• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Epitaxial growth of ultrathin gallium films on Cd(0001)

    2024-01-25 07:14:58ZuoLi李佐MingxiaShi石明霞GangYao姚鋼MinlongTao陶敏龍andJunzhongWang王俊忠
    Chinese Physics B 2024年1期

    Zuo Li(李佐), Mingxia Shi(石明霞), Gang Yao(姚鋼), Minlong Tao(陶敏龍), and Junzhong Wang(王俊忠),?

    1School of Physical Science and Technology,Southwest University,Chongqing 400715,China

    2School of Science,Guizhou University of Engineering Science,Bijie 551700,China

    Keywords: gallium films,electronic growth,STM/STS,density functional theory

    1.Introduction

    In heteroepitaxial systems, growth of thin films on solid substrates offers the opportunity to create new structures(thinfilm phases)that do not exist in the bulk phases.[1]Serving as the metastable structures,these new phases may exhibit novel physical and chemical properties.In the process of epitaxial growth,elastic strain arising from the lattice mismatch greatly influences the growth mode of thin films.[2]When the lattice misfit is low,the elastic strain energy can be accommodated in the form of pseudomorphic growth,where the thin films adopt the same lateral periodicity as the substrate.[3–5]At higher lattice misfit, the strain energy is relieved by the formation of misfit dislocations at the film/substrate interface.

    The trivalent metal gallium, a liquid metal near room temperature, plays a crucial role in the electronic and optoelectronic devices.[6]In the past decades, the heteroepitaxial thin films of gallium grown on solid surfaces have attracted considerable interest.The Ga bilayer grown on GaN(0001)exhibits a pseudomorphic 1×1 structure and reveals superconductivity with the transition temperature of 5.4 K.[7,8]Furthermore, the quantum Griffiths singularity was observed in this Ga bilayer.[9]Recently, ultrathin gallium films, also known as gallenene, have received considerable interests due to the potential application in the emerging elemental 2D materials.[10–20]By means of solid-melt exfoliation,Kochatet al.fabricated the atomically thin gallium films,i.e.,gallenene sheets,on silicon substrates.[10]Taoet al.realized the epitaxial growth of gallenene monolayer on the Si(111)--Ga template.[11]Ultra-thin Ga islands,analogues of high pressure Ga(III),was found on the Si(111)surface.[14]In particular,gallenene sheets with thickness of one to three atomic layers were intercalated at the interface between epitaxial graphene and silicon carbide through confinement heteroepitaxy.[16]Interestingly,the Ga sheets can be regarded as‘half van der Waals’metal, because they are covalently bonded to the SiC below but present a non-bonded interface to the graphene overlayer.

    In this work,we utilize the hexagonal close-packed metal Cd(0001)thin films as substrates to grow 2D Ga sheets.Compared to the noble metals Au, Ag and Cu, the metal Cd possesses a smaller electronegativity and negative electron affinity.[21,22]Consequently,charge transfer effect between the Ga atoms and Cd(0001)films is expected to be very weak.It is found that the first atomic layer of Ga deposited on Cd(0001)surface forms the pseudomorphic 1×1 phase.Depending on the substrate temperature, Ga films consist of either fractal island when deposited at a low temperature (100 K), or compact islands after room-temperature annealing.Further increasing the Ga coverage leads to Ga multilayers with the pseudomorphic 1×1 lattice.Scanning tunneling spectroscopy(STS)measurements demonstrate that Ga monolayer exhibits metallic behavior.Density functional theory (DFT) calculations indicate that the hcp-hollow site of Cd(0001)is the most energetically favorable site of Ga atoms.

    2.Methods

    2.1.Sample preparation and characterizations

    The experiments were performed in a Unisoku low temperature STM system with the base pressure less than 2.0×10?10Torr.The clean Si(111)-7×7 surface was prepared by flashing the sample to~1500 K for several seconds.A smooth Cd(0001) thin film of 15 monolayers (ML) was obtained by depositing Cd atoms on the Si(111)-7×7 surface at room temperature.Ga atoms were thermally sublimated from a boron nitride crucible heated to 930 K.During the deposition of Ga atoms, the temperature of Cd(0001) substrate was kept at~100 K.An electrochemically etched tungsten tip after electron-beam heating was utilized for STM imaging.STS measurements were performed with the lock-in technique by applying a small modulation of 20 mV to the applied voltage at 373 Hz at 77 K.The STM images were analyzed using Gwyddion software.[23]

    2.2.Density functional theory calculations

    Optimization of geometric structures has been calculated using the generalized gradient approximation (GGA)of Perdew–Burke–Ernzerhof formula[24]and the normconserving Vanderbilt pseudopotentials[25]within the QUANTUM ESPRESSO package.[26]The slab model was constructed by consisting of Ga atomic layers,six Cd atomic layers, and a vacuum layer of 20 ?A was inserted to avoid the coupling between atomic layers along thecaxis.After the convergence test, the kinetic-energy cutoff and the chargedensity cutoff were chosen to be 60 Ry and 480 Ry, respectively.The charge densities were calculated on an unshifted mesh of 17×17×2 points in combination with a marzarivanderbilt smearing of 0.02 Ry.[27]The geometry optimization was performed until all components of all forces became less than 1×10?4Ry/Bohr.Based on the optimized structure,we carried out band structure calculations.

    3.Results and discussion

    We utilized the smooth Cd(0001)films as the substrate to grow the ultrathin Ga films.Figure 1(a)show the morphology of the as-grown Cd(0001) films with a thickness of 15 ML.The smooth Cd(0001) films show flat terraces (~200 nm width).The height profile along the blue line in panel (a)reveals a step height of 2.8±0.1 ?A in Fig.1(b), which is consistent with the interlayer spacing of bulk Cd along the[0001] direction.[21]From the high-resolution STM image in Fig.1(c), the in-plane structure of Cd(0001) films exhibits a hexagonal lattice constant ofc0=3.0±0.1 ?A, also consistent with that(0001)plane of bulk Cd.Figure 1(d)shows the atomic model of Cd(0001) films, where four high-symmetric sites are marked as FCC (FCC-hollow), HCP (HCP-hollow),bridge,and top,respectively.

    Fig.1.(a) Large-scale STM image of the Cd(0001) thin film grown on Si(111)-7×7(U =3.0 V,It =20 pA).(b)Height profile along the blue line in panel(a),showing the step height of 2.8±0.1 ?A.(c)Highresolution STM image of the Cd(0001)thin film showing a hexagonal lattice(U=0.65 V,It=35 pA).(d)Atomic model of the Cd(0001)surface.light Orange balls represent Cd atoms.The high-symmetric sites are marked as FCC(FCC-hollow),HCP(HCP-hollow),bridge,and top.

    Fig.2.Low-temperature growth of Ga sheets on Cd(0001).(a)Ramified Ga islands formed on the Cd(0001)surface at 100 K(Θ =0.7 ML,U =2.0 V,It =20 pA).(b)Close-up view of a ramified Ga island and several small Ga islands (U =0.9 V, It =20 pA).Inset: the atomicresolution STM image of monolayer Ga island(U=0.35 V,It=20 pA).(c)Height profile along the blue line in(b)showing the apparent heights of a ramified Ga island and compact Ga islands.(d)Height distribution of the Ga islands appearring in the upper terrace of (a), showing two preferred heights(B and C peaks).

    Firstly, we studied the low-temperature growth of Ga sheets on Cd(0001).In the submonolayer regime, 0.7 ML of Ga atoms was deposited onto the Cd(0001)surface,which was kept at~100 K.It was observed that the Ga atoms aggregate into large ramified islands with flat tops, as shown Fig.2(a).Nearby the substrate steps there exist several stripe-like Ga islands.Based on the nucleation and aggregation theory, the formation of ramified islands with fractal-like shape can be attributed to the suppressed edge diffusion and corner crossing of adatoms around an island.[2]However,close inspection of the island shapes indicates that the islands exhibit a large branch width (~20 nm).Furthermore, the primary branch edges are rather smooth without sub-branches.It means that the deposition temperature of 100 K is not low enough to completely inhibit the edge diffusion and corner crossing of Ga adatoms.

    From the close-up view in Fig.2(b),it is observed that the ramified Ga islands consist of branches with different heights.The highest branches show a height of 8.7±0.1 ?A,while the lowest branches have a height of 2.9±0.1 ?A[Fig.2(c)], corresponding to three-layer and monolayer of Ga, respectively.From the height distribution shown in Fig.2(d), it can be found that the flat-top Ga islands have two preferred heights of 5.6±0.2 ?A(peak B)and 8.9±0.2 ?A(peak C),corresponding to two and three layers of Ga, respectively.Among these Ga islands,those of three-layer height are the most abundant.We notice that this growth mode is similar to the previous‘electronic growth’ mode observed in the Pb and Ag films grown on Si(111)or GaAs.[28–30]The mechanism of electronic growth is attributed to the competition between quantum size effect in the metal films and charge transfer occurring at the interface.[31]

    The inset of Fig.2(b)is a high-resolution STM image of the monolayer Ga island.It exhibits a hexagonal lattice with periodicity of 3.0±0.1 ?A, which is identical to the lattice of Cd(0001) surface.It means that the first Ga layer is pseudomorphic to the Cd(0001) substrate.The elastic strain energy arising from lattice misfit is accommodated by the pseudomorphic 1×1 structure.Moreover, we noticed that the second layer and third layer of ramified Ga islands also reveal the pseudomorphic 1×1 structure.

    Annealing the low-temperature deposited Ga films(0.5 ML)to room temperature leads to formation of compact Ga islands, as shown in Fig.3(a).It is found that the compact islands are hundreds of nanometers in size, and the island edges are very smooth but not straight.The shape change from the small fractal-like island to large compact island can be attributed to the coalescence and reshaping of the small ramified islands in the process of island merging.Moreover,we notice a striking phenomenon that most of the compact Ga islands show the thickness of a single atomic layer, and only a few islands are two atomic layers thick.As shown in Fig.3(b), the compact Ga islands still maintain the pseudomorphic 1×1 structure as in the case of ramified islands.At the high coverage regime(1.1 ML),as shown in the STM images of Fig.3(c),the first-layer islands show a compact shape with smooth edges,the second-layer islands appear on top of the first layer.When the Ga coverage is increased to 2.5 ML,both the second-layer islands and third-layer islands appear simultaneously on top of the first layer,as shown in Fig.3(d).It was also observed that the third Ga layer still show the same pseudomorphic 1×1 lattice as the first and second Ga layers.

    Fig.3.Formation of compact Ga islands after room-temperature annealing.(a)STM image of the compact Ga islands formed on Cd(0001)surface(Θ =0.5 ML,U =2.0 V, It =20 pA).(b) Atomic-resolution STM image of the monolayer Ga island (U =0.35 V, It =20 pA).(c) Morphology of 1.1 ML of Ga sheets formed on Cd(0001),(U =1.5 V,It=20 pA).(d)Topographic image of 2.5 ML of Ga sheets grown on Cd(0001), (U =2.0 V,It =20 pA).Inset: the pseudomorphic 1×1 structure observed in the third layer of Ga(2.5 nm×2.5 nm,0.5 V,25 pA).

    These results mean that room-temperature annealing leads to the transition from electronic growth to conventional SK growth, implying that the observed electronic growth at a low temperature is metastable against the thermal annealing.We notice that such metastability of electronic growth was also observed in the Ag films grown on Si(111),where the plateau islands evolve into huge mounds and pyramids upon annealing to 450 K.[28]

    In Table 1, we summarize the reported lattice constants of monolayer Ga grown on different substrates.It can be found that the Ga films prefer to adopt the same periodicity as the substrates, i.e., pseudomorphic phase, when grown on GaN(0001) and Cd(0001), or intercalated between SiC and graphene.On the other hand,it can be found that the in-plane lattice constants of Ga sheets can be varied significantly from 2.72 ?A to 3.18 ?A.In addition, the adsorption height between 2D Ga monolayer and substrate surfaces is closed to the interlayer height of the GaN(0001), SiC(0001), and Cd(0001)substrates,respectively.Hence,the substrate structures play a crucial role for the epitaxial growth of Ga films.

    We perform DFT calculations for the adsorption energy of Ga monolayer on the Cd(0001) surface to get insight into the experimental results.The adsorption energyEadsis used to evaluate the strength of the adsorbate-substrate interaction.Herein,Eadsis defined as the mean adsorption energy per adatom,

    whereEGa/Cd(0001)andECd(0001)represent the total energy of the Cd(0001)surface after and before Ga adatoms adsorption;nis the number of adatom;andEGais the energy of an isolated Ga atom.According to the definition, the negative value of the adsorption energy represents exothermic, and vice versa.In order to determine the most stable adsorption sites of Ga atoms, relative location models, which are denoted by top,bridge, FCC-hollow, and HCP-hollow sites, have been established for computing the lowest adsorption energy of system.After all geometries have been optimized, the calculated results are shown in Table 2.All energies of four adsorption sites are negative,in particular,the hcp-hollow site is the most energetically favorable site for Ga atom on Cd(0001)because of the adsorption energy of about?0.4 eV.The calculated lattice constant of the 2D Ga layer (c=2.99 ?A) and the adsorption height(h=2.68 ?A)are in good agreement with the experimental results.Additionally,the calculated Ga–Ga bond length of 2D Ga(2.99 ?A)is closed to that ofγ-Ga crystal(2.90 ?A).[32]

    Table 1.Lattice constants of 2D Ga grown on different substrates.

    Table 2.Summary of the calculated Ga adsorption energies,lattice constants(c)of Ga monolayer and height of Ga adatom(h)for the different sites of the Cd(0001)surface.

    Fig.4.Differential conductance spectra acquired in Ga film.(a)Three differential tunneling conductance (dI/dV) spectra (U =0.5 V,It =170 pA) acquired at different positions of the monolayer Ga island:island short-edge(A),island center(B),and island long-edge(C),respectively.Inset: STM image of monolayer Ga island where STS spectra were acquired(U=1 V,It=20 pA).(b)The evolution of dI/dV spectra with layer thickness.Monolayer(U =0.5 V,It =170 pA),bilayer(U =0.8 V,It=150 pA),trilayer(U =0.5 V,It=370 pA).

    We carry out the STS measurement on top of a monolayer Ga island(Fig.4(a))to derive the electronic properties of the Ga sheets.Three differential tunneling conductance (dI/dV)spectra are recorded at different sites of the island: island short-edge (A), island center (B), and island long-edge (C),respectively,as shown in Fig.4(a).All spectra include the two peaks at?0.21 eV and+0.2 eV around Fermi level(EF),reflecting spatial homogeneity of the electronic states.A V-type dip is always observed in the energetic range of?0.21 eV to 0.2 eV,similar to the STS spectra of the high pressure Ga(III)(001) surface.[14]The evolution of dI/dVspectra with layer thickness is shown in Fig.4(b).The STS of Ga monolayer is influenced by the Cd(0001) substrate, which appears the characteristic peak(black arrow)of substrate.[21]However,the STS of bilayer exists the Ga characteristic peak (red arrow)near Fermi level,indicating a weaker influence from substrate.As the Ga films become three layers,this peak moves towards the low energy(blue arrow).These results are consistent with DFT calculations.

    In order to gain insight into the electronic properties of Ga atomic layers on Cd(0001), the band structures are computed using DFT,as illustrated in Fig.5(a).According to the pseudomorphic relationship between the lattices of monolayer Ga and the Cd(0001) substrate, the high-symmetry pointsΓ,M,andKare chosen for describing the energy band properties of hexagonal lattice,resembling to that of Ga atomic layers on SiC(0001).[16]Obviously, the energy bands from monolayer to trilayer become steeper and steeper,indicating the delocalization enhancement of Ga electrons in the thicker film.The contribution of Ga atoms to band structure becomes dominating.This thickness-dependent behavior can be confirmed by the enlarged intensities of local density of states nearEF.Furthermore,to understand the charge transfer between Ga atomic layers and Cd(0001) surface, the charge density difference is calculated based on the geometry optimization.The charge density displacement(Δρ(r))induced by the adatom adsorption is analyzed:

    whereρa(bǔ)ds/suris the charge density of the adsorbate system,ρa(bǔ)dsis the charge density of the isolated adlayer, andρsuris the charge density of the clean surface.As shown in Fig.5(b),most of the charge accumulation appears in the interface region between Ga and Cd atomic layers, with a small amount dispersed between Ga adatoms due to the interfacial Coulomb repulsion for monolayer Ga.The charge accumulation of interface region decreases,as the number of Ga layers increases.In order to further illustrate charge distribution, planar average of the charge density displacement for Ga/Cd(0001) system alongzaxis is displayed in Fig.5(c).The largest change in the electron density distribution occurs in the interface between Ga adatoms and the Cd(0001) surface, resembling the results of the charge density difference.Thus, the charges of 0.033e, 0.031e, and 0.013eare transferred to Ga monolayer,bilayer,and trilayer,respectively.It is revealed that the interfacial charge transfers contribute to the electronic growth of Ga films.

    Fig.5.(a)The contribution of each atom in the band structure.The purple circle and green triangle indicate the contribution of Cd and Ga atoms,respectively.The size of the symbols represents the strength of the contribution.The Fermi level is set to be zero energy.(b)Side view of charge density differences with iso-surface value of 1.5×10?3 e/Bohr3 of Ga atomic layers on Cd(0001).Yellow and blue regions indicate charge accumulation and depletion,respectively.(c)Planar average of the charge density displacement for Ga/Cd(0001)system.

    4.Conclusion

    In summary,pseudomorphic growths have been observed in the monolayer, bilayer, and trilayer of Ga sheets on Cd(0001).Depending on the substrate temperature, Ga islands have a ramified shape at low temperature,and a compact shape after room-temperature annealing.Ga islands reveal a preferred three atomic layer at a low coverage,which implies that the formation of Ga islands follows the electronic growth.Moreover,the room-temperature annealing leads to the transition from electronic growth to conventional SK growth.DFT calculations demonstrate that all the interfacial Ga atoms occupy the energetically favorable hcp-hollow sites of the substrate.STS and DFT calculations demonstrate the metallic nature of Ga monolayer.The charge is transferred from the Cd(0001) surface to the Ga atomic layers, revealing that the interfacial charge transfers contribute to the electronic growth of Ga films.Our finding sheds important light on fabrication of ultrathin Ga films on metal substrates with novel physical properties.

    Acknowledgement

    Project supported by the National Natural Science Foundation of China(Grant Nos.11874304 and 11574253).

    久久久国产一区二区| 天天一区二区日本电影三级| 午夜视频国产福利| 97热精品久久久久久| 麻豆久久精品国产亚洲av| 国产69精品久久久久777片| 国产成年人精品一区二区| 欧美精品一区二区大全| 国内精品宾馆在线| 街头女战士在线观看网站| 天堂俺去俺来也www色官网| 少妇 在线观看| 久久久久精品久久久久真实原创| 免费黄色在线免费观看| 亚洲欧美精品自产自拍| 国产精品女同一区二区软件| 99久国产av精品国产电影| 亚洲在线观看片| 免费观看性生交大片5| 亚洲三级黄色毛片| 美女内射精品一级片tv| 亚洲成人精品中文字幕电影| 人妻 亚洲 视频| 亚洲欧美一区二区三区国产| 最近最新中文字幕免费大全7| 精品熟女少妇av免费看| 日本三级黄在线观看| 欧美成人a在线观看| 亚洲精品亚洲一区二区| 国产亚洲av片在线观看秒播厂| 日韩亚洲欧美综合| 免费观看在线日韩| 亚洲久久久久久中文字幕| 欧美性感艳星| 亚洲精品国产av蜜桃| 美女主播在线视频| 在线观看一区二区三区激情| 九色成人免费人妻av| 亚洲av不卡在线观看| 国产高潮美女av| 成年免费大片在线观看| 日本av手机在线免费观看| 国产 一区精品| 看免费成人av毛片| 中文字幕免费在线视频6| 国产成人免费无遮挡视频| 男的添女的下面高潮视频| 亚洲国产精品999| 久久久久久久大尺度免费视频| 我要看日韩黄色一级片| 天堂中文最新版在线下载 | 国产成人精品久久久久久| 色播亚洲综合网| 婷婷色麻豆天堂久久| 香蕉精品网在线| 少妇人妻久久综合中文| 男人狂女人下面高潮的视频| 久久99精品国语久久久| 日本三级黄在线观看| 欧美日韩国产mv在线观看视频 | 少妇被粗大猛烈的视频| 国产精品一区二区在线观看99| 成年女人在线观看亚洲视频 | 一本一本综合久久| 高清日韩中文字幕在线| 午夜福利网站1000一区二区三区| 最近中文字幕高清免费大全6| 在线看a的网站| 99久久精品一区二区三区| 在线播放无遮挡| 一二三四中文在线观看免费高清| 国产黄频视频在线观看| 久久精品熟女亚洲av麻豆精品| 最近中文字幕高清免费大全6| 国产 一区精品| 亚洲,欧美,日韩| 日日啪夜夜爽| 精品一区二区免费观看| 国产精品麻豆人妻色哟哟久久| 18禁在线无遮挡免费观看视频| 三级男女做爰猛烈吃奶摸视频| 亚洲精品国产av成人精品| 亚洲真实伦在线观看| 又爽又黄a免费视频| 久久久久久国产a免费观看| 五月开心婷婷网| 欧美极品一区二区三区四区| 国产视频首页在线观看| 国产一区二区三区综合在线观看 | 少妇熟女欧美另类| 麻豆国产97在线/欧美| 国内精品美女久久久久久| tube8黄色片| 好男人在线观看高清免费视频| 七月丁香在线播放| 99精国产麻豆久久婷婷| 丝瓜视频免费看黄片| 国内精品宾馆在线| 校园人妻丝袜中文字幕| 精品国产三级普通话版| 国产在线男女| 王馨瑶露胸无遮挡在线观看| 国产精品人妻久久久影院| 久久99蜜桃精品久久| 全区人妻精品视频| 黄色配什么色好看| 欧美成人精品欧美一级黄| 最近的中文字幕免费完整| 免费观看的影片在线观看| 18禁在线播放成人免费| 中文欧美无线码| 看黄色毛片网站| 久久人人爽人人片av| 国产高清国产精品国产三级 | 99久久中文字幕三级久久日本| 欧美日韩综合久久久久久| a级一级毛片免费在线观看| 青春草国产在线视频| 久久精品综合一区二区三区| 久久精品人妻少妇| 国产一区有黄有色的免费视频| 一级毛片久久久久久久久女| 大话2 男鬼变身卡| 嘟嘟电影网在线观看| 久久久久久久午夜电影| 边亲边吃奶的免费视频| 国产精品一区www在线观看| 男的添女的下面高潮视频| 99久久精品一区二区三区| 欧美性感艳星| 久久99热这里只有精品18| 日韩av不卡免费在线播放| 伦精品一区二区三区| 免费黄网站久久成人精品| 久久人人爽人人爽人人片va| 国产探花极品一区二区| 伊人久久国产一区二区| 亚洲精品国产色婷婷电影| .国产精品久久| 日本一本二区三区精品| 女人十人毛片免费观看3o分钟| 人人妻人人爽人人添夜夜欢视频 | 2018国产大陆天天弄谢| 久久久久久久国产电影| 搡老乐熟女国产| 国产精品成人在线| 啦啦啦啦在线视频资源| 精品久久久久久电影网| 亚洲在久久综合| 蜜桃亚洲精品一区二区三区| 亚洲精品久久午夜乱码| 免费高清在线观看视频在线观看| 人人妻人人爽人人添夜夜欢视频 | 成人综合一区亚洲| 深爱激情五月婷婷| 街头女战士在线观看网站| 成年女人看的毛片在线观看| 欧美人与善性xxx| 亚洲精品一区蜜桃| 国产黄色视频一区二区在线观看| 久久6这里有精品| 日韩制服骚丝袜av| 伦理电影大哥的女人| 成人二区视频| 日本av手机在线免费观看| 精品久久久久久久久亚洲| 国产精品不卡视频一区二区| 免费观看的影片在线观看| 2022亚洲国产成人精品| 乱码一卡2卡4卡精品| 熟女人妻精品中文字幕| 爱豆传媒免费全集在线观看| 国产午夜福利久久久久久| 男女那种视频在线观看| 成年免费大片在线观看| 久久久精品94久久精品| 免费看光身美女| 国产亚洲av片在线观看秒播厂| 免费黄色在线免费观看| 婷婷色综合www| 一二三四中文在线观看免费高清| 欧美日韩视频高清一区二区三区二| 99热这里只有是精品50| 丝瓜视频免费看黄片| av在线app专区| 天堂网av新在线| 国产一区二区三区综合在线观看 | 成人毛片a级毛片在线播放| 亚洲欧美一区二区三区黑人 | 亚洲三级黄色毛片| 国产日韩欧美亚洲二区| av黄色大香蕉| 99热这里只有精品一区| 久久久久精品性色| 成年人午夜在线观看视频| 亚洲高清免费不卡视频| 国产亚洲av嫩草精品影院| 免费在线观看成人毛片| 成年av动漫网址| 成年女人在线观看亚洲视频 | 爱豆传媒免费全集在线观看| 国产亚洲最大av| 毛片一级片免费看久久久久| 国语对白做爰xxxⅹ性视频网站| 春色校园在线视频观看| 久久精品夜色国产| 亚洲国产精品国产精品| av专区在线播放| 少妇的逼水好多| 日日摸夜夜添夜夜添av毛片| 一个人看的www免费观看视频| 精品酒店卫生间| 国产熟女欧美一区二区| 夜夜看夜夜爽夜夜摸| 天堂中文最新版在线下载 | 亚洲精品视频女| 日韩欧美精品v在线| 男女边摸边吃奶| 97人妻精品一区二区三区麻豆| 国产午夜精品久久久久久一区二区三区| 国产久久久一区二区三区| 欧美极品一区二区三区四区| 国产色婷婷99| 欧美人与善性xxx| 亚洲第一区二区三区不卡| 91aial.com中文字幕在线观看| 黑人高潮一二区| 视频中文字幕在线观看| 五月天丁香电影| 国产精品久久久久久精品古装| 观看免费一级毛片| 日韩在线高清观看一区二区三区| 91狼人影院| 亚洲av日韩在线播放| 久久久成人免费电影| 国产成人精品婷婷| 观看美女的网站| 在线观看美女被高潮喷水网站| 国产精品熟女久久久久浪| 精品99又大又爽又粗少妇毛片| 黄色欧美视频在线观看| 99re6热这里在线精品视频| 在线天堂最新版资源| 欧美xxⅹ黑人| 日韩av在线免费看完整版不卡| 色吧在线观看| 又粗又硬又长又爽又黄的视频| 在线观看美女被高潮喷水网站| 欧美zozozo另类| 男插女下体视频免费在线播放| 亚洲综合精品二区| 久久久色成人| 少妇 在线观看| 国产美女午夜福利| 久久精品国产鲁丝片午夜精品| 高清在线视频一区二区三区| 国产精品麻豆人妻色哟哟久久| 亚洲性久久影院| 成年女人看的毛片在线观看| 久久99蜜桃精品久久| av免费在线看不卡| av又黄又爽大尺度在线免费看| 午夜福利视频精品| 青春草国产在线视频| 青春草视频在线免费观看| 夫妻性生交免费视频一级片| 一区二区av电影网| 国产成人a∨麻豆精品| 久久人人爽人人片av| 亚洲在线观看片| 国产精品.久久久| 亚洲精品久久久久久婷婷小说| 国产亚洲91精品色在线| 一二三四中文在线观看免费高清| 最近2019中文字幕mv第一页| 夜夜爽夜夜爽视频| 美女脱内裤让男人舔精品视频| 搡女人真爽免费视频火全软件| 久久人人爽人人爽人人片va| 欧美激情在线99| 人妻少妇偷人精品九色| 又爽又黄a免费视频| 色综合色国产| 国产精品.久久久| 人人妻人人澡人人爽人人夜夜| 欧美日韩一区二区视频在线观看视频在线 | 又爽又黄无遮挡网站| 狂野欧美白嫩少妇大欣赏| 99久久人妻综合| 中国美白少妇内射xxxbb| 看免费成人av毛片| 久久久午夜欧美精品| 国产成年人精品一区二区| 黄色怎么调成土黄色| 一本一本综合久久| 在线亚洲精品国产二区图片欧美 | 亚洲精品第二区| 99热这里只有是精品50| 欧美最新免费一区二区三区| 亚洲精品久久久久久婷婷小说| 精品久久久久久久久av| 久久久色成人| 国产日韩欧美亚洲二区| 人妻一区二区av| 男人舔奶头视频| 夫妻午夜视频| 五月天丁香电影| 国产免费又黄又爽又色| 国产成人精品久久久久久| 亚洲av免费在线观看| 亚洲综合精品二区| 久久精品国产亚洲av天美| 国产午夜精品一二区理论片| 人妻夜夜爽99麻豆av| 99久久精品热视频| 我要看日韩黄色一级片| 亚洲精品日本国产第一区| 日本三级黄在线观看| 三级经典国产精品| 看非洲黑人一级黄片| 色播亚洲综合网| 国产日韩欧美在线精品| 五月开心婷婷网| 黄片wwwwww| 男插女下体视频免费在线播放| 国产亚洲av片在线观看秒播厂| 国产av码专区亚洲av| av在线观看视频网站免费| 我的女老师完整版在线观看| 日韩成人av中文字幕在线观看| 国产亚洲av嫩草精品影院| 十八禁网站网址无遮挡 | 免费av毛片视频| 午夜老司机福利剧场| 99热这里只有是精品50| 一个人看的www免费观看视频| 国产精品秋霞免费鲁丝片| 深爱激情五月婷婷| 久久精品国产亚洲网站| 免费人成在线观看视频色| 夜夜看夜夜爽夜夜摸| 国产精品国产三级国产av玫瑰| 欧美日韩国产mv在线观看视频 | 亚洲欧美中文字幕日韩二区| 在线观看一区二区三区激情| 我的老师免费观看完整版| 亚洲自偷自拍三级| 国语对白做爰xxxⅹ性视频网站| 精品人妻一区二区三区麻豆| 大陆偷拍与自拍| 欧美bdsm另类| 国产精品精品国产色婷婷| 韩国av在线不卡| 成年女人在线观看亚洲视频 | 免费观看性生交大片5| 99热全是精品| 97超碰精品成人国产| 肉色欧美久久久久久久蜜桃 | 婷婷色综合www| 亚洲精品一区蜜桃| av福利片在线观看| 日韩制服骚丝袜av| 天天躁日日操中文字幕| 亚洲精品中文字幕在线视频 | 国产白丝娇喘喷水9色精品| 精品人妻视频免费看| 中国国产av一级| 国产乱来视频区| 精品久久久久久久人妻蜜臀av| 亚洲精品视频女| 欧美另类一区| 国产在视频线精品| 亚洲在线观看片| 精品熟女少妇av免费看| 日韩av免费高清视频| 亚洲成人久久爱视频| 91狼人影院| 少妇人妻久久综合中文| av国产久精品久网站免费入址| 97在线人人人人妻| 欧美xxⅹ黑人| a级毛片免费高清观看在线播放| 国产精品国产三级国产专区5o| 尾随美女入室| 婷婷色综合大香蕉| 日韩欧美精品免费久久| 成人欧美大片| 久久99蜜桃精品久久| 91在线精品国自产拍蜜月| 久久久久久久久久久丰满| 午夜福利网站1000一区二区三区| 综合色av麻豆| 国产欧美日韩一区二区三区在线 | 又爽又黄a免费视频| 身体一侧抽搐| 偷拍熟女少妇极品色| 99热这里只有精品一区| 精品国产一区二区三区久久久樱花 | 97超视频在线观看视频| 性插视频无遮挡在线免费观看| 亚洲天堂国产精品一区在线| 亚洲电影在线观看av| 欧美少妇被猛烈插入视频| 亚洲成人久久爱视频| 尾随美女入室| 亚洲精品成人久久久久久| 一级毛片久久久久久久久女| 欧美成人午夜免费资源| 全区人妻精品视频| 欧美国产精品一级二级三级 | 亚洲精品亚洲一区二区| 天美传媒精品一区二区| 直男gayav资源| 日韩av不卡免费在线播放| 久久久精品94久久精品| 中文字幕免费在线视频6| 欧美区成人在线视频| 2018国产大陆天天弄谢| 啦啦啦啦在线视频资源| 波野结衣二区三区在线| 亚洲av福利一区| 韩国高清视频一区二区三区| 看十八女毛片水多多多| 日韩大片免费观看网站| 午夜爱爱视频在线播放| 免费大片黄手机在线观看| 97超视频在线观看视频| 97精品久久久久久久久久精品| 国产成人freesex在线| av又黄又爽大尺度在线免费看| 青春草国产在线视频| 久久久久国产网址| 97超视频在线观看视频| 日韩一区二区三区影片| 亚洲色图av天堂| 精品午夜福利在线看| 成人二区视频| 美女脱内裤让男人舔精品视频| 亚洲国产欧美人成| 亚洲成人一二三区av| 大陆偷拍与自拍| 嫩草影院精品99| 午夜精品国产一区二区电影 | 亚洲电影在线观看av| 丰满乱子伦码专区| 极品教师在线视频| 亚洲电影在线观看av| 精品久久久久久久久av| 国产精品伦人一区二区| 99视频精品全部免费 在线| 啦啦啦在线观看免费高清www| 色视频www国产| 麻豆乱淫一区二区| 国产精品99久久久久久久久| xxx大片免费视频| 久久精品国产a三级三级三级| 国产亚洲5aaaaa淫片| 国产人妻一区二区三区在| 亚洲av二区三区四区| 久久久久久久亚洲中文字幕| 亚洲欧美日韩东京热| av又黄又爽大尺度在线免费看| 下体分泌物呈黄色| 免费大片黄手机在线观看| 免费av毛片视频| 少妇 在线观看| 永久网站在线| 91久久精品国产一区二区成人| 亚洲av中文字字幕乱码综合| 亚洲美女视频黄频| 99热6这里只有精品| 一个人看的www免费观看视频| 欧美另类一区| 老师上课跳d突然被开到最大视频| 边亲边吃奶的免费视频| 黄色怎么调成土黄色| 日韩视频在线欧美| 国产黄频视频在线观看| videossex国产| 成人一区二区视频在线观看| av国产免费在线观看| 简卡轻食公司| 国产毛片a区久久久久| 亚洲精品国产色婷婷电影| 亚洲三级黄色毛片| 美女国产视频在线观看| 女人被狂操c到高潮| 精品人妻偷拍中文字幕| 国产片特级美女逼逼视频| 亚洲第一区二区三区不卡| 2021少妇久久久久久久久久久| 三级经典国产精品| av卡一久久| 成人亚洲精品一区在线观看 | 日韩av不卡免费在线播放| 日韩亚洲欧美综合| 欧美三级亚洲精品| av国产精品久久久久影院| 在线观看一区二区三区激情| www.色视频.com| 美女高潮的动态| 亚洲av中文av极速乱| av卡一久久| 国产欧美亚洲国产| 亚洲av一区综合| 国产伦在线观看视频一区| 久久久精品94久久精品| 精品久久久久久久人妻蜜臀av| 黑人高潮一二区| 欧美 日韩 精品 国产| 免费高清在线观看视频在线观看| 亚洲国产精品成人久久小说| 中文天堂在线官网| 国产精品久久久久久精品电影小说 | 最近中文字幕高清免费大全6| 欧美变态另类bdsm刘玥| 国产国拍精品亚洲av在线观看| 国产免费又黄又爽又色| 各种免费的搞黄视频| 国产91av在线免费观看| 日韩伦理黄色片| 国产爽快片一区二区三区| 国产亚洲5aaaaa淫片| 亚洲精品第二区| 亚洲av欧美aⅴ国产| 男插女下体视频免费在线播放| 九草在线视频观看| 在线观看国产h片| 中文字幕久久专区| 亚洲av免费在线观看| 又黄又爽又刺激的免费视频.| 精品一区二区免费观看| 丝瓜视频免费看黄片| 99热国产这里只有精品6| 欧美3d第一页| 国产极品天堂在线| 国产精品嫩草影院av在线观看| 一级毛片黄色毛片免费观看视频| 丰满少妇做爰视频| 成人免费观看视频高清| 国产黄片视频在线免费观看| 中文资源天堂在线| 国产视频首页在线观看| av专区在线播放| 又粗又硬又长又爽又黄的视频| 男女无遮挡免费网站观看| 高清日韩中文字幕在线| 一级爰片在线观看| 我的女老师完整版在线观看| av黄色大香蕉| 免费电影在线观看免费观看| 乱码一卡2卡4卡精品| 美女国产视频在线观看| 中文字幕人妻熟人妻熟丝袜美| 久久久久久伊人网av| 亚洲av不卡在线观看| 少妇人妻一区二区三区视频| 欧美日韩亚洲高清精品| 亚洲熟女精品中文字幕| 国产精品国产三级国产专区5o| 亚洲av国产av综合av卡| 好男人在线观看高清免费视频| 国产成人精品久久久久久| 老司机影院成人| 永久网站在线| 毛片女人毛片| 亚洲欧美精品自产自拍| 国内精品宾馆在线| 边亲边吃奶的免费视频| 久久久色成人| 亚洲一区二区三区欧美精品 | 国产黄频视频在线观看| 特大巨黑吊av在线直播| 99热国产这里只有精品6| 亚洲美女搞黄在线观看| 视频区图区小说| 久久精品国产鲁丝片午夜精品| 亚洲欧美成人综合另类久久久| 丝瓜视频免费看黄片| 亚洲怡红院男人天堂| 最近最新中文字幕大全电影3| 亚洲av福利一区| 成人综合一区亚洲| 日韩av免费高清视频| 小蜜桃在线观看免费完整版高清| 夫妻午夜视频| 午夜免费男女啪啪视频观看| 久久久精品欧美日韩精品| 国产精品国产av在线观看| 国产精品爽爽va在线观看网站| 欧美+日韩+精品| 久久99热这里只频精品6学生| 日韩国内少妇激情av| av在线播放精品| 国产白丝娇喘喷水9色精品| 欧美日韩国产mv在线观看视频 | 亚洲经典国产精华液单| 王馨瑶露胸无遮挡在线观看| 九九在线视频观看精品| 2021少妇久久久久久久久久久| 两个人的视频大全免费| 秋霞在线观看毛片| 男人舔奶头视频| 色视频www国产| 亚洲精品日韩av片在线观看| 女的被弄到高潮叫床怎么办| 精品国产三级普通话版| 男女那种视频在线观看| 亚洲精品色激情综合| av专区在线播放| 亚洲最大成人av| 特级一级黄色大片| 国产成人a∨麻豆精品| 精品国产一区二区三区久久久樱花 | 九九在线视频观看精品|