• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optical spectrum of ferrovalley materials:A case study of Janus H-VSSe

    2024-01-25 07:14:16ChaoBoLuo羅朝波WenChaoLiu劉文超andXiangYangPeng彭向陽
    Chinese Physics B 2024年1期
    關鍵詞:向陽

    Chao-Bo Luo(羅朝波), Wen-Chao Liu(劉文超), and Xiang-Yang Peng(彭向陽)

    Hunan Key Laboratory for Micro-Nano Energy Materials and Devices,School of Physics and Optoelectronics,Xiangtan University,Xiangtan 411105,China

    Keywords: valleytronics,first-principles calculations,GW approach and Bethe–Salpeter equation(GW-BSE),excitonic effects

    1.Introduction

    Valleytronics materials have inequivalent gapped valleys in the Brillouin zone, formed by pairs of extrema in the conduction and valence band edges at the samek-points.[1–3]The H phase monolayer transition metal dichalcogenides,e.g.,MoS2,WSe2,are found to be excellent valleytronic materials with direct band gaps located at the valleys in the energy range of visible light.[4–6]Since the space inversion symmetry is broken, valleytronic materials have opposite Berry curvatures at the inequivalent valleys,leading to various quantum phenomena, such as valley-dependent light selection rules and valley Hall effect.[1]The electrons in theKand–Kvalleys can only absorb light with opposite circular polarization.This valley dependent optical selection rule provides an approach to the realization of the valley polarization and can be applied in information encoding.Therefore, it is important to study the optical properties of valleytronic materials.

    In non-magnetic valleytronic materials, e.g., MoS2, the energy gaps of the inequivalent valleys have the same magnitude.The inequivalent valley gaps become different if the time reversal symmetry is broken by, e.g., adding a magnetic field,[7,8]doping magnetic atoms,[9,10]or forming a heterojunction with a magnetic substrate to realize valley polarization.[11–14]However, the resulting difference in the gaps is quite small by these means.In ferromagnetic valleytronic materials, e.g., VSe2,[15,16]the difference of the inequivalent gaps is much larger, leading to an intrinsic difference of charge occupancy in the valleys and hence resulting in the spontaneous valley polarization.The latter are called ferrovalley materials, which can be applied in non-volatile valleytronic devices.Due to the unequal gaps at the inequivalent valleys, the optical properties of ferrovalley materials should be distinct from the normal valleytronic materials, which are still to be addressed.

    Recently,more and more ferrovalley materials have been discovered, such as H-VSe2,[15,16]H-LaBr2,[17]H-GdI2,[18]H-FeCl2,[19,20]Nb3I8,[21]MN2H2[22]and VSi2N4[23,24]and their Janus structures,[9,25–31]in which not only the spatial inversion symmetry but also the time reversal symmetry is broken.Ferrovalley materials are promising materials for spintronic and valleytronic devices, but the optical properties of ferrovalley materials in terms of exciton effects have yet to be studied.In Janus ferrovalley materials, the symmetry is further lowered by breaking the mirror symmetry.Theoretical calculations show that Janus H-VSSe is a multiferroic material with ferroelasticity,ferromagnetism and ferrovalley.It has been shown to have dynamically and thermodynamically stable,and its valleytronic properties are well tunable.[25,28,32]In this work,we will take H-VSSe as an example of the ferrovalley materials to study its optical properties.The influences of ferromagnetism,valley polarization and spin–orbital coupling on the electronic structure and exciton spectrum will be investigated.

    There have been experimental and theoretical researches on the optical properties of valleytronic materials.In computational studies, in order to accurately calculate the band gap, it is necessary to go beyond the normal density functional theory (DFT), since it usually considerably underestimates the band gap.After the optical transition, the electron jumping to the conduction band will interact with the hole it leaves in the valence band, and the electron–hole binding energy will significantly affect the optical spectrum if the screening is not effective.In two dimensional materials,the screening is usually weak due to its finite size along the direction normal to the plane.In previous studies, the optical properties of valleytronic materials,e.g.,MoS2,WS2and WSe2,[4–6]have been calculated.In the case of monolayer MoS2, the calculated DFT bandgap is about 1.60 eV,[5]whereas the calculated GW bandgap gives a much larger value of 2.84 eV,[4]indicating the many-body correction is large.To address the band gap problem in DFT,the GW method based many body perturbation is used in this study.To account for the effects of electron–hole interaction on the optical spectrum, Bethe–Salpeter equations(BSE)are solved on top of the GW calculations.The first peak in the BSE dielectric function(absorption spectrum)is located at 1.88 eV,[4]in good agreement with the experimental photoluminescence spectroscopy.[33]The position of the first peak by BSE (1.88 eV) is much smaller than the band gap(2.84 eV),which suggests that the electron–hole interaction is strong and hence cannot be ignored in the study of the optical properties of valleytronic materials.Therefore,in the following study of monolayer H-VSSe,we use the GW plus BSE approach to describe the many body effect and use the electron–hole interaction to give more accurate and reliable predictions of the optical properties.

    Fig.1.The side and top views of Janus H-VSSe.The red, green and yellow spheres represent the V,Se,and S atoms,respectively.

    2.Methods

    The first-principles calculations are carried out using the Viennaab initiosimulation package (VASP),[34,35]with generalized gradient approximation in the form of Perdew–Burke–Ernzerhof (PBE) functional.[36]The projector augmented wave (PAW) potentials are employed to describe the core–electron interaction.A total of 23 electrons in V (p, d and s orbitals), S (s and p orbitals) and Se (s and p orbitals)atoms are taken as valence electrons in the pseudopotentials.The electron wave functions are expanded by plane waves with an energy cutoff of 300 eV.Our tests show that the cut-off energies of 300 eV and 400 eV yield almost the same results.In order to minimize the influence of the periodic images,a vacuum layer larger than 15 ?A is added between the slabs.The effect of spin–orbit coupling is considered in the calculation.In the Brillouin zone,a series ofΓ-centeredk-grids have been evaluated up to 15×15×1.Hybrid functional calculations are further carried out using the Heyd–Scuseria–Ernzerhof exchange–correlation functional(HSE06),[37]based on which the partially self-consistent GW[38]calculations are performed including 192 orbitals(169 empty orbitals).In order to obtain quasiparticle energy bands,the Wannier90 package is used for interpolation fitting,[39]and the d orbitals of V atoms and the p orbitals of S and Se atoms are selected for initial projection,with a total of 22 electron orbitals.The Berry curvature of the valence bands of H-VSSe is obtained by the Wannier90 package.Finally, the Bethe–Salpeter equations are solved on top of GW,with the eight highest valence bands and eight lowest conduction bands taken as the basis of the excitonic state,and the optical absorption spectrum is obtained.

    3.Results and discussion

    3.1.Quasiparticle band structures of Janus H-VSSe

    In our calculations,the lattice constant of H-VSSe is optimized to be 3.26 ?A.As shown in Fig.2,we calculate the band structures of Janus H-VSSe by using PBE, hybrid functional HSE06,and GW0methods,taking spin polarization into consideration.Among them,PBE bands and their Wannier interpolated bands almost coincide with each other,indicating that the selected projected orbitals are suitable.Although overall the H-VSSe has an indirect band gap, the bands of the same spin have two identical direct band gaps located at theKand?Kpoints, which are 0.7769 eV, 1.0299 eV and 1.4315 eV by PBE, HSE06 and GW0methods, respectively.The latter two gaps are significantly larger than the PBE gap,indicating that the ordinary DFT calculation considerably underestimates the band gap of H-VSSe.The GW0band gap is about twice as much as the PBE gap and 40%larger than that by HSE06,and therefore the quasiparticle effect in the two dimensional H-VSSe is strong.Regardless of the calculation methods, all the energy bands have valleys near the Fermi level at theKand?Kpoints.The band edges of the valleys are of the same spin polarization,showing that H-VSSe is a magnetic valleytronic material.The calculated magnetic moment per primitive cell isμB.

    Fig.2.The band structure of H-VSSe with ferromagnetism but without SOC.Panels(a)–(c)are calculated by PBE,HSE06 and GW0,respectively.

    Fig.3.The band structure of H-VSSe with ferromagnetism and SOC.Panels(a)–(c)are calculated by PBE,HSE06 and GW0,respectively.

    Since transition metal elements have strong spin–orbit coupling (SOC), we further take it into consideration in the calculation and obtain band structures, as shown in Fig.3.Similar to the bands without SOC, the SOC bands are also gapped at theKand?Kpoints.Without SOC, the gaps at theKand?Kvalleys are degenerate(Fig.2).After the introduction of SOC,the valley gap degeneracy is lifted as shown in Fig.3.The valley gap atKis 0.736 eV (PBE), 0.883 eV(HSE06), and 1.318 eV (GW0), respectively.Whereas it is larger at?K, which correspondingly is 0.816 eV, 1.141 eV,and 1.510 eV,leading to a gap difference of 0.080 eV,0.258 eV and 0.192 eV, respectively.The mean value of the gaps atKand?Kwith SOC is close to the gap without SOC.The gap difference is a combined effect of spin polarization and SOC.The conduction and valence edge states at the±Kvalleys are found to be mainly contributed from the dz2and dx2?y2±idxystates of the V atom, respectively.Therefore, thezcomponent of the orbital magnetic momentμLof the conduction and valence edge states at the±Kvalleys is about 0 and±2μB,respectively.HereμBis the Bohr magneton.We have also calculated the mean value of spin of the valence band edge and found that〈?σx〉≈〈?σy〉≈0 and〈?σz〉≈1, where ?σis the Pauli operator.The SOC in the V atom will induce an energy shift which is proportional to〈?σz〉·μL.The conduction band edges in the valleys,in whichμL≈0,almost remain unshifted.SinceμLis about 2μBand?2μBat the valence band edge of theKand the?Kvalleys, the SOC induces opposite energy shift in the valence band edges of the±Kvalleys,giving rise to different energy gaps at the inequivalent valleys.The valley with a smaller gap is easier to be excited and the carrier occupancy is unequal at the two valleys, giving rise to valley polarization.The degree of valley polarization is also underestimated by PBE.

    3.2.Berry curvature of Janus H-VSSe

    In order to study the valleytronic properties of H-VSSe,on the basis of the energy band calculations,we calculate the Berry curvature and investigate the effect of SOC on it.It is found that when only the spin polarization is considered in the absence of SOC,the Berry curvatures at theKand?Kvalleys are?11.28 ?A2and 11.28 ?A2, respectively, which are of the same magnitude and opposite sign.Since the Berry curvature is an equivalent magnetic field in the momentum space,it can act on the moving carriers, and the opposite Berry curvature can lead to the valley Hall effect.[40]In the presence of SOC,as shown in Fig.4(b), the Berry curvatures of H-VSSe at the two valleysK(?K)are?16.41 ?A2and 9.09 ?A2,respectively.The signs are still opposite but the magnitudes are not equal,which can lead to anomalous valley Hall effect.[15]Therefore,H-VSSe is a potential magnetic valley material with intrinsic valley polarization.

    Fig.4.The Berry curvature of Janus H-VSSe.Panel(a)with ferromagnetism and without SOC,panel(b)with ferromagnetism and SOC.

    3.3.Excitonic effects of Janus H-VSSe

    Optical excitation is an important means to excite the valley carriers.Usually, the 2D materials have relatively weak screening,and therefore the electron–hole interaction is strong, giving rise to large binding energy.In non-magnetic transition metal dichalcogenides such as MoS2, it has been found both experimentally and theoretically that there are two exciton peaks in the photoluminescent spectrum.One corresponds to the A exciton formed by an electron in the bottom of the valley conduction band and a hole left in the top of the valley valence band.The other is B exciton formed by an electron in the bottom of the valley conduction band and a hole left in the second highest valence band in the valley.[41,42]The band structure of H-VSSe shown in Fig.3 differs from that of MoS2significantly.It is interesting to know how the optical spectrum of H-VSSe would change due to its ferromagnetism.

    To study the optical properties of H-VSSe, we calculate its dielectric function based on the GW0calculation.At first,only the spin polarization is considered without SOC.The optical transition will create an electron in the conduction band and leave a hole in the valence band.If the electrons and holes are free(no interaction),the excitation energy has to overcome the band gap (1.432 eV).As shown in Fig.5, the first peak of the imaginary part of the GW-RPA dielectric function is located at 1.432 eV, which is the same as its corresponding quasiparticle bandgap.In reality, the electron–hole pair will be bound by Coulomb attraction to form a hydrogenic atom,i.e., exciton.In comparison with the free electron and hole state, the bounding electron–hole state has lower energy and therefore the excitation energy is lower than the band gap.The energy difference is the excitonic binding energy.In the GWBSE spectrum, the first peak is red-shifted to 0.911 eV after the electron–hole attraction being taken into account, which corresponds to a binding energy of 0.521 eV.This first peak is split into two peaks around its old position(0.911 eV)after the inclusion of SOC.In contrast to MoS2and other similar materials,where the A and B excitonic peaks are due to the spin splitting in the same valley,the first two peaks of H-VSSe(red line in Fig.5)are from the two inequivalent valleys with different gaps(Fig.3).The splitting of the two peaks is different from the gap difference of the two inequivalent valleys.

    Fig.5.The calculated imaginary parts of the complex dielectric function ε2(ω) of H-VSSe on the k-grid of 15×15×1.The black dotted,blue dashed and red solid lines are the spectra calculated by RPA without SOC,BSE without SOC and BSE with SOC on the top of the GW0,respectively.

    From Table 1,it can be seen that the valley with a larger band gap has larger excitonic binding energy.Based on the hydrogenic picture of excitons, the binding energyEbof the electron–hole pair in the 2D systems is proportional toμ/ε2, whereμandεare the effective mass and dielectric constant.[43,44]Thek·ptheory points out that the effective masses of the electron and hole quasiparticles almost linearly depend on the energy gap.[43,45]Therefore,effective mass,energy gap and excitonic binding energy are proportional to each other.We calculate the electron and hole effective mass of the valleys using thek-grid of 15×15×1.It is found that at theKvalley, the calculated effective masses of the electron and hole are 3.80meand 4.09me,respectively,wheremeis the rest mass of an electron.For the?Kvalley with a larger band gap and larger excitonic binding energy (see Table 1), the corresponding calculated effective mass is larger,which are 5.09meand 5.05me,respectively.Therefore,our calculations basically agree with the hydrogenic model andk·ptheory.

    Table 1.Quasiparticle bandgaps, band gap difference, BSE peaks, BSE peak splitting and exciton binding energies of the two inequivalent valleys for different k-grids.

    From a technical point of view,optical transition simulation needs to use a sufficiently densek-point grid for integration over the irreducible Brillouin zone, therefore the convergence with respect tok-point sampling is very important.In order to reduce the calculation cost in GW-BSE calculations,we respectively use 400 eV and 300 eV as the plane wave cutoff energy.As shown in Table 1, it can be seen that for the non-SOC case with thek-grid of 15×15×1,the 300 eV and 400 eV cutoffs yield basically the same results,with the band gaps of 1.432 eV and 1.427 eV and the exciton peak positions of 0.911 eV and 0.911 eV,respectively.Therefore, the cutoff is set to be 300 eV in our calculations.For H-VSSe,we have consider a series ofk-grids of 6×6×1,9×9×1,12×12×1 and 15×15×1, and calculate the quasiparticle energy gaps and the positions of the excitonic peaks, as listed in Table 1.As the density of thek-grid increases, the band gap becomes smaller, the exciton peak gradually is blue-shifted.As a result, the calculated binding energy as the difference between the quasiparticle gap and the position of the first two excitonic peaks is also reduced simultaneously.The results in Table 1 show that good convergence has been achieved at thek-grid of 15×15×1.It can also be observed in Table 1 and Fig.6 that the difference of the gap atKand?Kis about 0.18 eV and the difference of the BSE peak positions is almost of the same value,both of which are almost invariant with respect to thekgrids.Table 1 also reveals that the?Kvalley has a larger band gap and a larger excitonic binding energy, suggesting that a larger gap leads to weaker screening.

    Fig.6.The calculated imaginary parts of complex dielectric function ε2(ω) of H-VSSe using different k-grids by BSE/GW method.The calculated spectra in panels (a)–(d) correspond to 6×6×1, 9×9×1,12×12×1 and 15×15×1 k-grids,respectively.The red and blue dash lines denote the absorption peaks due to the optical transitions at valley K and ?K without considering the electron–hole interaction.The numbers give the exciton binding energy.

    4.Conclusion

    We have investigated the optical properties of a ferrovalley material, Janus H-VSSe, by first-principles calculations.To accurately calculate the band gap,the GW0method based on many body perturbation is used.Both PBE and GW calculations show that H-VSSe is ferromagnetic.The GW gaps are found to be about two times larger than the PBE gaps,suggesting strong many body effects.The band gaps at the two inequivalent valleys degenerate in the absence of the SOC,and they become different with one gap increasing and the other one decreasing after the SOC is turned on.On the top of the GW calculation, the BSE is solved to obtain the optical spectrum including the electron–hole interaction.The binding energy of the lowest BSE peak in the excitonic spectrum corresponding to the optical gap, is much lower than that of the quasiparticle GW gap, which proves that the exciton effect is strong in H-VSSe.This BSE peak is split into two peaks by SOC.The splitting is about the same as the difference of the GW band gaps at the two inequivalent valleys in the presence of SOC.Our results show that the band structure of ferrovalley Janus H-VSSe is very different from that of MoS2.The two lowest BSE peaks in the optical spectrum of H-VSSe are from the two inequivalent valleys with different gaps,in contrast to the A and B exciton peaks of MoS2which are from the same valley.

    Acknowledgments

    Project supported by the National Natural Science Foundation of China (Grant No.11874315) and the Postgraduate Scientific Research Innovation Project of Hunan Province of China(Grant No.CX20220663).

    猜你喜歡
    向陽
    向陽而生
    哈哈畫報(2022年6期)2022-07-09 09:46:12
    “舌”從口出
    絢爛的“光”
    三月頭 驚蟄到
    臘月里來聊“臘”字
    向陽而生
    電閃雷鳴
    說“南”道“北”
    閱讀(低年級)(2021年2期)2021-04-08 02:16:27
    字海拾“貝”
    久久久久精品人妻al黑| 爱豆传媒免费全集在线观看| xxxhd国产人妻xxx| 一边摸一边做爽爽视频免费| 亚洲精品久久成人aⅴ小说| 欧美激情 高清一区二区三区| 免费在线观看完整版高清| av有码第一页| 狠狠狠狠99中文字幕| 母亲3免费完整高清在线观看| bbb黄色大片| 亚洲情色 制服丝袜| a级毛片黄视频| 女人被躁到高潮嗷嗷叫费观| av视频免费观看在线观看| 精品国产乱码久久久久久男人| 一级,二级,三级黄色视频| 一本—道久久a久久精品蜜桃钙片| 啦啦啦中文免费视频观看日本| 亚洲成人免费电影在线观看| 美女中出高潮动态图| 国产男女超爽视频在线观看| 黄色片一级片一级黄色片| 青青草视频在线视频观看| 国产精品久久久久久精品电影小说| 午夜免费成人在线视频| 国产欧美日韩一区二区三 | 日韩熟女老妇一区二区性免费视频| 亚洲黑人精品在线| 亚洲天堂av无毛| 亚洲国产av新网站| 亚洲熟女精品中文字幕| 香蕉丝袜av| 在线观看一区二区三区激情| 久热爱精品视频在线9| 国产高清国产精品国产三级| 一区二区三区乱码不卡18| 欧美日韩成人在线一区二区| 亚洲欧美成人综合另类久久久| 人妻一区二区av| 精品少妇一区二区三区视频日本电影| 男女国产视频网站| 两性夫妻黄色片| 成人亚洲精品一区在线观看| 91麻豆精品激情在线观看国产 | 黄色视频不卡| 天天添夜夜摸| 国产成人精品久久二区二区91| 母亲3免费完整高清在线观看| 丝袜人妻中文字幕| 亚洲天堂av无毛| 桃花免费在线播放| 亚洲国产中文字幕在线视频| 亚洲国产精品一区三区| 免费一级毛片在线播放高清视频 | a在线观看视频网站| 日本wwww免费看| 免费不卡黄色视频| 成年女人毛片免费观看观看9 | 自线自在国产av| 国产精品影院久久| 国产xxxxx性猛交| av视频免费观看在线观看| 久久精品熟女亚洲av麻豆精品| 亚洲男人天堂网一区| 19禁男女啪啪无遮挡网站| 肉色欧美久久久久久久蜜桃| a在线观看视频网站| 自拍欧美九色日韩亚洲蝌蚪91| 王馨瑶露胸无遮挡在线观看| 欧美精品高潮呻吟av久久| 久久人妻熟女aⅴ| 亚洲免费av在线视频| 黑人操中国人逼视频| 日韩制服丝袜自拍偷拍| 免费观看人在逋| 桃花免费在线播放| 欧美日韩精品网址| 亚洲av美国av| 又大又爽又粗| 搡老乐熟女国产| 国产高清国产精品国产三级| 亚洲国产精品一区三区| 91精品伊人久久大香线蕉| 国产精品熟女久久久久浪| 美女视频免费永久观看网站| 国产真人三级小视频在线观看| 波多野结衣av一区二区av| 久久久国产一区二区| 久久综合国产亚洲精品| 天堂8中文在线网| 一本大道久久a久久精品| 国产一区二区在线观看av| 如日韩欧美国产精品一区二区三区| 国产av又大| 美女扒开内裤让男人捅视频| 国产成人啪精品午夜网站| 9色porny在线观看| av一本久久久久| 老汉色av国产亚洲站长工具| 国产又爽黄色视频| 欧美午夜高清在线| 国产免费福利视频在线观看| 久久香蕉激情| 久久热在线av| 黄色视频在线播放观看不卡| 成年av动漫网址| 美女午夜性视频免费| 十八禁网站免费在线| 国产免费福利视频在线观看| 久久精品久久久久久噜噜老黄| 欧美少妇被猛烈插入视频| 精品久久久精品久久久| 在线观看www视频免费| 国产精品麻豆人妻色哟哟久久| www.999成人在线观看| 在线看a的网站| 欧美日韩福利视频一区二区| svipshipincom国产片| 午夜91福利影院| 一区二区三区激情视频| 国产成人系列免费观看| 久久久久精品人妻al黑| 最近最新免费中文字幕在线| 精品久久久久久电影网| 精品一区二区三区av网在线观看 | 俄罗斯特黄特色一大片| 手机成人av网站| 亚洲欧美日韩另类电影网站| bbb黄色大片| 国产精品 欧美亚洲| av天堂久久9| 99国产精品99久久久久| 高清欧美精品videossex| 亚洲欧美清纯卡通| 精品国产超薄肉色丝袜足j| 在线观看人妻少妇| 十八禁网站网址无遮挡| 免费观看人在逋| 在线观看免费日韩欧美大片| 亚洲avbb在线观看| 真人做人爱边吃奶动态| 黑人巨大精品欧美一区二区mp4| 国产在线一区二区三区精| 精品少妇黑人巨大在线播放| 肉色欧美久久久久久久蜜桃| 亚洲情色 制服丝袜| 少妇粗大呻吟视频| 亚洲欧美精品自产自拍| av天堂久久9| 成人av一区二区三区在线看 | 成人影院久久| 亚洲精品一区蜜桃| 久久免费观看电影| 美女福利国产在线| 国产精品久久久av美女十八| 日本av免费视频播放| 大片免费播放器 马上看| 天天影视国产精品| tocl精华| 五月天丁香电影| 另类亚洲欧美激情| 国产区一区二久久| 亚洲中文字幕日韩| 成年美女黄网站色视频大全免费| 亚洲欧洲日产国产| 三上悠亚av全集在线观看| 91av网站免费观看| 精品国产乱子伦一区二区三区 | 多毛熟女@视频| 在线观看www视频免费| 精品少妇一区二区三区视频日本电影| 啦啦啦 在线观看视频| 久久久久久亚洲精品国产蜜桃av| 亚洲中文字幕日韩| 亚洲七黄色美女视频| 久久久久精品国产欧美久久久 | av超薄肉色丝袜交足视频| 欧美少妇被猛烈插入视频| 老司机靠b影院| 叶爱在线成人免费视频播放| 91老司机精品| 成年av动漫网址| 肉色欧美久久久久久久蜜桃| 啦啦啦中文免费视频观看日本| 国产亚洲av片在线观看秒播厂| 欧美精品一区二区大全| 黄色毛片三级朝国网站| 一区福利在线观看| 日韩一卡2卡3卡4卡2021年| 美女国产高潮福利片在线看| 国产亚洲欧美在线一区二区| 欧美精品av麻豆av| 免费黄频网站在线观看国产| 欧美人与性动交α欧美精品济南到| 亚洲欧美一区二区三区久久| 久久久精品免费免费高清| 男人操女人黄网站| 欧美日韩精品网址| 99国产综合亚洲精品| √禁漫天堂资源中文www| 12—13女人毛片做爰片一| 中文字幕另类日韩欧美亚洲嫩草| 青青草视频在线视频观看| 男女午夜视频在线观看| 91国产中文字幕| 99九九在线精品视频| 国产真人三级小视频在线观看| 亚洲美女黄色视频免费看| 日韩免费高清中文字幕av| 国产一卡二卡三卡精品| 亚洲成国产人片在线观看| 国产视频一区二区在线看| 欧美日韩中文字幕国产精品一区二区三区 | 人妻一区二区av| 亚洲国产av影院在线观看| 9热在线视频观看99| 日韩三级视频一区二区三区| av一本久久久久| 国产精品影院久久| 成人黄色视频免费在线看| 亚洲专区字幕在线| 美女高潮到喷水免费观看| 欧美中文综合在线视频| av在线app专区| a在线观看视频网站| 天天躁日日躁夜夜躁夜夜| 亚洲第一青青草原| 中文精品一卡2卡3卡4更新| 老司机靠b影院| 亚洲一码二码三码区别大吗| 国产免费一区二区三区四区乱码| 久久av网站| 日韩大片免费观看网站| 天天躁夜夜躁狠狠躁躁| 久久九九热精品免费| 国产在视频线精品| 欧美激情极品国产一区二区三区| 高清在线国产一区| 午夜影院在线不卡| 少妇人妻久久综合中文| 三上悠亚av全集在线观看| 国产精品 国内视频| 精品少妇内射三级| 国产一区二区三区综合在线观看| 久久ye,这里只有精品| av在线app专区| 欧美成狂野欧美在线观看| 老司机深夜福利视频在线观看 | 亚洲精品国产av成人精品| 亚洲av美国av| 午夜久久久在线观看| av线在线观看网站| 久久香蕉激情| 性色av一级| 欧美xxⅹ黑人| 丰满少妇做爰视频| 国产免费现黄频在线看| 久久久久精品国产欧美久久久 | 别揉我奶头~嗯~啊~动态视频 | 国产熟女午夜一区二区三区| 侵犯人妻中文字幕一二三四区| 国产精品九九99| 国产精品 欧美亚洲| 涩涩av久久男人的天堂| 精品国产一区二区久久| 老熟妇仑乱视频hdxx| 欧美在线一区亚洲| 无限看片的www在线观看| 十八禁网站免费在线| 国产亚洲午夜精品一区二区久久| 免费黄频网站在线观看国产| 亚洲伊人久久精品综合| 亚洲精品国产av蜜桃| 免费看十八禁软件| 97人妻天天添夜夜摸| 国产成人精品在线电影| 免费在线观看日本一区| a级片在线免费高清观看视频| 性少妇av在线| 国产深夜福利视频在线观看| 日韩有码中文字幕| 亚洲欧美激情在线| 久久精品成人免费网站| 亚洲国产精品成人久久小说| 久久中文看片网| 日本一区二区免费在线视频| 黄色a级毛片大全视频| 亚洲精品国产区一区二| 欧美变态另类bdsm刘玥| 一区二区三区精品91| 高潮久久久久久久久久久不卡| 午夜精品国产一区二区电影| 女性生殖器流出的白浆| 亚洲一卡2卡3卡4卡5卡精品中文| 99国产精品99久久久久| 午夜免费成人在线视频| 日韩欧美免费精品| 国产激情久久老熟女| 又紧又爽又黄一区二区| 两个人免费观看高清视频| 亚洲精品自拍成人| 亚洲国产精品一区三区| 黄色 视频免费看| 国产精品.久久久| 国产成人免费观看mmmm| 色老头精品视频在线观看| 欧美午夜高清在线| 精品国产乱码久久久久久小说| 国产免费一区二区三区四区乱码| 精品人妻一区二区三区麻豆| 亚洲一码二码三码区别大吗| 日本猛色少妇xxxxx猛交久久| 妹子高潮喷水视频| 老司机影院毛片| 久久久久视频综合| 亚洲 欧美一区二区三区| 伊人久久大香线蕉亚洲五| 美女脱内裤让男人舔精品视频| 欧美日韩亚洲国产一区二区在线观看 | 欧美日韩国产mv在线观看视频| 国产xxxxx性猛交| 欧美亚洲 丝袜 人妻 在线| 脱女人内裤的视频| 午夜影院在线不卡| av网站免费在线观看视频| 国产精品一区二区在线不卡| 日韩欧美一区视频在线观看| 午夜成年电影在线免费观看| 一区二区日韩欧美中文字幕| 国产精品免费大片| 国产主播在线观看一区二区| 午夜成年电影在线免费观看| 两个人免费观看高清视频| 大码成人一级视频| 男人添女人高潮全过程视频| 欧美一级毛片孕妇| 啦啦啦免费观看视频1| 国产97色在线日韩免费| 新久久久久国产一级毛片| 人人妻人人澡人人看| 免费在线观看影片大全网站| 麻豆国产av国片精品| 国产亚洲一区二区精品| 嫁个100分男人电影在线观看| 欧美精品亚洲一区二区| 中亚洲国语对白在线视频| 久久精品亚洲熟妇少妇任你| 欧美xxⅹ黑人| 成年人午夜在线观看视频| 久久中文字幕一级| 老司机深夜福利视频在线观看 | 国产精品一区二区精品视频观看| 亚洲黑人精品在线| 曰老女人黄片| 亚洲黑人精品在线| 久热爱精品视频在线9| 啪啪无遮挡十八禁网站| 久热爱精品视频在线9| 久久久久久久久久久久大奶| 久久国产精品影院| 亚洲精品久久久久久婷婷小说| 久久国产精品影院| 久久精品亚洲av国产电影网| 另类精品久久| 美女主播在线视频| 欧美+亚洲+日韩+国产| 免费在线观看黄色视频的| 国产一级毛片在线| 欧美日韩一级在线毛片| 伊人久久大香线蕉亚洲五| 久久精品久久久久久噜噜老黄| 国产精品久久久久久精品古装| 成年人黄色毛片网站| 黄网站色视频无遮挡免费观看| 午夜福利在线观看吧| 亚洲专区国产一区二区| 免费人妻精品一区二区三区视频| 亚洲精品国产区一区二| 操出白浆在线播放| 午夜免费成人在线视频| 国产成人欧美在线观看 | 亚洲精品国产av蜜桃| 在线观看免费午夜福利视频| 男人舔女人的私密视频| 亚洲国产av影院在线观看| 老熟女久久久| 首页视频小说图片口味搜索| 日韩 欧美 亚洲 中文字幕| 国产男人的电影天堂91| 午夜福利一区二区在线看| 久久久精品94久久精品| 欧美激情 高清一区二区三区| 成人18禁高潮啪啪吃奶动态图| 欧美黑人精品巨大| 欧美精品av麻豆av| 99re6热这里在线精品视频| 精品少妇久久久久久888优播| 一二三四社区在线视频社区8| 久久综合国产亚洲精品| 黄色视频不卡| 搡老乐熟女国产| 国产又爽黄色视频| 亚洲精品一区蜜桃| 国产av精品麻豆| 国产人伦9x9x在线观看| 欧美+亚洲+日韩+国产| 少妇裸体淫交视频免费看高清 | 欧美 日韩 精品 国产| 男女下面插进去视频免费观看| 久久国产亚洲av麻豆专区| kizo精华| 精品久久蜜臀av无| 亚洲全国av大片| 亚洲一区二区三区欧美精品| netflix在线观看网站| 欧美黄色片欧美黄色片| 2018国产大陆天天弄谢| 国产精品影院久久| a在线观看视频网站| 青青草视频在线视频观看| 亚洲少妇的诱惑av| 国产色视频综合| 丁香六月欧美| 日韩视频在线欧美| e午夜精品久久久久久久| 亚洲国产成人一精品久久久| 纵有疾风起免费观看全集完整版| 在线观看舔阴道视频| 日本黄色日本黄色录像| 国产极品粉嫩免费观看在线| 国产精品 欧美亚洲| 狂野欧美激情性bbbbbb| 欧美精品人与动牲交sv欧美| av不卡在线播放| 久久国产精品大桥未久av| 免费一级毛片在线播放高清视频 | 国产亚洲av高清不卡| 天天操日日干夜夜撸| 精品国产国语对白av| www.999成人在线观看| 国产亚洲午夜精品一区二区久久| 日韩 欧美 亚洲 中文字幕| 狂野欧美激情性xxxx| 超碰97精品在线观看| 午夜福利在线观看吧| 久热爱精品视频在线9| 最近最新中文字幕大全免费视频| 黄色怎么调成土黄色| 中文字幕制服av| 国产欧美日韩一区二区三 | 欧美黑人精品巨大| 精品久久蜜臀av无| 精品亚洲乱码少妇综合久久| 如日韩欧美国产精品一区二区三区| 日韩中文字幕欧美一区二区| 久久精品成人免费网站| 狂野欧美激情性bbbbbb| 久久精品国产亚洲av高清一级| 我要看黄色一级片免费的| 亚洲av日韩精品久久久久久密| 久久99热这里只频精品6学生| 在线亚洲精品国产二区图片欧美| 亚洲熟女精品中文字幕| 夜夜骑夜夜射夜夜干| 91成年电影在线观看| 9色porny在线观看| 1024香蕉在线观看| 亚洲自偷自拍图片 自拍| av一本久久久久| 亚洲精品中文字幕在线视频| 欧美在线一区亚洲| 久久久久网色| 亚洲精品中文字幕一二三四区 | 国产精品免费大片| 人人妻,人人澡人人爽秒播| 麻豆国产av国片精品| 丰满饥渴人妻一区二区三| 电影成人av| 岛国在线观看网站| 久久人妻熟女aⅴ| av电影中文网址| 久久久国产精品麻豆| xxxhd国产人妻xxx| 欧美黄色片欧美黄色片| 正在播放国产对白刺激| 日韩欧美一区视频在线观看| 人妻久久中文字幕网| 国产一区有黄有色的免费视频| 女人精品久久久久毛片| 精品亚洲乱码少妇综合久久| 午夜老司机福利片| 久久久久久久国产电影| 99精品久久久久人妻精品| 啦啦啦啦在线视频资源| 日韩大码丰满熟妇| 国产日韩欧美视频二区| 又大又爽又粗| 日韩一区二区三区影片| 黄片大片在线免费观看| 午夜两性在线视频| 麻豆av在线久日| 亚洲一区中文字幕在线| 大陆偷拍与自拍| 国产成人av激情在线播放| 国产深夜福利视频在线观看| 欧美人与性动交α欧美精品济南到| 777久久人妻少妇嫩草av网站| 91av网站免费观看| 人妻人人澡人人爽人人| 黑丝袜美女国产一区| 少妇猛男粗大的猛烈进出视频| 亚洲精品美女久久av网站| 久久青草综合色| 在线天堂中文资源库| 一级毛片精品| 18禁国产床啪视频网站| 欧美精品av麻豆av| 亚洲视频免费观看视频| 男女高潮啪啪啪动态图| 国产精品国产av在线观看| 黑人猛操日本美女一级片| 人妻 亚洲 视频| www.精华液| 美女中出高潮动态图| 欧美日韩亚洲国产一区二区在线观看 | 国产主播在线观看一区二区| 精品久久蜜臀av无| av在线app专区| 最黄视频免费看| 在线亚洲精品国产二区图片欧美| bbb黄色大片| 欧美97在线视频| 精品国内亚洲2022精品成人 | 日本91视频免费播放| 国产一区二区 视频在线| 亚洲九九香蕉| 热re99久久精品国产66热6| 成人国语在线视频| 人人妻人人爽人人添夜夜欢视频| 咕卡用的链子| 久久性视频一级片| 天天躁夜夜躁狠狠躁躁| 一区二区av电影网| 亚洲精品一区蜜桃| 老司机午夜十八禁免费视频| 日韩制服丝袜自拍偷拍| 国产成人一区二区三区免费视频网站| 亚洲国产成人一精品久久久| 人人妻人人澡人人看| 在线观看人妻少妇| 精品一区二区三区av网在线观看 | 亚洲激情五月婷婷啪啪| 嫩草影视91久久| 国产片内射在线| 91成年电影在线观看| 黑人巨大精品欧美一区二区mp4| 三级毛片av免费| 另类亚洲欧美激情| av电影中文网址| 成年人黄色毛片网站| 日本欧美视频一区| 免费一级毛片在线播放高清视频 | 蜜桃国产av成人99| 美女主播在线视频| 国产深夜福利视频在线观看| 国产麻豆69| tube8黄色片| 日本猛色少妇xxxxx猛交久久| 欧美午夜高清在线| 久久综合国产亚洲精品| 在线天堂中文资源库| netflix在线观看网站| 国产伦人伦偷精品视频| 成年人午夜在线观看视频| 久久久久国内视频| 美女视频免费永久观看网站| 人人妻人人澡人人看| 国产成人系列免费观看| 国产男女内射视频| 国产伦理片在线播放av一区| 一区二区三区四区激情视频| 久久女婷五月综合色啪小说| 老司机深夜福利视频在线观看 | 美女国产高潮福利片在线看| 天天添夜夜摸| 日日摸夜夜添夜夜添小说| 90打野战视频偷拍视频| 在线观看免费高清a一片| 国产精品一区二区在线观看99| 一区二区三区乱码不卡18| 亚洲精品美女久久av网站| 亚洲国产中文字幕在线视频| 亚洲第一av免费看| 美女扒开内裤让男人捅视频| 在线观看人妻少妇| 精品久久久久久电影网| tube8黄色片| 国产片内射在线| 国产一区二区三区综合在线观看| 啦啦啦视频在线资源免费观看| 99国产综合亚洲精品| 下体分泌物呈黄色| 制服诱惑二区| 亚洲伊人色综图| 亚洲国产欧美在线一区| 国产免费av片在线观看野外av| 国产成人av激情在线播放| 91成年电影在线观看| 久久久久网色| 免费人妻精品一区二区三区视频| 91字幕亚洲| av网站在线播放免费| 一本一本久久a久久精品综合妖精| 亚洲精品av麻豆狂野|