• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Essential proteins identification method based on four-order distances and subcellular localization information

    2024-01-25 07:14:58PengliLu盧鵬麗YuZhong鐘雨andPeishiYang楊培實(shí)
    Chinese Physics B 2024年1期

    Pengli Lu(盧鵬麗), Yu Zhong(鐘雨), and Peishi Yang(楊培實(shí))

    1School of Computer and Communication,Lanzhou University of Technology,Lanzhou 730050,China

    2School of Tianmen Vocational College,Tianmen 431700,China

    Keywords: protein–protein interaction(PPI)network,essential proteins,four-order distances,subcellular localization information

    1.Introduction

    Essential proteins are an integral part of cell life and play an important role in maintaining the fundamental functions of organisms, whose absence would lead to the death or sterility of the organism.[1]Therefore,accurate identification of essential proteins has an important place in biomedical research.Traditional essential proteins identification relies on biological experimental methods,such as single gene knockout,[2]RNA interference[3]and conditional gene knockout,[4]which have a high degree of accuracy but often require a great deal of time and a high amount of money.

    With the development of high throughput technologies,a huge amount of PPI network data has been mined, which makes it possible to use computational methods to identify essential proteins.Many methods based on the centrality of PPI network topology properties have also been proposed to identify essential proteins, such as degree centrality (DC),[5]betweenness centrality(BC),[6]eigenvector centrality(EC),[7]closeness centrality (CC),[8]subgraph centrality (SC),[9]local average center(LAC),[10]network centrality(NC),[11]and so on.However, there is a large amount of noisy data in the PPI network, which makes these centrality methods for identifying essential proteins less accurate.To overcome this problem, many researchers have tried to use biological information to enhance accuracy in identifying essential proteins.Currently, the main biological data used by researchers includes gene ontology(GO)terms,[12]subcellular localization information,[13]gene expression sequence,[14,15]and protein complexes information.[16]For example, Hsinget al.[12]developed a central protein classifier using GO terms to identify the central protein.The LDS method for identifying essential proteins was proposed by Liet al.,[17]which combines local fractal dimension and subcellular localization information.Liet al.and Tanget al.proposed the Pec[14]method and the Wdc[18]method using the topological properties of PPI network and gene expression data, respectively.Liet al.[16]proposed the UC method by considering the number of proteins that are present in the complexes.Luet al.[19]proposed the CENC method for essential proteins identification studies by using protein complex information and the node clustering coefficients.Although these methods have yielded good results, it is still challenging to better combine the topological properties of PPI network and biological information to improve the performance of identifying essential proteins.As an optimization algorithm, the random walks method is also widely used to identify essential proteins.For example, Leiet al.[20]proposed the RWEP algorithm, which uses the random walks method to integrate the topological properties of PPI networks and four biological information to identify essential proteins,and obtained an excellent experimental result.In addition,the random walks method has been applied to link prediction,[21]recommender systems,[22]ranking,[23]community detection,[24]and transmission dynamics.[25]

    Although these methods have good accuracy and have contributed to the development of the field of bioinformatics,however,they usually only consider the interaction properties between nodes and neighboring nodes in a PPI network,while ignoring the interactions between nodes at higher-order distances.To break these limitations,in this paper a new method called DSEP is proposed that combines the four-order distances and subcellular localization information of a PPI network to identify essential proteins.In DSEP,we first construct a topological information matrix based on the four-order distances of PPI network, we then construct a subcellular localization information matrix based on the four-order distances,and we finally use the random walks method to combine the topological information matrix of PPI network and the subcellular localization information matrix to identify essential proteins.To evaluate the properties of the DSEP algorithm, we used three PPI network data sets (i.e., BioGRID, YHQ, and YMBD).The experiment revealed that DSEP has an outstanding performance in identifying essential proteins compared to 11 comparison methods.

    2.Methods

    The PPI network can be expressed asG=(V(G),E(G)),whereV(G)={v1,v2,...,vn}denotes the set of vertices in the PPI network andE(G)={e1,e2,...,em}denotes the set of edges.The distance between verticesviandvjis denoted asdi,j.

    The DSEP algorithm for scoring proteins in PPI networks has the following three main steps,and the algorithm flowchart is shown in Fig.1.

    Fig.1.Flowchart of DSEP.

    Step 1 Calculate the four-order distances-based topological information matrix in a PPI network.

    Step 2 Calculate the information matrix of subcellular localization based on four-order distances in a PPI network.

    Step 3 Based on these two similarity matrices, the proteins are scored using the random walks method.

    In Ref.[26], the authors report that the number of paths with distancekbetween nodesviandvjin graphGis(Adenotes the adjacency matrix of graphG).Therefore,we proposed a method to calculate the finite-order distance matrix of the graphG(see step 8 of Algorithm 1).In solving the distance matrix of the network,the idea of Dijkstra’s algorithm is often used to solve the distance matrix,which has a time complexity of O(n3), while our proposed DSEP algorithm only needs to use the four-order distances.With our proposed method, the time complexity of solving the finite-order distances can be reduced to O(n2),which greatly reduces the time complexity of the DSEP algorithm.

    2.1.Topological information matrix based on four-order distances

    Most real networks are known to satisfy a power-law distribution.Based on this, Liet al.,[17]using the local fractal dimension, proposed the following formula to calculate the scores of nodes in the PPI network:

    whereBvi(r) denotes the sum of those nodes with distance from nodevibetween 0 tor.Dvidenotes the score of nodevi,andCdenotes a constant.

    Equation(1)can be expressed asDvi=m·lnBvi(r)/lnr.In this equation,each order of distance of nodevihas the same importance for nodevi, which is inconsistent with the actual situation.Therefore, we define the following formula to calculate the topological similarity of nodes in the PPI network:

    whereci(i=1,2,3,4) denotes the coefficient of thei-th order distance of nodevi,andri(i=1,2,3,4)denotes the total number of nodes of thei-th order distance of nodevi.In this paper, we have mainly considered the four-order distances ofvi.

    Based on the equation defined above,we construct a fourorder distances-based topological information matrix,defined as follows:

    whererdij(i) (di,j= 1,2,3,4) denotes the total number of nodes in the PPI network with distancejto nodevi.

    2.2.Information matrix for subcellular localization based on four-order distances

    Subcellular localization information plays an indispensable role in the study of gene function, which represents the specific location of proteins or gene expression products in the cell.We analyzed the involvement of proteins in 11 intracellular locations and defined a matrix of information on the subcellular localization of proteins as follows:

    Combining Eq.(4),we define the information matrix for subcellular localization based on four-order distances

    wheresrdij(i)(di,j=1,2,3,4)denotes the number of proteins in the PPI network which are distant from nodeviasjand are jointly involved in subcellular processes.

    2.3.DSEP algorithm

    We propose the DSEP algorithm based on the random walks method.We chose this approach because of its ability to integrate well the topological properties of the network.The traditional random walks method only considers the topological properties of the network.In 2021, Ahmedet al.[27]proposed the EPD-RW method by combining four biological properties of proteins and eight topology-based centrality methods using the random walks method.The random walks are iteratively formulated as follows:

    wherePdenotes the proteins’ topological similarity matrix,Bdenotes the biological property similarity matrix of the proteins,andeis an 1×n-dimensional(ndenotes the total amount of proteins)vector with value all 1/n,which denotes the probability vector of returning to the start node in a random walk.

    Equation (6) combines the biological and topological properties of proteins well but the probability of each restart is 1/n, which does not reflect the actual situation effectively.Therefore,we propose the following equation for the random walks method:

    whereL'is the matrix obtained by normalizing the matrixL(defined by Eq.(8)), which represents the transfer probability matrix in the random walks method, andT'is the matrix evolved from the matrixT(the exact process can be seen in Eqs.(9)and(10)),which represents the probability of returning to the starting position in the random walks method.

    In order not to destroy the distance information contained in the matrix,we normalizeLaccording to a new normalization method as follows:

    where MS-L denotes the maximum row sum of matrixL.

    We obtained the scoring matrixCof the proteins based on the PPI network topology using the row sum of matrixT.The definition is as follows:

    After that,we normalizedCusing the sigmoid function,so that the restart probability of each node is 0–0.5.

    Algorithm 1 DSEP Input:1: The data of PPI network G=(V,E);2: The adjacency matrix A of the PPI network;3: Subcellular localization information;4: Parameters in Table 2;Stopping error ε =0.000001;Output:5: The sorting vector q of the PPI network;6: Calculate the matrices A2,A3,A4 through the matrix A;7: Initialize the four-order distances matrix D of the graph G to be a matrix with all values of n×n being zero;8: for each vi,vj ∈V(G)do if Ai,j =1 Di,j =1 elif A2i,j ≥1 Di,j =2 elif A3i,j ≥1 Di,j =3 elif A4i,j ≥1 Di,j =4 9: end for 10: Calculating the four-order distances-based topological information matrix T by Eq.(3);11: Calculating the information matrix of subcellular localization based on four-order distances L by Eqs.(4)and(5);12: Normalize the matrix L to obtain the matrix L' by Eq.(8);13: Reconstruct matrix T to get matrix T' by Eqs.(9)and(10);14: Initialize the vector q(t)=(1,1,...,1);15: while‖q(t+1)?q(t)‖≥ε do Compute q(t+1) by Eq.(7);16: end while 17: q=q(t+1);18: return q

    3.Results and discussion

    3.1.Experimental data

    To evaluate the performance of DSEP,we have performed a computational analysis of the PPI network of Saccharomyces cerevisiae, which is the most integral and reliably available single-cell network.We used data from three PPI networks,which are BioGRID,[28]YHQ,[29]and YMBD.The BioGRID data came from the BioGRID database,[28]the YHQ data was constructed by Yuet al.,[29]and the YMBD data comes from the Mark Gerstein Lab website.After removing duplicate edges and self-interaction from the data,the network data are shown in Table 1.The data for standard essential proteins are integrated from the following data sets: MIPS,[30]SGD,[31]DEG,[32]and SGDP.[33]Subcellular localization information data is downloaded from COMPARTMENTS database,[34]which contains 11 types of subcellular localization information.

    3.2.Parameter settings

    In this paper,all of our parameters are locally optimal solutions obtained in the various modules of Algorithm 1.For example, in the BioGRID data, we chose the parameters for the best performance case of identifying essential proteins,which was to obtain the specific values (proportions) of parametersc1,c2,c3,c4,here we set to 0–10 to traverse,respectively,and bring them into Eq.(3),find the row sums,and rank them in descending order.The parameters that we chose are shown in Table 2.

    Table 1.The information contained in the three PPI networks:BioGRID,YHQ,YMBD.

    Table 2.Parameters in Algorithm 1.

    3.3.Comparative analysis with other methods

    To validate the performance of our proposed DSEP algorithm, we comprehensively compared DSEP with 11 other algorithms that excelled in identifying essential proteins.The experiments showed that DSEP outperformed these compared methods.In the following comparison experiments,the compared methods are DC,[5]BC,[6]EC,[7]CC,[8]SC,[9]LAC,[10]NC,[11]UC,[16]Pec,[14]Wdc,[18]and CENC.[19]

    3.3.1.Histograms

    A histogram can visualize the performance difference of various methods in correctly identifying the number of essential proteins.First, we ranked the DSEP and 11 centrality methods in sorted descending order with their scores.After that,the top 100–600 selected proteins were used as the candidate essential protein set.Finally,the number of true essential proteins in the candidate essential protein set was derived by comparing the standard essential protein set.The results of the experiments are shown in Figs.2–4.

    Figure 2 shows the identification results of DSEP with 11 comparison methods on the BioGRID data set.DSEP identified 24, 39, 50, 46, 39, and 50 more essential proteins when compared to the best identification results of these 11 methods in the top 100–600,respectively.

    Figure 3 shows the identification results of DSEP with 11 comparison methods on the YHQ data set.DSEP identified 30,59,77,63,76,and 87 more essential proteins when compared to the best identification results of these 11 methods in the top 100–600,respectively.

    Figure 4 shows the identification results of DSEP with 11 comparison methods on the YMBD data set.DSEP identified 13,21,35,47,53,and 51 more essential proteins when compared to the best identification results of these 11 methods in the top 100–600,respectively.

    This analysis shows that DSEP was significantly better at accurately identifying the number of essential proteins in the top 100–600 of the BioGRID,YHQ,and YMBD data sets than the 11 comparison methods.

    Fig.3.Comparison of the number of essential proteins accurately identified by DSEP with 11 other methods on the YHQ data set.

    Fig.4.Comparison of the number of essential proteins accurately identified by DSEP with 11 other methods on the YMBD data set.

    3.3.2.Six evaluation indicators

    To further assess the performance of our algorithm, we have compared DSEP with 11 other methods in a comprehensive manner under six evaluation metrics.These six evaluation metrics are sensitivity (SN), specificity (SP), positive predictive value(PPV),negative predictive value(NPV),F-measure(F),and accuracy(ACC),[16]which are defined as follows:

    where TP indicates the amount of protein positively predicted as essential, TN indicates the amount of protein positively predicted as non-essential, FP indicates the amount of nonessential protein falsely predicted as essential, and FN indicates the amount of essential protein falsely predicted as nonessential.

    We ranked the scores of the individual proteins in descending order and selected the top 20%of the proteins as the candidate essential protein set and the other 80% of the proteins as the candidate non-essential protein set.From comparing the standard essential protein sets,we were able to obtain the amount of correctly identified essential proteins in the candidate essential protein sets.Among these six statistical metrics,the higher the value of the metric indicates the better the execution of the algorithm.The comparison results of DSEP algorithm with 11 methods in these six indicators are shown in Table 3,and the experiments show that our algorithm is better than these comparison methods.

    3.3.3.TheP–Rcurves

    TheX-axis of the precision–recall curve(P–Rcurve)represents the recall and theY-axis represents the precision.In theP–Rcurve,the area enclosed by the curve and the axes is represented by AUPR.When the algorithm’s AUPR value is higher, the algorithm has a better performance.Figures 5–7 show theP–Rcurves of our DSEP algorithm and other 11 comparison methods on three different data sets (i.e., BioGRID, YHQ, and YMBD), and it is shown from the AUPR values that our algorithm performs better.The formulas for the Precision and Recall are defined as follows:

    3.3.4.ROC curves

    The ROC curve is also a good way to evaluate an algorithm’s good or bad performance.The area enclosed by the ROC curve and the coordinate axes is called AUC,and similar to AUPR, the higher the AUC value, the better the algorithm performs in the ROC curve,as shown in Figs.8–10,our algorithm outperforms the other 11 methods in the ROC curve.

    Table 3.Comparison of the DSEP algorithm with the other 11 methods in the six statistical indicators on three different data sets.

    Fig.5.The P–R curve of the DSEP algorithm and other 11 methods in the BioGRID data set.

    Fig.6.The P–R curve of the DSEP algorithm and other 11 methods in the YHQ data set.

    Fig.7.The P–R curve of the DSEP algorithm and other 11 methods in the YMBD data set.

    Fig.8.ROC curves of the DSEP algorithm and other 11 methods in the BioGRID data set.

    Fig.9.ROC curves of the DSEP algorithm and other 11 methods in the YHQ data set.

    Fig.10.ROC curves of the DSEP algorithm and other 11 methods in the YMBD data set.

    4.Conclusion

    In this paper,we propose an essential proteins identification algorithm based on four-order distances and a method to calculate finite-order distance combined with some knowledge of graph theory, which can effectively reduce the time complexity of solving the distance between nodes.To verify the performance of DSEP,we did comparative experiments on BioGRID,YHQ,and YMBD data sets using various evaluation methods against the existing 11 methods.The results of the experiments show that DSEP has an excellent performance.

    Acknowledgments

    Project supported by the Gansu Province Industrial Support Plan (Grant No.2023CYZC-25), the Natural Science Foundation of Gansu Province (Grant No.23JRRA770), and the National Natural Science Foundation of China (Grant No.62162040).

    国产av精品麻豆| 成年av动漫网址| 午夜久久久在线观看| 叶爱在线成人免费视频播放| 三上悠亚av全集在线观看| 国产免费一区二区三区四区乱码| 亚洲精品久久午夜乱码| 亚洲国产精品一区二区三区在线| 国产欧美日韩一区二区三区在线| 亚洲精品久久午夜乱码| 国产精品成人在线| 国产av一区二区精品久久| 在现免费观看毛片| 啦啦啦在线观看免费高清www| 肉色欧美久久久久久久蜜桃| 99久久人妻综合| 91精品伊人久久大香线蕉| 69精品国产乱码久久久| 久久精品国产亚洲av涩爱| 欧美 日韩 精品 国产| 美女福利国产在线| 亚洲成国产人片在线观看| 国产福利在线免费观看视频| 日韩视频在线欧美| 久久人人爽人人片av| 久久精品久久精品一区二区三区| 一区二区av电影网| 黄频高清免费视频| 另类亚洲欧美激情| 女的被弄到高潮叫床怎么办| 大片免费播放器 马上看| 日韩中文字幕视频在线看片| 91午夜精品亚洲一区二区三区| 国产成人一区二区在线| 熟妇人妻不卡中文字幕| 天堂中文最新版在线下载| 亚洲欧美色中文字幕在线| 狂野欧美激情性bbbbbb| 日韩成人av中文字幕在线观看| 一区二区av电影网| 久久久久久久久久久久大奶| 不卡视频在线观看欧美| 十八禁高潮呻吟视频| 丝袜脚勾引网站| 日韩成人av中文字幕在线观看| 亚洲综合色惰| 久久久久久久久久久久大奶| 日本黄色日本黄色录像| 国产亚洲av片在线观看秒播厂| 国产精品久久久久久精品电影小说| 亚洲国产精品一区三区| 亚洲伊人久久精品综合| 伊人亚洲综合成人网| 国产一区二区激情短视频 | 国产1区2区3区精品| 最近最新中文字幕免费大全7| 久久久亚洲精品成人影院| 久久久久国产网址| 午夜影院在线不卡| 999精品在线视频| 高清欧美精品videossex| 成人影院久久| 久久这里只有精品19| 日韩一本色道免费dvd| 色94色欧美一区二区| 男人添女人高潮全过程视频| 亚洲成人一二三区av| av电影中文网址| 国产精品三级大全| 少妇被粗大猛烈的视频| 在线看a的网站| 捣出白浆h1v1| 成年女人在线观看亚洲视频| 午夜激情av网站| 黄色毛片三级朝国网站| 亚洲成国产人片在线观看| 91aial.com中文字幕在线观看| 丝袜美腿诱惑在线| 如日韩欧美国产精品一区二区三区| 大码成人一级视频| 老司机影院毛片| 99热国产这里只有精品6| 国产极品粉嫩免费观看在线| 国产精品秋霞免费鲁丝片| 波多野结衣一区麻豆| 人成视频在线观看免费观看| 看免费成人av毛片| 国产淫语在线视频| 人妻一区二区av| 女人高潮潮喷娇喘18禁视频| 最近的中文字幕免费完整| 亚洲婷婷狠狠爱综合网| 中文字幕最新亚洲高清| 成年女人毛片免费观看观看9 | 欧美老熟妇乱子伦牲交| 久久久国产欧美日韩av| 婷婷色av中文字幕| 国产老妇伦熟女老妇高清| 亚洲婷婷狠狠爱综合网| 人人澡人人妻人| 多毛熟女@视频| 极品人妻少妇av视频| 日本av免费视频播放| 美女大奶头黄色视频| 熟女电影av网| 国产探花极品一区二区| 亚洲精品久久成人aⅴ小说| 97在线人人人人妻| 欧美亚洲日本最大视频资源| 最近2019中文字幕mv第一页| 又黄又粗又硬又大视频| 国精品久久久久久国模美| 国产免费一区二区三区四区乱码| 亚洲精品国产色婷婷电影| xxx大片免费视频| av片东京热男人的天堂| 日本午夜av视频| 亚洲一区二区三区欧美精品| 国产乱来视频区| 9191精品国产免费久久| 啦啦啦视频在线资源免费观看| 97在线视频观看| 国产成人免费观看mmmm| 亚洲色图 男人天堂 中文字幕| 久久免费观看电影| 免费观看av网站的网址| 色94色欧美一区二区| 久久av网站| 亚洲欧美色中文字幕在线| 中文字幕制服av| 在线观看www视频免费| 国产成人aa在线观看| 欧美国产精品va在线观看不卡| 午夜日韩欧美国产| 天堂8中文在线网| 免费av中文字幕在线| 免费不卡的大黄色大毛片视频在线观看| 欧美人与性动交α欧美精品济南到 | 国产片特级美女逼逼视频| 亚洲国产欧美网| 国产成人a∨麻豆精品| 国产精品女同一区二区软件| 一级毛片电影观看| 欧美日韩亚洲国产一区二区在线观看 | 国产乱来视频区| 一边摸一边做爽爽视频免费| 黄色视频在线播放观看不卡| 亚洲一区中文字幕在线| 夜夜骑夜夜射夜夜干| 午夜福利影视在线免费观看| 欧美日韩国产mv在线观看视频| 好男人视频免费观看在线| 91精品伊人久久大香线蕉| 亚洲色图综合在线观看| 人人妻人人添人人爽欧美一区卜| 国产人伦9x9x在线观看 | 欧美av亚洲av综合av国产av | 狠狠精品人妻久久久久久综合| 超碰97精品在线观看| 在线观看www视频免费| 韩国高清视频一区二区三区| 国产乱来视频区| 天堂俺去俺来也www色官网| 亚洲精品成人av观看孕妇| 少妇人妻精品综合一区二区| 国产精品久久久久久精品电影小说| 日本欧美国产在线视频| 在现免费观看毛片| 9热在线视频观看99| 国产精品久久久久久精品电影小说| 亚洲av免费高清在线观看| 2021少妇久久久久久久久久久| 99久久精品国产国产毛片| 十八禁高潮呻吟视频| 国产野战对白在线观看| 97在线人人人人妻| 久久久a久久爽久久v久久| tube8黄色片| 亚洲三级黄色毛片| 亚洲国产看品久久| 一区二区日韩欧美中文字幕| 久久毛片免费看一区二区三区| 国产午夜精品一二区理论片| 日韩在线高清观看一区二区三区| 国产精品不卡视频一区二区| 尾随美女入室| 久久精品国产亚洲av涩爱| 免费大片黄手机在线观看| 90打野战视频偷拍视频| 欧美日韩综合久久久久久| 亚洲第一区二区三区不卡| 天堂中文最新版在线下载| 欧美精品一区二区大全| 寂寞人妻少妇视频99o| 精品人妻偷拍中文字幕| 亚洲人成电影观看| 国产一区二区三区av在线| 免费观看a级毛片全部| 亚洲美女视频黄频| 十分钟在线观看高清视频www| xxx大片免费视频| 男女国产视频网站| 成人漫画全彩无遮挡| 天美传媒精品一区二区| 卡戴珊不雅视频在线播放| 夜夜骑夜夜射夜夜干| 欧美日韩精品网址| 麻豆精品久久久久久蜜桃| 蜜桃国产av成人99| 亚洲av在线观看美女高潮| 久久久a久久爽久久v久久| 午夜免费观看性视频| 两个人免费观看高清视频| 中文字幕人妻丝袜一区二区 | 狠狠婷婷综合久久久久久88av| 狠狠婷婷综合久久久久久88av| 成人毛片60女人毛片免费| 日韩av在线免费看完整版不卡| 青草久久国产| 99香蕉大伊视频| 亚洲av男天堂| 熟女少妇亚洲综合色aaa.| 成人影院久久| 啦啦啦在线免费观看视频4| 一区二区三区乱码不卡18| 9热在线视频观看99| 亚洲精品在线美女| 久久久久久人妻| 天天躁狠狠躁夜夜躁狠狠躁| 考比视频在线观看| 不卡视频在线观看欧美| 人体艺术视频欧美日本| 久久免费观看电影| 免费观看a级毛片全部| 亚洲国产av影院在线观看| xxx大片免费视频| 在线观看国产h片| 一二三四中文在线观看免费高清| 不卡av一区二区三区| 韩国av在线不卡| 三上悠亚av全集在线观看| 国产一区有黄有色的免费视频| 少妇的逼水好多| 女人久久www免费人成看片| 肉色欧美久久久久久久蜜桃| 亚洲精品日韩在线中文字幕| 日本午夜av视频| xxx大片免费视频| 国产综合精华液| 性色avwww在线观看| 少妇人妻精品综合一区二区| 天天躁夜夜躁狠狠躁躁| 天天影视国产精品| 欧美+日韩+精品| 叶爱在线成人免费视频播放| 亚洲av国产av综合av卡| 免费在线观看黄色视频的| 大片电影免费在线观看免费| 亚洲精品久久午夜乱码| 又黄又粗又硬又大视频| 韩国高清视频一区二区三区| 涩涩av久久男人的天堂| 国产精品不卡视频一区二区| 国产av精品麻豆| 欧美亚洲 丝袜 人妻 在线| 日日撸夜夜添| 黑人欧美特级aaaaaa片| 性色avwww在线观看| 青春草国产在线视频| 精品亚洲乱码少妇综合久久| 另类亚洲欧美激情| 黑丝袜美女国产一区| 2022亚洲国产成人精品| 国产成人免费观看mmmm| 亚洲国产精品一区三区| 亚洲综合精品二区| 另类精品久久| 欧美97在线视频| 久久久久精品人妻al黑| 边亲边吃奶的免费视频| 亚洲欧美成人综合另类久久久| 午夜福利视频精品| 亚洲国产精品国产精品| 亚洲人成网站在线观看播放| 夫妻性生交免费视频一级片| freevideosex欧美| 久久久久久伊人网av| 久久人人爽av亚洲精品天堂| 亚洲综合精品二区| 老汉色∧v一级毛片| 美女午夜性视频免费| 欧美激情极品国产一区二区三区| 亚洲av欧美aⅴ国产| 精品一区二区三区四区五区乱码 | 国产精品免费视频内射| 亚洲av在线观看美女高潮| 午夜福利,免费看| 最近最新中文字幕大全免费视频 | 午夜精品国产一区二区电影| 少妇的逼水好多| 狠狠婷婷综合久久久久久88av| av免费观看日本| 91久久精品国产一区二区三区| 最近手机中文字幕大全| 欧美日韩亚洲高清精品| 少妇的逼水好多| av.在线天堂| 亚洲av成人精品一二三区| 国产高清国产精品国产三级| 老司机亚洲免费影院| 丝瓜视频免费看黄片| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 青草久久国产| 国产精品三级大全| 一本久久精品| 欧美日韩亚洲高清精品| 亚洲欧美成人精品一区二区| 亚洲欧美精品自产自拍| 亚洲美女视频黄频| 在线观看美女被高潮喷水网站| 啦啦啦中文免费视频观看日本| 少妇人妻精品综合一区二区| 国产又爽黄色视频| 免费高清在线观看日韩| 免费观看a级毛片全部| 国产人伦9x9x在线观看 | 色网站视频免费| 亚洲熟女精品中文字幕| 国产精品欧美亚洲77777| 国语对白做爰xxxⅹ性视频网站| 亚洲国产成人一精品久久久| 熟女av电影| 亚洲激情五月婷婷啪啪| av网站在线播放免费| 又黄又粗又硬又大视频| 伊人久久国产一区二区| 日韩,欧美,国产一区二区三区| 亚洲av国产av综合av卡| 亚洲内射少妇av| 99久国产av精品国产电影| 亚洲少妇的诱惑av| 国产成人精品福利久久| 亚洲色图 男人天堂 中文字幕| 中文字幕最新亚洲高清| 97人妻天天添夜夜摸| 亚洲欧美色中文字幕在线| 色网站视频免费| 亚洲国产av影院在线观看| 卡戴珊不雅视频在线播放| 18禁动态无遮挡网站| 亚洲在久久综合| 成人手机av| 黑人欧美特级aaaaaa片| 一边摸一边做爽爽视频免费| 日韩欧美一区视频在线观看| 亚洲精品aⅴ在线观看| xxx大片免费视频| 不卡av一区二区三区| 国产成人精品一,二区| 狠狠婷婷综合久久久久久88av| 七月丁香在线播放| 咕卡用的链子| 老熟女久久久| 国产精品一区二区在线观看99| 99热国产这里只有精品6| 久久97久久精品| 飞空精品影院首页| 久久鲁丝午夜福利片| 99香蕉大伊视频| 一二三四中文在线观看免费高清| 亚洲国产欧美日韩在线播放| 99国产精品免费福利视频| 制服诱惑二区| 91在线精品国自产拍蜜月| 香蕉精品网在线| 日韩,欧美,国产一区二区三区| av免费观看日本| 春色校园在线视频观看| 热99久久久久精品小说推荐| 18在线观看网站| 黄色毛片三级朝国网站| 精品国产一区二区三区四区第35| 又大又黄又爽视频免费| 丝袜脚勾引网站| 90打野战视频偷拍视频| 激情五月婷婷亚洲| 亚洲图色成人| 久久久久久久久久久久大奶| 9色porny在线观看| 国产亚洲av片在线观看秒播厂| 一级片免费观看大全| 日日爽夜夜爽网站| 亚洲av在线观看美女高潮| 大陆偷拍与自拍| 一本色道久久久久久精品综合| 亚洲四区av| 一区福利在线观看| 亚洲一区二区三区欧美精品| 制服人妻中文乱码| 韩国高清视频一区二区三区| 欧美+日韩+精品| 欧美bdsm另类| 男男h啪啪无遮挡| 日日啪夜夜爽| 亚洲第一区二区三区不卡| 午夜激情久久久久久久| 久久久久久久大尺度免费视频| 国产熟女欧美一区二区| 搡老乐熟女国产| 国产精品久久久久久久久免| 欧美激情极品国产一区二区三区| 99热国产这里只有精品6| videossex国产| 美女福利国产在线| 黑人巨大精品欧美一区二区蜜桃| 欧美日韩综合久久久久久| 中文字幕色久视频| 国产黄色视频一区二区在线观看| 久久久久精品人妻al黑| 中国三级夫妇交换| 中文乱码字字幕精品一区二区三区| 成人午夜精彩视频在线观看| 免费人妻精品一区二区三区视频| 精品少妇久久久久久888优播| 丝瓜视频免费看黄片| 亚洲欧美精品自产自拍| 欧美国产精品一级二级三级| 亚洲精品在线美女| 90打野战视频偷拍视频| 各种免费的搞黄视频| 国产黄色视频一区二区在线观看| 亚洲男人天堂网一区| 99热国产这里只有精品6| 日韩免费高清中文字幕av| 在线观看免费视频网站a站| av在线观看视频网站免费| 国精品久久久久久国模美| 国产野战对白在线观看| 一级片免费观看大全| 色视频在线一区二区三区| 亚洲国产精品国产精品| 丰满饥渴人妻一区二区三| 国产又爽黄色视频| 如日韩欧美国产精品一区二区三区| 天天躁日日躁夜夜躁夜夜| 一区二区日韩欧美中文字幕| 国产熟女午夜一区二区三区| 午夜福利影视在线免费观看| 亚洲人成网站在线观看播放| 26uuu在线亚洲综合色| 水蜜桃什么品种好| 90打野战视频偷拍视频| 国产亚洲午夜精品一区二区久久| 久热久热在线精品观看| 寂寞人妻少妇视频99o| 黄色怎么调成土黄色| 亚洲第一av免费看| 国产 一区精品| 亚洲四区av| 久久久久精品人妻al黑| 一本—道久久a久久精品蜜桃钙片| 五月天丁香电影| 亚洲精品美女久久久久99蜜臀 | 亚洲国产成人一精品久久久| 日本免费在线观看一区| 国产高清国产精品国产三级| 韩国精品一区二区三区| 边亲边吃奶的免费视频| 午夜免费鲁丝| 日日啪夜夜爽| 2022亚洲国产成人精品| 色播在线永久视频| 欧美变态另类bdsm刘玥| 少妇人妻 视频| 欧美精品亚洲一区二区| 伦理电影大哥的女人| 亚洲av福利一区| 美女视频免费永久观看网站| 黄频高清免费视频| 青青草视频在线视频观看| 丝袜喷水一区| 一区二区三区精品91| 亚洲欧美清纯卡通| 热99久久久久精品小说推荐| 日韩制服骚丝袜av| 狂野欧美激情性bbbbbb| 波野结衣二区三区在线| 国产亚洲最大av| 伊人久久国产一区二区| 国产熟女午夜一区二区三区| 97人妻天天添夜夜摸| 色94色欧美一区二区| 国产亚洲最大av| 精品亚洲成国产av| 香蕉国产在线看| 女性被躁到高潮视频| 黄色一级大片看看| 丰满乱子伦码专区| av在线app专区| 两性夫妻黄色片| 老司机影院成人| 美女高潮到喷水免费观看| 亚洲内射少妇av| 亚洲图色成人| 街头女战士在线观看网站| 最近手机中文字幕大全| 不卡视频在线观看欧美| 国产男女内射视频| 日韩制服丝袜自拍偷拍| freevideosex欧美| 国产精品久久久久成人av| 亚洲国产日韩一区二区| √禁漫天堂资源中文www| 极品少妇高潮喷水抽搐| 午夜av观看不卡| 九色亚洲精品在线播放| 国产av码专区亚洲av| 午夜免费鲁丝| 国产探花极品一区二区| 国精品久久久久久国模美| 日韩熟女老妇一区二区性免费视频| 91久久精品国产一区二区三区| 美女午夜性视频免费| 少妇的丰满在线观看| 免费黄频网站在线观看国产| 中国三级夫妇交换| 在线观看人妻少妇| 大码成人一级视频| av在线老鸭窝| 中文字幕色久视频| 波多野结衣av一区二区av| 99久久中文字幕三级久久日本| 97在线人人人人妻| 日韩一卡2卡3卡4卡2021年| 一个人免费看片子| 国产一区二区在线观看av| 欧美亚洲日本最大视频资源| 一级片免费观看大全| 又黄又粗又硬又大视频| 日韩熟女老妇一区二区性免费视频| 国产日韩一区二区三区精品不卡| 日韩电影二区| 欧美少妇被猛烈插入视频| 美女中出高潮动态图| 少妇的丰满在线观看| 熟妇人妻不卡中文字幕| 亚洲熟女精品中文字幕| 国产日韩欧美视频二区| 午夜福利网站1000一区二区三区| 一区二区三区乱码不卡18| 在线天堂中文资源库| 国产高清国产精品国产三级| 日韩精品免费视频一区二区三区| 亚洲一级一片aⅴ在线观看| 国产深夜福利视频在线观看| av免费观看日本| 韩国高清视频一区二区三区| 久久免费观看电影| 男人爽女人下面视频在线观看| 国产熟女欧美一区二区| 最近手机中文字幕大全| 亚洲国产精品999| 91久久精品国产一区二区三区| 亚洲三级黄色毛片| 久久久久视频综合| 久久久国产欧美日韩av| 亚洲伊人久久精品综合| 久久久久久人妻| 欧美日韩一级在线毛片| 蜜桃国产av成人99| 成人手机av| 一区二区三区激情视频| 视频在线观看一区二区三区| 欧美精品亚洲一区二区| 永久免费av网站大全| 中文乱码字字幕精品一区二区三区| 国产熟女欧美一区二区| 午夜91福利影院| 久久精品人人爽人人爽视色| 久久ye,这里只有精品| 乱人伦中国视频| 日本午夜av视频| 国产亚洲一区二区精品| 大陆偷拍与自拍| 国产成人av激情在线播放| 亚洲男人天堂网一区| 久久综合国产亚洲精品| 欧美黄色片欧美黄色片| 国产精品一区二区在线不卡| 另类亚洲欧美激情| 亚洲欧洲精品一区二区精品久久久 | 日韩一本色道免费dvd| 欧美精品亚洲一区二区| 老鸭窝网址在线观看| 亚洲欧美精品综合一区二区三区 | 国产精品人妻久久久影院| 在线观看一区二区三区激情| 久久久久国产一级毛片高清牌| 午夜影院在线不卡| 精品午夜福利在线看| 日韩视频在线欧美| 色哟哟·www| kizo精华| 两个人看的免费小视频| 91精品三级在线观看| 国产男人的电影天堂91| 日本欧美视频一区| 日韩av免费高清视频| 考比视频在线观看| 丰满迷人的少妇在线观看| 亚洲,欧美,日韩| 久久97久久精品| 午夜福利在线免费观看网站| 美国免费a级毛片| 国产福利在线免费观看视频|