, a long crystal can be employed to improve the purity. When the pump wavelength is 612 nm,the pump bandwidth and crystal length might be chosen as 2 nm and 3 cm,respectively,accordingly,the purity is 0.98463 and its JSA is shown in Fig.3(a).For GVM3,the pump bandwidth and crystal length can be selected by following Eq. (16). With the pump wavelength of 791 nm, the pump bandwidth and crystal length can take the values of 0.51 nm and 1 cm, respectively. Then the purity is 0.81429 and its JSA is shown in Fig.3(b).

    Now, let us see the third method presented in Section 2,where GVM3is assumed to be satisfied. We analyze the relationship betweenξdefined in Eq. (27) and purity for two different types of PMAs, as illustrated in Fig. 4(a). It shows that the maximum purity can reach 1 whenξ=1 for Gaussian shaped PMA. However, for sinc shaped PMA, the purity just reaches its maximum value whenξ=1.14 and its maximum purity is 0.8146.Obviously,it only results in poor purity.Now let us see our improved method, the relationships betweenζdefined in Eq.(30)and purity are displayed out for two different types of PMAs, see Fig. 4(b). For easy description, here we use type-I 775 nm→1320 nm+1877 nm in PPLN as an example. As we can see from Fig.4(b),the purity reaches its maximum for the sinc shaped PMA whenζ=1.21, and its maximum value is 0.97924, where the pump bandwidth Δλand the crystal lengthLare 3.1831 nm and 1.1896 cm,respectively. Compared with the above maximum purity 0.8146,our modified method shows significant improved purity.

    Fig. 3. The contours of JSA for different wavelength matchings simulating with the second method. (a) The biphoton is generated from type-II 612 nm(o)→1224 nm(e)+1224 nm(o)in PPKTP and the purity is 0.98463, when the bandwidth Δλ and the crystal length L are 2 nm and 3 cm. (b) The biphoton is generated from type-II 791 nm(o)→1582 nm(e)+1582 nm(o)in PPKTP and the purity is 0.81429,when the bandwidth Δλ and the crystal length L are 0.51 nm and 1 cm.

    Fig.4.(a)The relationship between ξ and purity for Gaussian PMA and sinc PMA with GVM3. (b) The relationship between ζ and purity for Gaussian PMA and sinc PMA for type-I 775 nm→1320 nm+1877 nm in PPLN with the improved third method.

    For the fourth method, considering it does not need to satisfy any limitations on either inequality(17)or GVM conditions, it is a more general approach and has robust applications. For easy description,we use type-I PPKTP as an example, where the central wavelengths of pump, signal, and idler are set as 552 nm, 857.3 nm, and 1550 nm, respectively. We carry out jointly optimizing on both the pump band width and the crystal length,corresponding simulation results are shown in Fig.5. From Fig.5,we find that the purity can reach up to 1 after full parameter optimizations. If taking practical processing difficulty into account, we can select compromised pump bandwidth Δλand crystal lengthL, e.g., 2 nm and 8.8 mm,respectively, and the corresponding purity is 0.94569. Obviously, the fourth method is not only easy to implement, but also can show excellent performance.

    Fig. 5. Joint optimization of the pump bandwidth and crystal length with the fourth method. Meanwhile,the central wavelengths of pump,signal, and idler are 552 nm, 857.3 nm, and 1550 nm, respectively in type-I PPKTP.Different color represents different purity,and the value of purity represented by the color has been marked on the right column.

    In addition,we also carried out calculations for other nonlinear crystals or phase-matching conditions,e.g.,type-II BBO or type-0 PPLN, by implementing the above four methods.However, the obtained purities are in general quite low when without using filters. Therefore,we did not list them out in the simulation part.

    4. Conclusion

    Focusing on collinear and single mode SPDC and neglecting transversal and multi-mode effects,we have discussed four methods on how to improve the purity of down-converted photon sources. The first method is to derive from JSA function, through which we can obtain the relationship between the pump bandwidth and the crystal length for spectral uncorrelation. The second method is taking advantage of GVM conditions. The third method is to adjust the width ration of PEA and PMA under GVM3condition,without doing any approximation on PMA functions.The fourth method is to apply joint optimization on both the pump bandwidth and the crystal length without doing any approximation or assuming any GVM condition.For the first three methods,they need to meet certain applicable conditions, e.g., it needs to satisfy the inequality for method 1 or method 3; and the second method only works when satisfying one of the GVM conditions. For the fourth method, it does not assume any applicable conditions, while for some phase-matching conditions, sometimes resulting in moderate purities without filters. Therefore, different methods have their advantages and disadvantages, and a proper method should be chosen when people design their experimental parameters. We believe our work could provide valuable references for the generation and application of high purity single-photon sources in the fields of quantum information and quantum optics.

    猜你喜歡
    李劍春輝王靜
    Gray code based gradient-free optimization algorithm for parameterized quantum circuit
    Probabilistic quantum teleportation of shared quantum secret
    Quantum partial least squares regression algorithm for multiple correlation problem
    Performance of passive decoy-state quantum key distribution with mismatched local detectors
    The Management Methods And Thinking Of Personnel Files
    客聯(lián)(2021年9期)2021-11-07 19:21:33
    The Development of Contemporary Oil Painting Art
    青年生活(2019年16期)2019-10-21 01:46:49
    Improving the Performance of Practical Decoy-State Measurement-Device-Independent Quantum Key Distribution with Biased Basis Choice?
    父與子
    Income Inequality in Developing Countries
    商情(2017年17期)2017-06-10 12:27:58
    Let it Go隨它吧
    久久99蜜桃精品久久| 九九爱精品视频在线观看| 一区二区三区四区激情视频| 精品一区二区免费观看| 黄片wwwwww| 人妻夜夜爽99麻豆av| 天堂俺去俺来也www色官网| 尤物成人国产欧美一区二区三区| 亚洲三级黄色毛片| 欧美区成人在线视频| 高清视频免费观看一区二区| 美女脱内裤让男人舔精品视频| 全区人妻精品视频| 人妻 亚洲 视频| 中文乱码字字幕精品一区二区三区| 久热久热在线精品观看| 人妻一区二区av| av在线蜜桃| 国产精品av视频在线免费观看| av免费在线看不卡| 男女边摸边吃奶| 18禁裸乳无遮挡动漫免费视频| 欧美日韩精品成人综合77777| 一边亲一边摸免费视频| 我要看黄色一级片免费的| 美女高潮的动态| 亚洲第一av免费看| 欧美日韩一区二区视频在线观看视频在线| 一区二区av电影网| 国产精品欧美亚洲77777| 久久韩国三级中文字幕| 18禁动态无遮挡网站| 亚洲高清免费不卡视频| 老熟女久久久| 午夜日本视频在线| 黄色日韩在线| 18禁动态无遮挡网站| 一级a做视频免费观看| 精品一区二区三卡| 精品国产三级普通话版| kizo精华| 免费看av在线观看网站| 高清av免费在线| 少妇高潮的动态图| 十八禁网站网址无遮挡 | 久久鲁丝午夜福利片| 乱码一卡2卡4卡精品| 亚州av有码| 成人国产av品久久久| 下体分泌物呈黄色| 久久久精品94久久精品| 亚洲精品自拍成人| 国产色爽女视频免费观看| 亚洲人成网站在线播| 一级av片app| 天堂俺去俺来也www色官网| 亚洲欧美中文字幕日韩二区| 精品久久久精品久久久| 一区二区三区四区激情视频| 黑人猛操日本美女一级片| 一级毛片 在线播放| 日韩不卡一区二区三区视频在线| 国产精品成人在线| 交换朋友夫妻互换小说| 少妇高潮的动态图| 看免费成人av毛片| 国产伦在线观看视频一区| 亚洲人成网站在线观看播放| 国产亚洲av片在线观看秒播厂| 如何舔出高潮| 人妻系列 视频| 老司机影院成人| 能在线免费看毛片的网站| 激情 狠狠 欧美| 高清av免费在线| 97超视频在线观看视频| 日本色播在线视频| freevideosex欧美| 永久免费av网站大全| 久久鲁丝午夜福利片| 亚洲精华国产精华液的使用体验| 老师上课跳d突然被开到最大视频| 欧美3d第一页| 水蜜桃什么品种好| 女性被躁到高潮视频| 午夜福利视频精品| 在线观看美女被高潮喷水网站| 亚洲自偷自拍三级| 亚洲伊人久久精品综合| 少妇人妻一区二区三区视频| 亚洲av国产av综合av卡| 亚洲欧美一区二区三区黑人 | 欧美精品国产亚洲| 国产精品秋霞免费鲁丝片| 国产精品无大码| 婷婷色麻豆天堂久久| 永久免费av网站大全| 人妻制服诱惑在线中文字幕| 亚洲av成人精品一区久久| 成人一区二区视频在线观看| 美女高潮的动态| 亚洲精品中文字幕在线视频 | 丰满人妻一区二区三区视频av| 蜜臀久久99精品久久宅男| 亚洲av日韩在线播放| 欧美日韩综合久久久久久| 久久国产精品男人的天堂亚洲 | 七月丁香在线播放| 黄片无遮挡物在线观看| 美女国产视频在线观看| 亚洲,一卡二卡三卡| 久久久久网色| 精品一区二区三区视频在线| 日韩一区二区三区影片| av线在线观看网站| 午夜免费男女啪啪视频观看| 美女脱内裤让男人舔精品视频| 国产一区二区在线观看日韩| 777米奇影视久久| 日本av手机在线免费观看| 美女cb高潮喷水在线观看| 日韩一区二区三区影片| 国产高清三级在线| 亚洲国产精品999| 亚洲第一区二区三区不卡| 欧美bdsm另类| 欧美少妇被猛烈插入视频| 国产成人a∨麻豆精品| 亚洲人与动物交配视频| 久久久久久久国产电影| 高清在线视频一区二区三区| 人人妻人人看人人澡| 久久久久久久久久人人人人人人| 国产av精品麻豆| 国产真实伦视频高清在线观看| 亚洲av福利一区| 久久国产亚洲av麻豆专区| 18禁裸乳无遮挡免费网站照片| 久久人人爽人人片av| videos熟女内射| 欧美激情国产日韩精品一区| 男女边摸边吃奶| 国产欧美另类精品又又久久亚洲欧美| 丰满乱子伦码专区| 亚洲精品国产成人久久av| 中文乱码字字幕精品一区二区三区| 亚洲精品第二区| 水蜜桃什么品种好| 久久久久久人妻| 97超碰精品成人国产| 黄色配什么色好看| 国产女主播在线喷水免费视频网站| 在线观看一区二区三区| 午夜激情久久久久久久| 国产成人a∨麻豆精品| 最近2019中文字幕mv第一页| 中文字幕亚洲精品专区| 另类亚洲欧美激情| 熟女电影av网| 精品国产乱码久久久久久小说| 久久久精品94久久精品| 嫩草影院入口| 一级黄片播放器| 久久精品国产亚洲av天美| 99久久精品一区二区三区| 久久国产精品大桥未久av | 人妻一区二区av| 色综合色国产| av.在线天堂| 午夜福利在线在线| 又大又黄又爽视频免费| 大码成人一级视频| 校园人妻丝袜中文字幕| 99久久综合免费| 久久久久久人妻| 色综合色国产| 哪个播放器可以免费观看大片| 一级毛片电影观看| 麻豆成人午夜福利视频| 精品人妻一区二区三区麻豆| 欧美+日韩+精品| 精品人妻偷拍中文字幕| av免费在线看不卡| 成人漫画全彩无遮挡| 亚洲精品日本国产第一区| 熟妇人妻不卡中文字幕| 中文字幕亚洲精品专区| 香蕉精品网在线| 丝瓜视频免费看黄片| 小蜜桃在线观看免费完整版高清| 成人亚洲欧美一区二区av| 日韩欧美 国产精品| 精品久久久久久电影网| 97在线视频观看| 国产成人a∨麻豆精品| 国产视频内射| 中文字幕人妻熟人妻熟丝袜美| 精品一品国产午夜福利视频| 亚洲性久久影院| 亚洲欧美精品自产自拍| 一本色道久久久久久精品综合| 欧美日韩视频高清一区二区三区二| 国产淫片久久久久久久久| 亚洲图色成人| 亚洲国产精品999| 亚洲欧美精品自产自拍| 少妇丰满av| 亚洲精品国产色婷婷电影| 亚洲va在线va天堂va国产| 女的被弄到高潮叫床怎么办| 成人综合一区亚洲| 人人妻人人澡人人爽人人夜夜| 欧美日韩视频精品一区| 国产精品免费大片| 美女福利国产在线 | 卡戴珊不雅视频在线播放| 熟女人妻精品中文字幕| 成人美女网站在线观看视频| 亚洲第一区二区三区不卡| 国产亚洲91精品色在线| 在线免费观看不下载黄p国产| 国产一区有黄有色的免费视频| 一级毛片黄色毛片免费观看视频| 国产成人91sexporn| 欧美成人一区二区免费高清观看| 亚洲精品一区蜜桃| 大陆偷拍与自拍| 国产精品一及| 插阴视频在线观看视频| 精品亚洲成国产av| 国产男女超爽视频在线观看| 一区二区av电影网| 亚洲色图综合在线观看| 久久久久久久久久久丰满| 大陆偷拍与自拍| 精品久久久久久电影网| 亚洲va在线va天堂va国产| 亚洲国产精品国产精品| 国产成人精品久久久久久| 色哟哟·www| 国产精品嫩草影院av在线观看| 一区二区三区乱码不卡18| 亚洲av成人精品一区久久| 免费观看av网站的网址| 日韩大片免费观看网站| 97热精品久久久久久| 日韩电影二区| 在线观看免费日韩欧美大片 | 两个人的视频大全免费| 在线观看三级黄色| 热99国产精品久久久久久7| 大又大粗又爽又黄少妇毛片口| 91久久精品电影网| 国产国拍精品亚洲av在线观看| 久久久色成人| 观看免费一级毛片| 99精国产麻豆久久婷婷| 国产欧美另类精品又又久久亚洲欧美| 一本久久精品| 极品少妇高潮喷水抽搐| 日本黄大片高清| 国产男女内射视频| 亚洲人与动物交配视频| 日日摸夜夜添夜夜添av毛片| 3wmmmm亚洲av在线观看| 亚洲av免费高清在线观看| 一级毛片aaaaaa免费看小| 午夜福利在线在线| 久久国产亚洲av麻豆专区| 最近最新中文字幕大全电影3| 国产成人午夜福利电影在线观看| 日韩人妻高清精品专区| 2018国产大陆天天弄谢| 免费黄色在线免费观看| 久久久欧美国产精品| 五月伊人婷婷丁香| videossex国产| 黄色欧美视频在线观看| 国产乱人视频| 久久人人爽av亚洲精品天堂 | 精品一区二区三区视频在线| 国产精品女同一区二区软件| 香蕉精品网在线| 中文资源天堂在线| 婷婷色综合大香蕉| 美女福利国产在线 | 99热这里只有是精品50| 交换朋友夫妻互换小说| 国产精品爽爽va在线观看网站| 欧美极品一区二区三区四区| 久久国产精品大桥未久av | 97在线视频观看| 欧美成人精品欧美一级黄| 九九在线视频观看精品| 亚州av有码| 国产老妇伦熟女老妇高清| 99久久精品一区二区三区| 亚洲天堂av无毛| 国产精品久久久久久av不卡| 久久国产精品男人的天堂亚洲 | 国产精品免费大片| 国产精品国产三级国产专区5o| 日韩,欧美,国产一区二区三区| 一区二区av电影网| 国产精品一区www在线观看| 人人妻人人爽人人添夜夜欢视频 | 欧美区成人在线视频| 久久影院123| 蜜桃久久精品国产亚洲av| 中文字幕av成人在线电影| 男男h啪啪无遮挡| 亚洲精华国产精华液的使用体验| 高清日韩中文字幕在线| 亚洲精品456在线播放app| 国产免费一级a男人的天堂| 午夜免费鲁丝| 精品久久久噜噜| 26uuu在线亚洲综合色| 国产美女午夜福利| 亚洲av二区三区四区| 国产精品一区二区在线不卡| 涩涩av久久男人的天堂| 深夜a级毛片| 亚洲精品日本国产第一区| 五月开心婷婷网| 免费久久久久久久精品成人欧美视频 | 国产成人一区二区在线| 美女国产视频在线观看| 国产精品99久久99久久久不卡 | 黄色怎么调成土黄色| 美女视频免费永久观看网站| 亚洲av日韩在线播放| 亚洲精品色激情综合| 黄色视频在线播放观看不卡| 久久女婷五月综合色啪小说| 噜噜噜噜噜久久久久久91| 又爽又黄a免费视频| 亚洲av欧美aⅴ国产| 最近中文字幕高清免费大全6| 青春草视频在线免费观看| 26uuu在线亚洲综合色| 少妇 在线观看| 黑丝袜美女国产一区| 国产视频首页在线观看| videos熟女内射| 欧美精品一区二区免费开放| 一本一本综合久久| 国产又色又爽无遮挡免| 国产精品国产三级国产av玫瑰| 极品教师在线视频| 91午夜精品亚洲一区二区三区| 日韩欧美精品免费久久| 尾随美女入室| 国产精品人妻久久久影院| 亚洲美女搞黄在线观看| 一区二区三区精品91| av不卡在线播放| 久久婷婷青草| 在线观看一区二区三区| 国产中年淑女户外野战色| 三级国产精品欧美在线观看| 欧美成人a在线观看| 国产成人freesex在线| 精品一区在线观看国产| 欧美97在线视频| 欧美bdsm另类| 97精品久久久久久久久久精品| 久久国产精品大桥未久av | 日本一二三区视频观看| 人妻一区二区av| 在线观看三级黄色| 丝瓜视频免费看黄片| 少妇人妻一区二区三区视频| 最近2019中文字幕mv第一页| 一级毛片黄色毛片免费观看视频| 天美传媒精品一区二区| 久久久精品免费免费高清| 又大又黄又爽视频免费| 国产精品熟女久久久久浪| 在线观看免费视频网站a站| 少妇被粗大猛烈的视频| 久久精品夜色国产| 久久国产精品大桥未久av | 91在线精品国自产拍蜜月| 免费人成在线观看视频色| 视频区图区小说| 亚洲精品456在线播放app| 婷婷色麻豆天堂久久| 国产淫片久久久久久久久| 夜夜看夜夜爽夜夜摸| 美女内射精品一级片tv| 国产av一区二区精品久久 | freevideosex欧美| av在线观看视频网站免费| 丝袜脚勾引网站| 成人免费观看视频高清| 一级a做视频免费观看| 亚洲国产成人一精品久久久| 熟女电影av网| 美女xxoo啪啪120秒动态图| 国产乱人偷精品视频| 肉色欧美久久久久久久蜜桃| 午夜激情久久久久久久| 久久 成人 亚洲| 欧美3d第一页| 天天躁夜夜躁狠狠久久av| 色视频在线一区二区三区| 老女人水多毛片| 亚洲性久久影院| 欧美日韩一区二区视频在线观看视频在线| 有码 亚洲区| 亚洲精品第二区| av天堂中文字幕网| 国产欧美另类精品又又久久亚洲欧美| 亚洲国产色片| 久久鲁丝午夜福利片| 深爱激情五月婷婷| 国产爽快片一区二区三区| 1000部很黄的大片| a级毛片免费高清观看在线播放| 九九爱精品视频在线观看| 国产精品无大码| 国产精品久久久久久精品电影小说 | 国产成人精品福利久久| 少妇的逼好多水| 插阴视频在线观看视频| 亚洲精品乱码久久久v下载方式| 欧美激情国产日韩精品一区| 精品午夜福利在线看| 免费黄频网站在线观看国产| 草草在线视频免费看| 日本黄色片子视频| 亚洲真实伦在线观看| 少妇 在线观看| 男的添女的下面高潮视频| 超碰av人人做人人爽久久| 日韩欧美一区视频在线观看 | 欧美另类一区| 在线观看免费视频网站a站| 国产男人的电影天堂91| 国产久久久一区二区三区| 99热国产这里只有精品6| 国产无遮挡羞羞视频在线观看| 插逼视频在线观看| 一级毛片久久久久久久久女| 欧美变态另类bdsm刘玥| 一级片'在线观看视频| 亚洲第一av免费看| www.色视频.com| 欧美日韩亚洲高清精品| 亚洲av国产av综合av卡| 亚洲国产精品成人久久小说| 亚洲国产高清在线一区二区三| 成人18禁高潮啪啪吃奶动态图 | 一本—道久久a久久精品蜜桃钙片| 九九爱精品视频在线观看| 亚洲天堂av无毛| 午夜激情福利司机影院| 中文天堂在线官网| 一本久久精品| 99视频精品全部免费 在线| 久久韩国三级中文字幕| 内射极品少妇av片p| 一级毛片久久久久久久久女| 欧美高清成人免费视频www| 免费av中文字幕在线| 国产精品一区二区性色av| 男男h啪啪无遮挡| 国产精品一区二区三区四区免费观看| 国产成人免费观看mmmm| 高清毛片免费看| 在线观看一区二区三区| 欧美成人精品欧美一级黄| 亚洲av国产av综合av卡| 狂野欧美激情性bbbbbb| 男的添女的下面高潮视频| 国产淫片久久久久久久久| 1000部很黄的大片| 亚洲av免费高清在线观看| 日本黄大片高清| av国产久精品久网站免费入址| 五月开心婷婷网| 女人十人毛片免费观看3o分钟| 不卡视频在线观看欧美| 国产精品女同一区二区软件| 亚洲精品一二三| 最近最新中文字幕免费大全7| 精品亚洲成a人片在线观看 | 国产精品久久久久久久久免| 国产亚洲5aaaaa淫片| 麻豆乱淫一区二区| 亚洲精品乱码久久久久久按摩| 日韩亚洲欧美综合| 三级国产精品欧美在线观看| 日本欧美国产在线视频| 欧美三级亚洲精品| 国内精品宾馆在线| 欧美日韩一区二区视频在线观看视频在线| 97热精品久久久久久| 黄色日韩在线| 国产精品久久久久久av不卡| 人妻制服诱惑在线中文字幕| 色视频在线一区二区三区| 99国产精品免费福利视频| 狂野欧美激情性xxxx在线观看| 日日啪夜夜爽| 亚洲真实伦在线观看| 天堂俺去俺来也www色官网| 日日啪夜夜撸| 熟女人妻精品中文字幕| 永久网站在线| 99久国产av精品国产电影| 亚洲国产高清在线一区二区三| 2021少妇久久久久久久久久久| 最近中文字幕2019免费版| 亚洲国产最新在线播放| 黑丝袜美女国产一区| 亚洲欧美清纯卡通| 肉色欧美久久久久久久蜜桃| 国内精品宾馆在线| 成人毛片60女人毛片免费| 简卡轻食公司| 久久久久久久久久久免费av| 亚洲高清免费不卡视频| 人体艺术视频欧美日本| 免费观看的影片在线观看| 国产又色又爽无遮挡免| 男女边吃奶边做爰视频| 人人妻人人看人人澡| 一级二级三级毛片免费看| 欧美激情国产日韩精品一区| 亚洲精品久久午夜乱码| 黄色一级大片看看| 在线观看免费高清a一片| 全区人妻精品视频| 日韩亚洲欧美综合| 久久热精品热| 亚洲四区av| 大话2 男鬼变身卡| 在线 av 中文字幕| 国产爱豆传媒在线观看| 欧美精品亚洲一区二区| 国产极品天堂在线| 最近的中文字幕免费完整| freevideosex欧美| 亚洲成人一二三区av| 精品国产三级普通话版| 蜜桃久久精品国产亚洲av| 久久久久久久久大av| 观看免费一级毛片| 国产成人免费观看mmmm| 日日啪夜夜爽| av又黄又爽大尺度在线免费看| 精品视频人人做人人爽| 精品久久国产蜜桃| 欧美老熟妇乱子伦牲交| 亚洲精品久久午夜乱码| .国产精品久久| 亚洲av免费高清在线观看| 亚洲av欧美aⅴ国产| 韩国av在线不卡| 中文欧美无线码| 女的被弄到高潮叫床怎么办| 观看av在线不卡| 乱系列少妇在线播放| 日日啪夜夜撸| 欧美 日韩 精品 国产| 国产精品av视频在线免费观看| 精品99又大又爽又粗少妇毛片| 亚洲一级一片aⅴ在线观看| 少妇精品久久久久久久| 国产成人精品婷婷| 大又大粗又爽又黄少妇毛片口| 日韩强制内射视频| 亚洲欧美成人精品一区二区| 多毛熟女@视频| 欧美+日韩+精品| 久久 成人 亚洲| 国产成人精品久久久久久| 午夜老司机福利剧场| 日韩一本色道免费dvd| 久热久热在线精品观看| 少妇人妻久久综合中文| 99热这里只有是精品50| 免费av中文字幕在线| 高清视频免费观看一区二区| 毛片一级片免费看久久久久| 欧美日韩一区二区视频在线观看视频在线| 在线免费十八禁| 少妇人妻一区二区三区视频| 亚洲av在线观看美女高潮| 国产国拍精品亚洲av在线观看| 亚洲精华国产精华液的使用体验| 啦啦啦中文免费视频观看日本| 国产高清不卡午夜福利| 成年人午夜在线观看视频| 久久99精品国语久久久| 欧美丝袜亚洲另类| .国产精品久久| 国产精品熟女久久久久浪| 日产精品乱码卡一卡2卡三| 国产爽快片一区二区三区| xxx大片免费视频| 久久久欧美国产精品| 亚洲国产日韩一区二区| 国语对白做爰xxxⅹ性视频网站| 午夜福利高清视频| 91精品国产九色| 一本—道久久a久久精品蜜桃钙片| 国产精品国产av在线观看| 精品少妇久久久久久888优播| 大陆偷拍与自拍| 亚洲人与动物交配视频| 中文欧美无线码| 新久久久久国产一级毛片|