• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Core-level spectroscopy of the photodissociation process of BrCN molecule

    2024-01-25 07:11:12KunZhou周坤andHanWang王涵
    Chinese Physics B 2024年1期

    Kun Zhou(周坤) and Han Wang(王涵),?

    1School of Physical Science and Technology,ShanghaiTech University,Shanghai 201210,China

    2Center for Transformative Science,ShanghaiTech University,Shanghai 201210,China

    Keywords: x-ray absorption spectroscopy,photodissociation,fewest-switches surface hopping

    1.Introduction

    Cyanogen halidesXCN (X= F, Cl, Br, I) are a class of molecules that have been extensively studied due to their relevance in atmospheric and combustion chemistry.[1,2]XCN molecules are important precursors for the formation of halogen oxides, which play a crucial role in the depletion of ozone in the stratosphere.[3]The photodissociation ofXCN is a key process in the atmospheric chemistry of halogens and nitrogen, as it can lead to the formation of halogen atoms,which can then react with other atmospheric species, leading to the formation of halogen oxides and other reactive intermediates.[4]Meanwhile, the CN radical is recognized as one of the most significant species in interstellar space,planetary atmospheres,and cometary coma.[5]

    XCN,the simplest linear triatomic molecule,has attracted significant attention for its photodissociation dynamics in the A continuum (210 nm–350 nm).[6–15]Two reaction channels have been established through early-stage experimental and theoretical studies[4,16]

    Previous studies have determined the major electronic states involved in the photodissociation.[17,18]The parallel transition to3Π0+is the major component of the A absorption band,related to theX?(2P1/2) channel.The perpendicular transitions to3Π1and1Π1are the minor components, related to theX(2P3/2)channel.[16,19]There is a conical intersection between the potential energy surfaces of3Π0+and1Π1.[7,20]In the ground state, theXCN molecule is linear, while it becomes bent in the excited states.The bending geometry in the excited repulsive states results in high rotational and low vibrational excitation of the CN fragments in bothXandX?channels.[6,21,22]

    The photodissociation ofXCN has been studied using various experimental and theoretical techniques, including laser-induced fluorescence (LIF), velocity map imaging(VMI),ultrafast x-ray spectroscopy andab initiocalculations.LIF is a sensitive technique that can be used to detect the products ofXCN photodissociation, such as halogen atoms and radicals.[23–25]VMI is a powerful technique that can provide detailed information about the velocity distribution and angular distribution of the photofragments.[26]Frankset al.used the brute force orientation method to study the dissociation of BrCN at 230 nm and ICN at 266 nm in a pulsed molecular beam,and found a perpendicular transition component in the absorption process.[27]Wittiget al.demonstrated the effects of the initial quantum state of the parent cyanogen halide molecules on the dynamics of the dissociation process and the vibrational and rotational energy distributions in the fragments, and clearly showed that the photodissociation at 266 nm and 300 K produces CN fragments whose spin is preferentially oriented relative to the rotational angular momentum.[28,29]Fisheret al.studied the photodissociation of ICN and BrCN in the A continuum, and determined the rotational and vibrational distribution of CN in its electronic ground state.[6]Gaoet al.made use of the ion velocity VMI system to study ion-pair dissociations of BrCN,and found an anisotropic distribution of the CN+momentum.[30]Yinet al.studied the photodissociation dynamics of BrCN from 225 nm to 260 nm by time-slice VMI setup,and their findings showed that the internal excitation of CN products in the Br* channel is colder than Br channel, in addition, the photodissociation dynamics at longer wavelengths is found to be different from those at shorter wavelengths in the Br channel.[4]Costenet al.used high-resolution transient frequency modulated absorption spectroscopy to study the nascent Doppler profiles of CN fragments from the A band photodissociation of room temperature ICN.[31]Gaoet al.investigated the dissociative electron attachment process with high-resolution anion VMI apparatus.[26]These studies provide insights into the detection and dynamics ofXCN photodissociation fragments,including the identification of halogen atoms and radicals,as well as the analysis of velocity and angular distributions.Furthermore,investigations into the influence of initial quantum states, rotational and vibrational distributions of CN fragments,and the study of anisotropic properties reveal internal excitations during the dissociation process.However,it remains unclear how the time-dependent changes in electronic states and internal excitations involved in theXCN photodissociation process affect the dynamics and properties of the dissociation products.

    X-ray absorption spectroscopy (XAS) is a powerful experimental technique that has been widely used to study the electronic structure and dynamics of molecules.XAS provides valuable information of the electronic and local geometric structure of certain atom, allowing for the investigation of chemical reactions and photodissociation processes.[32]XAS can be employed to investigate the electronic structural rearrangements occurring in various molecular systems during photoinduced bond-breaking reactions by probing the occupied orbitals of organic and organometallic systems.[33,34]Morzanet al.showed that the femtosecond time resolution and atomic specificity of soft-x-ray spectroscopy enable a detailed molecular movie of the ICN photofragmentation dynamics to be captured,including the production of vibrationally hot CN fragments along the I–C dissociation path during the ultrafast relaxation dynamics on the1Π1state.[8]Time-resolved x-ray absorption spectroscopy (TR-XAS) provides a powerful tool for probing the photodissociation ofXCN on a femtosecond timescale.This technique allows for the elucidation of the time-dependent evolution of the electronic structure ofXCN,thereby facilitating the creation of a dynamic molecular movie of the photodissociation process.Consequently, TRXAS holds substantial promise for enhancing our understanding of the photodissociation mechanisms inherent toXCN.

    Theoretical calculations provide a complementary approach to experimental studies, offering valuable insights into the electronic structure, potential energy surfaces, reaction pathways,X/X* branching ratio and so on.[4,19]Morokumaet al.theoretically investigated the photodissociation dynamics of ICN based onab initiospin–orbit configuration interaction (SOCI) calculations, including potential energy curves, branching ratio, rotational and vibrational excitation,anisotropy parameter and absorption spectrum.[16,19,35]Bhattacharyyaet al.calculated the structural properties of FCN,ClCN, and their isomers using density functional theory.[36]Baiet al.employedab initiocalculation methods to investigate the low-lying excited states of ClCN.[37]Nathet al.used Fourier grid Hamiltonian (FGH) method based twodimensional mean field methodology to explore the photo dissociation dynamics of the linear triatomic molecule,cyanogen chloride(ClCN)in the polar medium.[38]

    In this work,we employ the fewest switches surface hopping theory(FSSH)to study the photodissociation process of BrCN.By analyzing the trajectories from the multi-reference FSSH calculations, we obtain the detailed photodissociation dynamics of BrCN.The x-ray absorption spectroscopy(XAS)of the excited state trajectories is simulated by employing state-averaged complete active-space self-consistent field theory (SA-CASSCF) and RASSI[39]methods.The simulated XAS clearly displays the signatures of conical intersection and the process of molecular fragmentation.

    2.Computational methods

    Nonadiabatic molecular dynamics simulations for the BrCN molecule were performed with Tully’s fewest switches surface hopping theory[40]as implemented in the SHARC[41,42]software package.The diagonal representation was utilized.This approach involved diagonalizing the electronic Hamiltonian matrix, which is constructed with 10 singlet and 10 triplet spin-free eigenstates in the surface hopping dynamic simulations and 80 singlet and 80 triplet spinfree eigenstates in potential energy surface(PES)simulations,along with spin–orbit interaction, to obtain the spin-mixed,fully adiabatic states with state-averaged complete activespace self-consistent field theory (SA-CASSCF).An active space of 12 electrons in 9 orbitals was used in the excited state calculation with OpenMolcas.[43]ANO-RCC-VDZP basis set was employed and spin–orbit coupling was treated in the atomic mean field (AMFI) approximation.The nuclear motion integration employed the velocity-Verlet algorithm with a time step of 0.1 fs.To account for decoherence, an energy-difference based correction was applied with a parameterα=0.1 Hartree.Since the parallel transition to3Π0+and perpendicular transitions to1Π1are the major components of A continuum, only two electronic initial states for surfacehopping dynamics were considered,specifically exploring the3Π0+and1Π1excited-state PES.For the dynamic simulations,the initial velocities and geometries were sampled from a Wigner distribution centered around the S0minimum geometry.The distribution had an effective temperature of 300 K.The XAS of the excited state trajectories was calculated using SA-CASSCF and RASSI methods, as explained in Ref.[44].30 singlet and 30 triplet states with core holes were included in the XAS calculation.One carbon 1s orbital in the RAS1 active space together with the 9 valence orbitals in the RAS2 space were used in the SA-CASSCF calculation.The XAS in the CK-edge region was obtained by averaging the spectral lineshape over the 125 FSSH trajectories starting from the3Π0+state and 60 trajectories starting from the1Π1state.The spin–orbit natural transition orbitals (SO-NTOs) were calculated with the RASSI module in OpenMolcas.The calculated discrete XAS spectra were convoluted with a Gaussian function with a broadening parameter(σ)of 0.7 eV.Detailed computational methods are explained in supporting information.

    3.Results and discussion

    3.1.Potential energy surface

    We keep the bond length between the C and N atoms in the CN fragment constant at 1.16 ?A, which enables us to describe the dynamics of the BrCN photodissociation process using a two-dimensional Jacobi coordination system (R,θ).In this coordination system,Rrepresents the distance between the Br atom and the center of mass of the CN fragment,whileθrepresents the angle betweenRand the CN bond.The range ofθis from 0°to 180°,whereθ=0°corresponds to a linear molecular structure of Br–CN,as shown in Fig.1(a).

    Photodissociation of BrCN extends the C–Br bond to form a CN· and a neutral Br (2P3/2) or Br?(2P1/2) atom.As shown in Fig.1(b), potential energy curves are calculated for the bond breaking process.During the C–Br bond breaking process,C–Br bond will extend immediately after the photon excitation.For the PES calculation,the CN fragment is fixed to be the ground state atomic structure of BrCN,and the C–Br bond is elongated from 1.19 ?A to 3.79 ?A along the original C–Br bond direction.The3Π0+and1Π1PESs cross when the C–Br distance is 2.57 ?A(R=3.20 ?A).

    Fig.1.(a) The representation of the BrCN geometry in terms of Jacobi coordinates.(b) The potential energy surface (PES) of BrCN as Br–CN bond increases.

    To further study the relationship between PES andθ,the PES of BrCN as the function ofθf(wàn)or different values ofRis calculated and shown in Fig.2.Asθincreases,the energy of the ground state rises, indicating that the linear Br–C–N geometry is the most stable structure.For all states except the ground state,the lowest energy structure is nonlinear,indicating that during the photodissociation process of BrCN,the CN fragment undergoes rotational movement.This aligns with earlier experimental studies.[4,45]AtR= 2.4 ?A (Fig.2(a)),all the excited state PES favor bent structures, and there is no crossing between the ground state and excited states asθincreases.However, atR= 3.2 ?A (Fig.2(b)) and 3.6 ?A(Fig.2(c)), the excited state potential energy curves become flatter, and there are crossings between the ground state and excited states asθincreases.

    Fig.2.PES of BrCN as bending angle θ changes from 0° to 180°,when R=2.4 ?A(a),3.2 ?A(b)and 3.6 ?A(c),respectively.The ground state energy is set to 0 eV.

    3.2.FSSH calculations with SHARC

    The evolution of populations in fewest switches surface hopping (FSSH) simulations is investigated by considering states based on the diagonal representation in the SHARC program.This choice is considered natural for FSSH simulations.The evolution of the populations of state 1 to state 12 over the course of the simulation is shown in Fig.3.Figure 3(a) shows the analysis of 125 trajectories starting from3Π0+state,whereas Fig.3(b)displays the analysis of 110 trajectories starting from1Π1state.These results indicate that the photodissociation process of BrCN is in the femtosecond time scale.For the long-time region(50 fs–70 fs),the populations in each state are close,which can be explained by the potential energy surface(PES)in the long C–Br distance region.At the long C–Br distance region,the dissociation channels of BrCN converge into two degenerate states, corresponding to Br (2P3/2) and Br?(2P1/2).In this case, energy degeneracy occurs between different states, resulting in a close distribution of population among these states.

    Since the Br atom is much heavier than the CN fragment,the CN fragment moves rapidly backward right after the photoexcitation,while the bromine atom moves slowly in the opposite direction.During the C–Br bond extending process,depending on the initial Br–C–N angle and the initial velocity of the CN group,the CN group either moves backward straightly or tends to rotate while moving backward.Analyzing the temporal evolution of bond lengths and bond angles in the photodissociation process of BrCN provides insights into the variations in molecular internal structure and dynamics.Figure 4 shows the evolution ofRandθas a function of time during the photodissociation of BrCN with initial excitation states of3Π0+and1Π1.With the increase of time,the distance between Br and CN continues to increase,indicating the photodissociation of BrCN.In Figs.4(c)and 4(d),it can be observed that the angleθundergoes an increase with time,suggesting the rotational motion of the CN fragment during the process of photodissociation.Trajectories starting from3Π0+states exhibit a faster rate of increase in angle with time compared to trajectories starting from1Π1state,indicating that the CN fragment possesses a higher rotational excitation in3Π0+.

    Fig.3.Time evolution of the population of the first 12 states in the FSSH calculation, when the initial states are set to (a) 3Π0+ (state 7)and(b) 1Π1 (state 8),respectively.

    Fig.4.Plots of the change on Jacobi coordinates(R,θ)as a function of time in different initial exited states during the BrCN photodissociation:(a)and(c) 3Π0+ (state 7)and(b)and(d) 1Π1 (state 8).

    3.3.Simulated XAS of FSSH trajectories

    The XAS simulations of BrCN are performed with Open-Molcas.The Br–C bond dissociation is clearly observed in the XAS simulations as shown in Fig.5.For the trajectories starting from3Π0+state, the XAS exhibits a prominent high energy peak at~286.5 eV and a low energy peak at~285.5 eV in the early stages as a characteristic feature.After about 13 fs,the low energy peak disappears and the high energy peak shifts to higher energy.At the same time,one low-intensity peak appears below the previous two peaks and moves towards the lower energy region.Within 22 fs after photoexcitation, the XAS peaks exhibit pronounced frequency shifts,which correspond to the rotation of the CN fragment and the extension of the Br–C bond.At about 22 fs, the C–Br distance is close to the conical intersection region and the energy of both peaks becomes stable.Regarding the trajectories starting from the1Π1excited state,the character of XAS peaks is more complicated but the shift trending of the XAS peaks is similar to that of the3Π0+state.

    Fig.5.The simulation of carbon K-edge XAS following trajectories starting from (a) 3Π0+ state and (b) 1Π1 state, respectively.The dark blue region means that the absorption is low,while the bright yellow region represents maximal absorption intensity.The transient spectrum is broadened in time by a Gaussian function with a broadening parameter(σ)of 5 fs.

    To study the electronic structure dynamics reflected by XAS,Fig.6 shows the XAS of the carbonK-edge of BrCN at different values ofRin the3Π0+state.Each peak is associated with its corresponding natural transition orbitals (NTO).The spin–orbit natural transition orbitals(SO-NTOs)for the XAS peaks are calculated with the RASSI module in OpenMolcas.For the ground state equilibrium structure of BrCN,the XAS of3Π0+state is composed ofπ?antibonding orbitals in the 285.25 eV–286.85 eV range andσ?antibonding orbitals at 285.25 eV,as shown in Fig.6(a).As the value ofRincreases,the absorption peak of XAS shifts, indicating that these orbitals are significantly influenced during the photodissociation process.Theσ?antibonding orbital has axial symmetry along the Br–C bond.When the Br–C bond is elongated,the energy of theσ?antibonding orbital changes, thereby significantly affecting the carbon 1s toσ?transition and leading to a pronounced redshift in the absorption peak.In contrast, theπ?antibonding orbital is mostly localized on the CN fragment,which is less affected by the elongation of the Br–C bond.As a result,the absorption peak only experiences a small blueshift.

    Fig.6.The XAS simulation of the carbon K-edge and corresponding natural transition orbitals (NTO) in the 3Π0+ state were conducted by varying the values of R for BrCN,while(a)R=2.41 ?A,(b)R=2.60 ?A,(c)R=2.80 ?A,(d)R=3.20 ?A,and(e)R=4.41 ?A,respectively.

    Figure 7 shows the XAS and corresponding NTO in the1Π1state.Compared to the XAS of the3Π0+state, an additional absorption peak at 280.15 eV is observed in XAS atR=2.41 ?A,this peak is attributed to a transition from the carbon 1s orbital toσbonding orbital,as shown in Fig.7(a).AtR=2.60 ?A (Fig.7(b)), XAS exhibits an absorption peak at 279.80 eV, corresponding to a transition from the carbon 1s orbital toπbonding orbital.Therefore, the stronger absorption of1Π1in the low-energy region within 0 fs–10 fs in XAS is attributed to the transition from the carbon 1s orbital to the bonding orbital.As the Br–C bond elongates, the absorption peak attributed to the transition from the carbon 1s orbital toσ?antibonding orbital exhibits a significant redshift, which is caused by the weakening of the Br–C bond.At the same time, the absorption peak associated with the transition from the carbon 1s orbital toπ?antibonding orbital undergoes a minor blueshift,which observation is consistent with that of the3Π0+state.

    Fig.7.The XAS simulation of the carbon K-edge and corresponding natural transition orbitals (NTO) in the 1Π1 state were conducted by varying the values of R for BrCN,while(a)R=2.41 ?A,(b)R=2.60 ?A,(c)R=2.80 ?A,(d)R=3.20 ?A,and(e)R=4.41 ?A,respectively.

    4.Conclusion

    A multi-reference fewest-switches surface hopping(FSSH)simulation is employed to investigate the photodissociation dynamics of cyanogen bromide in the A continuum.Maintaining the linear structure of the BrCN molecule, the3Π0+and1Π1PESs cross when the C–Br distance is 2.57 ?A.The linear structure of BrCN is the lowest energy structure in the ground state, while all excited states exhibit non-linear structures with the lowest energy,indicating that rotational excitation occurs in the CN fragment during the photodissociation.After being excited from1Σ0+to3Π0+or1Π1state,the distance between the Br and C in BrCN increases rapidly,and the CN fragment undergoes rotation.In trajectories starting from3Π0+,the rotational excitation of the CN fragment is higher than that starting from1Π1.Employing SA-CASSCF and RASSI within OpenMolcas,and excited state trajectories calculated with SHARC, we simulate the XAS of the BrCN photodissociation process.The XAS of carbonK-edge following1Σ0+to3Π0+and1Π1photoexcitation provides detailed dynamical information of the nuclear and electronic dynamics.Peak shifting in the XAS spectra reveals the increase of the Br–C bond length and the rotation of the CN fragment during the photodissociation process of BrCN.

    Our research demonstrates that the FSSH method has great potential in predicting the dynamics of bond breaking or photodissociation in small molecules, providing detailed information about the dynamic evolution.Due to the similar linear structure of halogen cyanide molecules,our method can be reasonably extended to the study of photodissociation processes of ICN,FCN,and ClCN.Our method can also be used to investigate other small molecules containing bromine.In the future,we plan to apply our method to investigate the photodissociation processes of other small molecules,such as the photodissociation of ammonia molecule under 200 nm ultraviolet light.By studying the photodissociation dynamics of BrCN,we can better predict the generation and distribution of bromine radicals,leading to improved strategies for mitigating atmospheric pollution and protecting the ozone layer.

    Acknowledgments

    H.W.and K.Z.were supported by the start-up funding of ShanghaiTech University in China.This work was also supported by a user project at the Molecular Foundry (LBNL)and its computing resources administered by the High-Performance Computing Services Group at LBNL.Work at the Molecular Foundry was supported by the Office of Science and Office of Basic Energy Sciences of the U.S.Department of Energy (Grant No.DE-AC02-05CH11231).This research used resources of the National Energy Research Scientific Computing Center (NERSC), a U.S.Department of Energy Office of Science User Facility located at Lawrence Berkeley National Laboratory(Grant No.DE-AC02-05CH11231).This work was also supported by the High-Performance Computing(HPC)Platform of ShanghaiTech University.We would like to thank Jingxiang Zou for the discussion of NTO analysis.

    国产永久视频网站| a 毛片基地| 激情 狠狠 欧美| 91在线精品国自产拍蜜月| 国产精品久久久久久av不卡| 亚洲精品成人av观看孕妇| 久久 成人 亚洲| 熟女人妻精品中文字幕| 最近最新中文字幕大全电影3| av线在线观看网站| 欧美成人午夜免费资源| 国产免费视频播放在线视频| 在线观看国产h片| 一级毛片我不卡| 欧美国产精品一级二级三级 | 欧美成人午夜免费资源| 中文字幕免费在线视频6| 成人午夜精彩视频在线观看| 欧美三级亚洲精品| 国产高潮美女av| 欧美精品人与动牲交sv欧美| 男人舔奶头视频| 深夜a级毛片| www.色视频.com| 丰满迷人的少妇在线观看| 成人无遮挡网站| av女优亚洲男人天堂| 国产精品一区二区在线不卡| 日日摸夜夜添夜夜爱| 欧美xxxx性猛交bbbb| 精品99又大又爽又粗少妇毛片| 亚洲国产精品成人久久小说| 高清在线视频一区二区三区| 精品视频人人做人人爽| 欧美xxⅹ黑人| 97超视频在线观看视频| 一区二区三区免费毛片| 久久久久久人妻| 国产高清三级在线| 色网站视频免费| 日韩av在线免费看完整版不卡| 欧美日韩在线观看h| 蜜臀久久99精品久久宅男| 丰满人妻一区二区三区视频av| 日韩成人av中文字幕在线观看| 国产综合精华液| 在线观看国产h片| 少妇裸体淫交视频免费看高清| 99九九线精品视频在线观看视频| 丝袜脚勾引网站| 国产日韩欧美亚洲二区| 日韩,欧美,国产一区二区三区| 寂寞人妻少妇视频99o| 成人毛片a级毛片在线播放| 亚洲精品自拍成人| 2022亚洲国产成人精品| 中国国产av一级| 欧美xxxx黑人xx丫x性爽| 一级黄片播放器| 国产一级毛片在线| 国产精品国产av在线观看| 女性生殖器流出的白浆| 亚洲第一区二区三区不卡| 国产午夜精品久久久久久一区二区三区| 看非洲黑人一级黄片| 一本—道久久a久久精品蜜桃钙片| 九色成人免费人妻av| 婷婷色综合大香蕉| 久久97久久精品| 青春草国产在线视频| videos熟女内射| 国产一区有黄有色的免费视频| 日韩视频在线欧美| h日本视频在线播放| 制服丝袜香蕉在线| 免费高清在线观看视频在线观看| 寂寞人妻少妇视频99o| 成人毛片a级毛片在线播放| 精品午夜福利在线看| 国产av国产精品国产| 久久韩国三级中文字幕| 亚洲美女搞黄在线观看| 人体艺术视频欧美日本| 亚洲精品,欧美精品| 91久久精品国产一区二区三区| 在线免费十八禁| 天堂俺去俺来也www色官网| 观看免费一级毛片| 人体艺术视频欧美日本| 在线观看av片永久免费下载| 精品国产露脸久久av麻豆| 国产精品国产三级专区第一集| 中文精品一卡2卡3卡4更新| 一级毛片我不卡| 伊人久久国产一区二区| 你懂的网址亚洲精品在线观看| 国产伦在线观看视频一区| 黄片wwwwww| 永久网站在线| av在线观看视频网站免费| 男女边吃奶边做爰视频| 亚洲国产精品999| 亚洲色图av天堂| 男人和女人高潮做爰伦理| 美女cb高潮喷水在线观看| 嫩草影院入口| 少妇被粗大猛烈的视频| 国产免费一级a男人的天堂| 国产有黄有色有爽视频| 国产黄片美女视频| 国产精品99久久久久久久久| 一级av片app| 欧美成人一区二区免费高清观看| 少妇丰满av| 久久精品国产a三级三级三级| 欧美zozozo另类| 啦啦啦中文免费视频观看日本| 久久韩国三级中文字幕| 亚洲国产精品一区三区| 黑人猛操日本美女一级片| 五月伊人婷婷丁香| 人体艺术视频欧美日本| 精品熟女少妇av免费看| 秋霞伦理黄片| 国产精品久久久久久精品古装| 在线免费观看不下载黄p国产| 视频区图区小说| 亚洲av成人精品一区久久| 大片电影免费在线观看免费| 一级爰片在线观看| 九九爱精品视频在线观看| 99热全是精品| 国产美女午夜福利| 国产精品99久久99久久久不卡 | 毛片一级片免费看久久久久| 美女cb高潮喷水在线观看| 欧美xxxx性猛交bbbb| 亚洲国产av新网站| 97在线人人人人妻| 免费av中文字幕在线| 亚洲成人一二三区av| 免费人妻精品一区二区三区视频| 免费观看av网站的网址| 男人舔奶头视频| 亚洲av中文av极速乱| 插逼视频在线观看| 交换朋友夫妻互换小说| 美女主播在线视频| 又粗又硬又长又爽又黄的视频| 一边亲一边摸免费视频| 777米奇影视久久| 一边亲一边摸免费视频| 日韩av免费高清视频| 亚洲精品日韩av片在线观看| 亚洲国产精品专区欧美| 免费观看a级毛片全部| 欧美精品人与动牲交sv欧美| 3wmmmm亚洲av在线观看| 在线观看三级黄色| 九九久久精品国产亚洲av麻豆| 久久久久精品久久久久真实原创| 国产精品一及| 精品一区二区免费观看| 在线观看三级黄色| 丰满乱子伦码专区| 久久99热这里只频精品6学生| 亚洲欧美清纯卡通| 日本黄色片子视频| 久久久a久久爽久久v久久| 久久亚洲国产成人精品v| 亚洲av二区三区四区| 交换朋友夫妻互换小说| 国产极品天堂在线| 日韩三级伦理在线观看| 日本爱情动作片www.在线观看| 国产精品久久久久成人av| 男人狂女人下面高潮的视频| 精品国产露脸久久av麻豆| 国产男人的电影天堂91| 久久精品久久久久久久性| 欧美人与善性xxx| 91午夜精品亚洲一区二区三区| 久久99热6这里只有精品| 国产成人精品一,二区| 国产高潮美女av| 欧美亚洲 丝袜 人妻 在线| 亚洲精品国产成人久久av| 少妇 在线观看| 国产精品久久久久久久久免| 男人添女人高潮全过程视频| 一级毛片黄色毛片免费观看视频| 又大又黄又爽视频免费| a级毛片免费高清观看在线播放| 免费观看的影片在线观看| 啦啦啦啦在线视频资源| 18禁动态无遮挡网站| 大又大粗又爽又黄少妇毛片口| 亚洲丝袜综合中文字幕| 久久久精品免费免费高清| 久久韩国三级中文字幕| 老女人水多毛片| 在线看a的网站| 亚洲国产欧美人成| 97精品久久久久久久久久精品| 久久久久久久久久成人| 亚洲精品自拍成人| 国产精品秋霞免费鲁丝片| 国产视频首页在线观看| 九九爱精品视频在线观看| 欧美日韩亚洲高清精品| 国产视频首页在线观看| 亚洲天堂av无毛| 日韩av免费高清视频| 中文天堂在线官网| 91精品一卡2卡3卡4卡| 中文在线观看免费www的网站| 久久久久久久国产电影| 国产精品久久久久久精品古装| videos熟女内射| 一区二区三区四区激情视频| 欧美zozozo另类| 建设人人有责人人尽责人人享有的 | 久久99精品国语久久久| 亚洲欧美成人综合另类久久久| 亚洲伊人久久精品综合| 久久久午夜欧美精品| 97超视频在线观看视频| 亚洲成人手机| 晚上一个人看的免费电影| 午夜精品国产一区二区电影| 久久亚洲国产成人精品v| 国产免费一级a男人的天堂| 国产精品国产三级国产av玫瑰| 国产国拍精品亚洲av在线观看| 国产亚洲精品久久久com| 老熟女久久久| 99视频精品全部免费 在线| 中文在线观看免费www的网站| 日本欧美国产在线视频| 国产伦在线观看视频一区| 赤兔流量卡办理| 伦精品一区二区三区| 国产黄片美女视频| 22中文网久久字幕| 欧美日韩一区二区视频在线观看视频在线| 丝袜喷水一区| 80岁老熟妇乱子伦牲交| 亚洲久久久国产精品| 国产精品一区二区性色av| 亚洲欧洲国产日韩| 美女福利国产在线 | 中文欧美无线码| 亚洲欧美精品专区久久| 亚洲国产精品专区欧美| 亚州av有码| 噜噜噜噜噜久久久久久91| 在线观看免费高清a一片| 亚洲国产最新在线播放| 欧美zozozo另类| 国产精品久久久久成人av| 纯流量卡能插随身wifi吗| 晚上一个人看的免费电影| 免费av不卡在线播放| 精品国产三级普通话版| 亚洲人成网站在线观看播放| 丰满人妻一区二区三区视频av| 亚洲精品视频女| 日韩成人av中文字幕在线观看| 亚洲自偷自拍三级| 最新中文字幕久久久久| 免费av不卡在线播放| 免费看日本二区| 色视频www国产| 亚洲精品一区蜜桃| 99精国产麻豆久久婷婷| 熟女电影av网| 1000部很黄的大片| 国产精品无大码| 自拍欧美九色日韩亚洲蝌蚪91 | 国产欧美日韩精品一区二区| 精华霜和精华液先用哪个| 日本欧美国产在线视频| 免费av不卡在线播放| 久久人人爽av亚洲精品天堂 | 国产成人精品婷婷| 国产日韩欧美亚洲二区| 国产一区二区三区av在线| 国产精品久久久久成人av| 十八禁网站网址无遮挡 | 人妻少妇偷人精品九色| 黄色日韩在线| 亚洲aⅴ乱码一区二区在线播放| 在线观看一区二区三区激情| 久久久成人免费电影| 少妇熟女欧美另类| 国产免费福利视频在线观看| 一级毛片我不卡| 亚洲性久久影院| 一边亲一边摸免费视频| tube8黄色片| 久久国产乱子免费精品| 麻豆乱淫一区二区| 美女脱内裤让男人舔精品视频| 国产综合精华液| 精品视频人人做人人爽| 亚洲一级一片aⅴ在线观看| 国产黄色视频一区二区在线观看| 永久网站在线| 插阴视频在线观看视频| 久久久久久久久久久免费av| 久久精品久久精品一区二区三区| 色5月婷婷丁香| 日本vs欧美在线观看视频 | 欧美变态另类bdsm刘玥| 一本—道久久a久久精品蜜桃钙片| 欧美成人精品欧美一级黄| 男女啪啪激烈高潮av片| 精品人妻熟女av久视频| 边亲边吃奶的免费视频| 大香蕉97超碰在线| 亚洲av二区三区四区| 黄色怎么调成土黄色| 国产又色又爽无遮挡免| 多毛熟女@视频| 在线观看一区二区三区激情| 爱豆传媒免费全集在线观看| 中文字幕人妻熟人妻熟丝袜美| 日本午夜av视频| 国产精品国产三级国产专区5o| av在线蜜桃| 欧美xxxx黑人xx丫x性爽| 最近最新中文字幕大全电影3| 日日啪夜夜爽| 天美传媒精品一区二区| 亚洲人成网站高清观看| 老师上课跳d突然被开到最大视频| 国产精品99久久久久久久久| 国产黄频视频在线观看| 亚洲欧洲日产国产| 麻豆成人午夜福利视频| 精品一品国产午夜福利视频| 国产爱豆传媒在线观看| 精品一区在线观看国产| 国产中年淑女户外野战色| 日日摸夜夜添夜夜添av毛片| 精品人妻视频免费看| 久久 成人 亚洲| av黄色大香蕉| 免费观看av网站的网址| 又粗又硬又长又爽又黄的视频| 狂野欧美白嫩少妇大欣赏| 国产成人freesex在线| 亚洲av中文av极速乱| 一二三四中文在线观看免费高清| 九草在线视频观看| 日本av手机在线免费观看| 亚洲精品一二三| 亚洲精品国产成人久久av| 99久久精品一区二区三区| 免费不卡的大黄色大毛片视频在线观看| 亚洲美女搞黄在线观看| 男女下面进入的视频免费午夜| 韩国av在线不卡| 日韩av不卡免费在线播放| 精品一区二区三区视频在线| 成人毛片a级毛片在线播放| 插阴视频在线观看视频| 日本-黄色视频高清免费观看| 亚洲欧美清纯卡通| 免费观看在线日韩| 国产老妇伦熟女老妇高清| 肉色欧美久久久久久久蜜桃| 国内精品宾馆在线| 身体一侧抽搐| 国产精品99久久99久久久不卡 | 美女中出高潮动态图| 国产日韩欧美亚洲二区| 3wmmmm亚洲av在线观看| 午夜精品国产一区二区电影| 一区在线观看完整版| 国产v大片淫在线免费观看| 亚洲精品久久久久久婷婷小说| 日本欧美国产在线视频| 亚洲av日韩在线播放| 国产精品嫩草影院av在线观看| 免费观看av网站的网址| 久久久久精品性色| 成人毛片60女人毛片免费| 春色校园在线视频观看| 一级av片app| 欧美日韩在线观看h| 国产亚洲一区二区精品| 亚洲在久久综合| 亚洲av成人精品一二三区| 在线观看免费高清a一片| 国产精品久久久久久久久免| 国产伦精品一区二区三区四那| 久久久午夜欧美精品| 啦啦啦中文免费视频观看日本| 国产深夜福利视频在线观看| 日本免费在线观看一区| 欧美另类一区| 又爽又黄a免费视频| 三级国产精品欧美在线观看| 日韩av免费高清视频| 久久综合国产亚洲精品| 午夜精品国产一区二区电影| 最近中文字幕2019免费版| 精华霜和精华液先用哪个| 天美传媒精品一区二区| 欧美高清性xxxxhd video| 国产熟女欧美一区二区| 有码 亚洲区| 热re99久久精品国产66热6| 看十八女毛片水多多多| 97超视频在线观看视频| 91精品国产国语对白视频| 精品亚洲成a人片在线观看 | 日韩成人av中文字幕在线观看| 中文在线观看免费www的网站| 国产乱人视频| 欧美zozozo另类| 日韩电影二区| 精品国产乱码久久久久久小说| 日韩亚洲欧美综合| 国产爱豆传媒在线观看| 欧美丝袜亚洲另类| 蜜臀久久99精品久久宅男| 亚洲av综合色区一区| 26uuu在线亚洲综合色| 久久久久久人妻| 日韩制服骚丝袜av| 国产精品麻豆人妻色哟哟久久| 日韩中文字幕视频在线看片 | 久久综合国产亚洲精品| 看十八女毛片水多多多| 99久久精品国产国产毛片| 国产精品一区二区性色av| 亚洲欧美中文字幕日韩二区| 日产精品乱码卡一卡2卡三| 国产精品伦人一区二区| 色婷婷av一区二区三区视频| 欧美一级a爱片免费观看看| 2018国产大陆天天弄谢| 亚洲精品一二三| 最近中文字幕高清免费大全6| 亚洲中文av在线| 能在线免费看毛片的网站| 欧美三级亚洲精品| 中文乱码字字幕精品一区二区三区| 日韩人妻高清精品专区| 亚洲欧美日韩另类电影网站 | 国产亚洲午夜精品一区二区久久| 一级毛片aaaaaa免费看小| 搡老乐熟女国产| 国产精品99久久久久久久久| 欧美日韩国产mv在线观看视频 | 亚洲精品第二区| 91aial.com中文字幕在线观看| 亚洲国产成人一精品久久久| 黑人高潮一二区| 久久毛片免费看一区二区三区| 一级毛片电影观看| 国产探花极品一区二区| 丰满少妇做爰视频| 边亲边吃奶的免费视频| 一级av片app| 日本wwww免费看| 亚洲精品国产av蜜桃| 精品人妻视频免费看| 久久久久性生活片| 男女免费视频国产| 久久久久久久精品精品| av视频免费观看在线观看| 日韩不卡一区二区三区视频在线| 99热全是精品| 成人毛片a级毛片在线播放| 婷婷色综合www| 久久国产精品大桥未久av | 亚洲成人手机| 亚洲欧美日韩东京热| a级毛片免费高清观看在线播放| 在线观看一区二区三区激情| 一区在线观看完整版| 日本黄色片子视频| 亚洲激情五月婷婷啪啪| 亚洲国产精品成人久久小说| 男女免费视频国产| 在现免费观看毛片| 国产成人精品久久久久久| 最近手机中文字幕大全| 久久国产精品大桥未久av | 水蜜桃什么品种好| 久久国产乱子免费精品| 国产精品麻豆人妻色哟哟久久| 国产精品一区二区在线不卡| 性高湖久久久久久久久免费观看| 国内精品宾馆在线| 亚洲欧美日韩无卡精品| 中文字幕人妻熟人妻熟丝袜美| 黑人猛操日本美女一级片| 国产在线免费精品| 国产老妇伦熟女老妇高清| 国产精品无大码| 精品亚洲成国产av| 成人漫画全彩无遮挡| 国产高清不卡午夜福利| 亚洲国产色片| 美女主播在线视频| 欧美一级a爱片免费观看看| 一级毛片久久久久久久久女| 黑丝袜美女国产一区| 亚洲欧美中文字幕日韩二区| 看非洲黑人一级黄片| 日韩视频在线欧美| 久久青草综合色| 日本黄大片高清| 色视频www国产| 色吧在线观看| 亚洲国产精品999| 免费观看无遮挡的男女| 欧美激情极品国产一区二区三区 | 91精品一卡2卡3卡4卡| 一区二区三区免费毛片| 日韩一本色道免费dvd| 99热这里只有精品一区| 高清av免费在线| www.av在线官网国产| 热99国产精品久久久久久7| 免费人妻精品一区二区三区视频| 国产乱人偷精品视频| 狂野欧美激情性xxxx在线观看| 五月开心婷婷网| 亚洲精品日本国产第一区| 深夜a级毛片| 日本欧美视频一区| 一区二区三区四区激情视频| 中文字幕制服av| 18禁裸乳无遮挡动漫免费视频| 熟女av电影| 国产在视频线精品| 亚洲精品,欧美精品| 免费黄频网站在线观看国产| 久久影院123| 黄色日韩在线| 99热全是精品| 18禁裸乳无遮挡动漫免费视频| 人妻一区二区av| 大香蕉97超碰在线| 欧美日韩精品成人综合77777| 美女中出高潮动态图| 丰满迷人的少妇在线观看| 色5月婷婷丁香| 一区二区三区四区激情视频| 伦理电影大哥的女人| 毛片一级片免费看久久久久| 人人妻人人澡人人爽人人夜夜| 美女内射精品一级片tv| 99精国产麻豆久久婷婷| 99久国产av精品国产电影| 永久免费av网站大全| 国产成人aa在线观看| av在线观看视频网站免费| 国产精品蜜桃在线观看| 成人国产麻豆网| 涩涩av久久男人的天堂| 亚洲精品色激情综合| 国产伦精品一区二区三区四那| 舔av片在线| 免费看光身美女| 久久午夜福利片| 天堂中文最新版在线下载| 国产成人aa在线观看| 中文欧美无线码| 亚洲不卡免费看| 各种免费的搞黄视频| 国产欧美日韩精品一区二区| 成人漫画全彩无遮挡| 精品酒店卫生间| 国产亚洲精品久久久com| 交换朋友夫妻互换小说| 少妇 在线观看| 亚洲天堂av无毛| 在线亚洲精品国产二区图片欧美 | 丝袜喷水一区| 国产精品欧美亚洲77777| 人人妻人人爽人人添夜夜欢视频 | 少妇的逼好多水| 97超碰精品成人国产| 久久久久久久精品精品| 国产男女超爽视频在线观看| 一本一本综合久久| 亚洲精品日韩在线中文字幕| 极品教师在线视频| 99久久精品热视频| 中文字幕久久专区| 久久ye,这里只有精品| 人妻制服诱惑在线中文字幕| 亚洲va在线va天堂va国产| 精品人妻偷拍中文字幕| 99热这里只有是精品在线观看| 精品久久久久久久久亚洲| 又爽又黄a免费视频| 久久久国产一区二区| 日日摸夜夜添夜夜添av毛片| 久久韩国三级中文字幕| 亚洲av日韩在线播放| 久久99热6这里只有精品| 一本—道久久a久久精品蜜桃钙片| 久久久久国产网址| 狂野欧美白嫩少妇大欣赏| 亚州av有码| h日本视频在线播放| 日韩一区二区三区影片| 亚洲国产欧美在线一区|