• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Sharing quantum nonlocality in the noisy scenario

    2024-01-25 07:11:12ShuYuanYang楊舒媛JinChuanHou侯晉川andKanHe賀衎
    Chinese Physics B 2024年1期

    Shu-Yuan Yang(楊舒媛), Jin-Chuan Hou(侯晉川), and Kan He(賀衎)

    College of Mathematics,Taiyuan University of Technology,Taiyuan 030024,China

    Keywords: Bell nonlocality,quantum measurement,quantum noise

    1.Introduction

    Quantum nonlocality is a kind of quantum resource distinct from entanglement and Einstein–Podolsky–Rosen(EPR) steering, and has broad applications in quantum information processing.[1–4]Nonlocal correlations offer a quantum advantage in communication complexity problems,[5]device-independent quantum cryptography,[6,7]randomness expansion,[8]and measurement-based quantum computation.[9,10]Quantum nonlocality can be demonstrated by violation of Bell inequalities (or Bell-type inequalities).[11–13]Furthermore, researchers have also developed various experimental techniques on quantum nonlocality.[14–17]

    In previous researches,scientists explored the limitations of nonlocality by asking whether a pair of entangled qubits could produce a long sequence of nonlocal correlations in Refs.[18–21].Silvaet al.first introduced this sequential scenario (see Fig.1) and demonstrated that at most two sequential observers (Bobs) could share nonlocality with a single Alice through weak measurements.[18]Since then, additional theoretical and experimental findings on nonlocality sharing have been obtained.[22–31]Brown and Colbeck found a measurement strategy such that there exists an unbounded number of independent Bobs who are able to violate the Clauser–Horne–Shimony–Holt (CHSH) inequality with a single Alice by sequentially measuring one half of a maximally entangled pure two-qubit stateρAB(1)=|φ+〉〈φ+| with.[27]Folettoet al.implemented experimentally the nonlocality-sharing strategy.[32]Zhang and Fei extended the aforementioned results to the case of arbitrary finite-dimensional systems.[33]In Refs.[34,35], problems on sharing network nonlocality were also discussed.However,the above discussions are always limited to the ideal scenario,where the initial states and measurements are noiseless.

    Recently the topics of noisy network nonlocality were focused on in Refs.[36,37].Mukherjee studied error tolerance of nontrilocal correlations in noisy triangle networks,[36]where different sources of imperfections were considered, such as errors in entanglement generation, communications over noisy quantum channels and noises in measurements.[38–40]Furthermore,the similar problem on persistency of the non-n-local correlations in noisy linear networks was analyzed in Ref.[37].The aforementioned researchers discovered that the influence of noises can result in the decay of nonlocality in quantum networks.So can it in the nonlocality-sharing scenario.In this paper,we analyze persistency of sharing nonlocality in the noisy scenario, where the initial states and measurements have errors in entanglement generation and white noises,respectively.

    The study presents the conditions for nonlocality sharing termination and infinite nonlocality sharing,respectively,and uses images to reflect the impact of noise on the maximum number of independent Bobs who can share the nonlocality of the noisy initial state with the single Alice.Furthermore, we investigate the noisy nonlocality sharing in high-dimensional bipartite systems.

    The paper is arranged as follows.In Section 2,we review some basic results on sharing nonlocality.In Section 3, we first focus on the case that the initial state is the two-qubit one.Here,noises from entanglement generation and measurements are introduced.Furthermore, we obtain two sufficient conditions of the persistency of sharing nonlocality noisily, and analyze the change patterns of the maximal number of Bobs who can share nonlocality with Alice under the influence of different noises.In Section 4, we devote to generalizing the persistency to arbitrary finite-dimensional systems.

    2.Preliminaries

    In this section, we review the results on the nonlocalitysharing scenario(see Fig.1).

    2.1.Detection of nonlocality

    The quantum nonlocality of a bipartite stateρABcan be proved by violating Clauser–Horne–Shimony–Holt (CHSH)Bell inequality[41]

    where〈AxBy〉=∑a,b(?1)a+bp(a,b|x,y) is the joint expectation value of the observations of Alice and Bob when their settings arexandy(x,y ∈{0,1}),and binary outcomes areaandb(a,b ∈{0,1}), respectively.AiandBiare observables withr(Ai)≤1 andr(Bi)≤1,i=0,1.Denote byr(A) the spectral radius of the matrixA.The distributions are given by the Born rule

    where ∑a(?1)aAa|x=Axand ∑b(?1)bBb|y=Byfor Alice’s measurement set{Aa|x}a,xand Bob’s one{Bb|y}b,y.

    2.2.The sequential nonlocality-sharing scenario

    LetHAandHBbe finite-dimensional complex Hilbert spaces andρAB(1)a bipartite state acting onHA ?HBwith dim(HA)=sand dim(HB)=t.Denote byImthem×midentity matrix.In Ref.[18], the sequential nonlocality-sharing scenario was proposed(see Fig.1).Here Alice and Bob(1)share an initial entangled bipartite stateρAB(1).Suppose Bob(1)performs the measurement according to binary inputY(1)=ywith binary outcomeB(1)=b, the postmeasurement state shared between Alice and Bob(2)can be described by the Lüders rule,[27]i.e.,

    whereBis the positive operator-valued measurement(POVM) corresponding to outcomebof Bob(1)’s measurement for inputy.Repeating this process,the stateρAB(k)shared by Alice and Bob(k)can be computed as

    whereBis the POVM corresponding to outcomesbof Bob(k?1)’s measurements for inputy.

    Fig.1.A bipartite entangled state ρAB(1) is initially shared between Alice and Bob(1).Bob(1) performs a POVM on his part.Denote by ρAB(2)the post-measurement state.Bob(2) also performs a POVM, and this process continues until Bob(n).One want to ask how many Bobs can share the nonlocality with Alice at most.

    whereσj(j= 1,2,3) are Pauli matrices,θ ∈(0,π/4] andηk ∈(0,1)for anyk=1,2,...,n.

    forθ ∈(0,π/4]andηk ∈(0,1),k=1,2,...,n.When bothsandtare odd,a set of POVMs can be given by

    forθ ∈(0,π/4]andηk ∈(0,1),k=1,2,...,n.

    3.Sharing nonlocality in noisy two-qubit systems

    In this section, we study persistency and termination on sharing nonlocality noisily with initial two-qubit states.

    Before that,we first introduce the noise generation.

    3.1.Noise generation

    The first kind of noises comes from entanglement generation of the initial state.In the experiment,a two-qubit entangled stateis generated by the action of the Hadamard gateHand CNOT gate onζ=|10〉〈10|.

    Letαandδdenote the noisy parameters characterizing theHgate and CNOT gate, respectively.Starting fromζ=|10〉〈10|,and the noisy Hadamard gate generates[38]

    Subjection ofζ'1to noisy CNOT gives

    Denote byT(ρ)=(wi,j)3×3the correlation matrix whose entries are given bywi,j= tr[ρ(σi ?σj)].ThenT(ˉρAB(1)) =diag(?αδ,αδ,δ).

    Secondly, the white noises are fixed on POVMs{A0|i,A1|i}i=0,1andof parties Alice and Bob(k),k=1,2,...,n.Letβ1∈[0,1] characterize the noisy measurement set{A0|0,A1|0}in the sense that it fails to detect with probability 1?β1,i.e.,β1parametrizes a faulty measurement device.Similarly,the noisy parameters for measurements{A0|1,A1|1},andare denoted byβ2,γkandμk,k=1,2,...,n, respectively, andβ2∈[0,1],γk ∈[0,1],μk ∈[0,1].If dim(HA)=sand dim(HB)=t,then noisy POVMs can be represented as

    We takes=t=2 when we consider the case of the initial state being a two-qubit state.Then the corresponding noisy observables are

    Combing Eqs.(5)–(8) with the form of noisy POVMs (see Eqs.(19)–(22)), when the initial sharing state is a two-qubit state we write the noisy measurement strategy as follows:

    3.2.Persistency of the noisy nonlocality-sharing scenario

    In order to analyze the persistency, we first calculate the expected CHSH valuewith the noisy initial state and noisy POVMs.The detail of the proofs for our theorems will be presented in the appendix.

    Theorem 1 For the noisy initial state ˉρAB(1)in Eq.(18),if Alice and Bobs perform noisy measurements in Eqs.(27)–(30)and Eqs.(31)–(32),respectively,then the expected CHSH value ofρAB(k)is given by

    whereθ ∈(0,π/4],δ,α,βi,ηk,γkandμk ∈[0,1]fori=1,2,k=1,2,...,n.

    In the following,we provide two sufficient conditions of persistency of sharing nonlocality noisily.

    Theorem 2 For the noisy initial state ˉρAB(1)in Eq.(18),assume Alice and Bobs perform noisy measurements in Eqs.(27)–(30)and Eqs.(31)–(32),respectively,then there existnBobs sharing the nonlocality of ˉρAB(1)with the single Alice if there existsε >0 such that

    where

    with

    Theorem 3 For the noisy initial state ˉρAB(1)in Eq.(18),assume Alice and Bobs perform noisy measurements in Eqs.(27)–(30) and Eqs.(31)–(32), respectively, ifγn(β1+β2)δ= 2, then there existnBobs who can share the nonlocality of the noisy initial state ˉρAB(1)with the single Alice for arbitrary given noisy parametersα,γk,μj ∈(0,1],k=1,2,...,n?1 andj=1,2,...,n.

    The set{α,δ,β1,β2,μk,γk}nk=1consists of all noisy parameters.The condition in Theorem 2 reveals how the persistency of sharing nonlocality in the noisy scenario depends on all noisy parameters.If, for somensuch that Eq.(34) holds for someε >0, but there is noε >0 so that Eq.(34) holds forn+1, then Alice can at most share the nonlocality withnBobs, and the sharing process stops atnth step.The persistency condition in Theorem 3 is more pragmatic and some what surprising.Note thatγn(β1+β2)δ=2 meansγn=β1=β2=δ=1,i.e.,their corresponding noises vanish.Theorem 3 reveals that, if the noises parametersβ1=β2=δ= 1 and the noise parameterγn=1 forn ≥1, then Alice can share nonlocality at least withnBobs whatever the noise parametersα,take any values in (0,1].Why the phenomenon in Theorem 3 happens? One can find from the proof of Theorem 3 that whenθis small enough, each index of persistencyηk=ηk(θ)always can lie in(0,1)for arbitrary nonzero noisy parametersα,.Recall the parameterθcomes from the Alice’s measurement.This means Alice’s appropriate measurement device can counteract the influence on persistency under noises from the Hadamard gate and Bobs’measurements.

    In the aforementioned theorems,it is always assumed that the initial state is a kind of special noisy maximal entangled states.Finally, we consider the nonlocality-sharing problem on the general case that the initial state is an arbitrary twoqubit state.For an arbitrary two-qubit stateρAB(1), assume that Alice and Bobs perform noisy measurements in Eqs.(27)–(30)and Eqs.(31)–(32),respectively,it follows that the CHSH value is

    whereθ ∈(0,π/4],δ,α,βi,ηk,γkandμk ∈[0,1]fori=1,2,k= 1,2,...,n.Similar to the proof of Theorem 3, we can claim that ifγn(β1+β2)p=2, then there existnBobs who can share the nonlocality of the initial stateρAB(1)with the single Alice for arbitrary given noisy parametersγk,μj ∈(0,1],k=1,2,...,n?1 andj=1,2,...,n.

    3.3.Termination of sharing nonlocality in noisy scenarios

    As we see from Theorems 2 and 3, different kinds of noises result in different influences on the decay of nonlocality.In this section, we discuss the question how the noises influence the persistency of sharing nonlocality.We divide the discussion to two cases: state noises and measurement noises.It is assumed that the noisy parameters are always nonzero,the given noisy initial state ˉρAB(1)is presented in Eq.(18)and the noisy measurements are presented in Eqs.(27)–(32).

    3.3.1.Errors on entanglement generation

    Letδ=β1=β2=μk=γk=1 for allk=1,2,...,n,we investigate the influence of the noisy parameterαon the persistency.By Theorem 1,we have in this case that

    For anyε >0,define a sequence(ηi(θ,α,ε))irecursively asand

    whenever 0<ηk?1(θ,α,ε)<1,whereθ ∈(0,π/4]andα ∈[0,1].One can check that 0<ηm(θ,α,ε)<1 for allm ≤kif and only if there existkBobs who can share nonlocality with Alice, and the nonlocality-sharing behavior terminates once if there islsuch thatηl(θ,α,ε) equals to or lager than 1.As we know from Ref.[27], ifα=1 (this means all the corresponding noise vanishes),then for any given positive integerk, there existsθclosed to 0 enough such that one can choseηj(θ,α)∈(0,1) for allj=1,2,...,k.However, by Theorem 3, the similar can be done for any noise parameterα ∈(0,1].

    We plot the functional values ofηk(θ,α) as a function ofαin the image (see Fig.2(a)) fork=1,2,3,4 when we takeε=10?5.In Fig.2(b), the correspondingηk(θ,α)falls into the interval (0,1) when (θ,α) lies in the lower region of each curve fork= 1,2,3,4.Whenαmoves from 1 to 0 andθmoves from 0 to 1 respectively, the maximal numberof Bobs who can share the nonlocality with Alice will decrease and can be calculated by determining how manyηk(θ,α)s lie in the interval (0,1).From Fig.2(b),one can see clearly the value ofwhen (θ,α) lies in the given region [0.05,π/4]×(0,0.95].For instance, there are at most three Bobs sharing the nonlocality with Alice when(θ,α)=(0.1,0.9).

    Fig.2.(a)The yellow,blue,green and red surfaces represent the values of η1(θ,α),η2(θ,α),η3(θ,α)and η4(θ,α),respectively,as functions of parameters θ and α.The purple plane denotes the unit plane.Due to the limit of accuracy of the computer calculation, the images with k ≥5 cannot be plotted.(b) The blue, orange, green and red curves represent η1(θ,α)=1,η2(θ,α)=1,η3(θ,α)=1 and η4(θ,α)=1,respectively.

    Fig.3.The value of the vertical axis n= is the maximal number of Bobs who can share nonlocality with Alice.

    To see what happens when (θ,α) lies in the region(0,0.05)×(0.95,1),we exhibit the change pattern ofdependent on the noise parameterα ∈(0.95,1)whenθis fixed as 0.5,0.05,0.0005 and 0.00005 respectively(see Fig.3).It is surprising that whenθis given,the value ofkeeps invariant ifαmoves from 0.95 to 1.Also,in Fig.3,asθdecreases,theincreases,i.e.,the persistency becomes better.

    Moreover,when we observe the influence of the noise parametersδandβ1+β2in Eq.(33), it is not difficult to conclude that the change pattern ofonδand that onβ1+β2are the same.Therefore,we will merge the discussions of the above two cases to Case 2 in Subsection 3.3.2 hereinafter.

    3.3.2.Noises come from measurements

    Case 1.For anyn ≥1, cosider the case thatγ1=γ2=··· =γk=γandα=δ=β1=β2=μk= 1 for allk=1,2,...,n.By Theorem 1 we have

    Take a smallε >0 and define a sequence{ηi(θ,γ,ε)}ni=1by

    whenever 0<ηk?1(θ,γ,ε)<1 withη1(θ,γ,ε) = (1+forθ ∈(0,π/4]andγ ∈[0,1].Ifηk(θ,γ,ε)<1,k=1,2,...,n,for some givenε >0 and there exists noε >0 so that we still haveηn+1(θ,γ,ε)<1, then there are at mostnBobs sharing the nonlocality with Alice.Similarly, we plot the function values ofηk(θ,γ) again whenε=10?5in Fig.4(a),and show the ranges of 0<ηk(θ,γ)<1 in Fig.4(b)fork=1,2,3, i.e., when(θ,γ)lies in the right-hand sides of each curves,the corresponding 0<ηk(θ,γ)<1.

    Similarly, the maximal numberof Bobs who can share the nonlocality with Alice can be calculated by determining how manyηk(θ,γ)s lie in the interval(0,1).Also from Fig.4(b),the value ofcan be straightforward investigated when (θ,γ) lies in the given region [0.4,π/4]×(0,0.9].For instance,=2 when(θ,γ)=(0.4,0.9).

    Howwill change in the region (0,0.4)×(0.9,1)?We describe the change pattern ofdependent on the noise parameterγ ∈(0.9,1)whenθis fixed at 0.4,0.32,0.27 and 0.1 respectively(see Fig.5).We see that whenθis given,increases ifγmoves from 0.9 to 1.On the other hand,in the four plots of Fig.5,the best persistency(here the better persistency is defined as the greater expectation ofin each figure)occurs whenθ=0.27.Moreover, in Fig.5(b), the unique blue dot such that=3 occurs since the corresponding (θ,γ)lies in the cusp range of the green curve in Fig.4(b).

    Finally it is similar to analyze the change pattern ofdepending on noisy parametersμks.We do not give the elaboration on the case to avoid repetition.

    Fig.4.(a)The yellow,blue and green surfaces represent the values of η1(θ,γ),η2(θ,γ)and η3(θ,γ),respectively,as functions of parameters θ and γ.The red plane denotes z=1.Due to the limit of accuracy of the computer calculation,the images with k ≥4 cannot be plotted.(b)The blue,orange,and green curves represent η1(θ,γ)=1,η2(θ,γ)=1 and η3(θ,γ)=1,respectively.

    Fig.5.The value of the vertical axis n= is the maximal number of Bobs who can share nonlocality with Alice.

    Case 2.0<β1+β2<2 andα=δ=γk=μk=1 for allk=1,2,...,n.In this case,we have

    and obtain the corresponding sequenceas

    where 0<ηk?1(θ,β1+β2,ε)<1 withη1(θ,β1+β2,ε)=forε >0,θ ∈(0,π/4] andβ1+β2∈[0,2].Letx=β1+β2.Ifηk(θ,x,ε)<1,k= 1,2,...,n,andηn+1(θ,x,ε)≥1, then there are at mostnBobs sharing the nonlocality with Alice.We also plot the function values ofηk(θ,x) again whenε=10?5in Fig.6(a), and show the ranges of 0<ηk(θ,x)<1 in Fig.6(b), i.e., (θ,x) lies in the right-hand sides of each curves fork=1,2,3.

    Fig.6.(a)The yellow, blue and green surfaces represent the values of η1(θ,x),η2(θ,x)and η3(θ,x),respectively,as functions of parameters θ and x.The red plane denotes z=1.Due to the limit of accuracy of the computer calculation,the images with k ≥4 cannot be plotted.(b)The blue, orange, and green curves represent the functions η1(θ,x) = 1,η2(θ,x)=1 and η3(θ,x)=1,respectively.

    Fig.7.The value of the vertical axis n= is the maximal number of Bobs who can share nonlocality with Alice dependent on the noisy parameter x=β1+β2.When θ is fixed,n increases if x moves to 1.

    Similarly, from Fig.6(b), the value ofcan be straightforward investigated when (θ,x) lies in the given region[0.4,π/4]×(0,1.8].For instance,=1 when(θ,x)=(0.4,1.5).In the region (0,0.4)×(1.8,2), we describe the change pattern ofdepending on the noise parameterx ∈(1.8,2) whenθis fixed as 0.4, 0.2, 0.1 and 0.05 respectively(see Fig.7).We see that whenθis given,increases ifxmoves from 1.8 to 2.On the other hand,in the four plots of Fig.7,the best persistency occurs whenθ=0.2.

    4.The high-dimensional systems

    In this section, we consider the persistency on sharing nonlocality noisily in the case of arbitrary finite-dimensional systems.The initial state with white noises is

    with the noisy parameterν ∈[0,1].

    We also affix white noises on measurements Eqs.(9)–(16).Then,when bothsandtare even,the noisy measurement strategies are defined as

    forθ ∈(0,π/4]andk=1,2,...,n.When bothsandtare odd,a set of noisy POVMs are chosen to be

    forθ ∈(0,π/4]andk=1,2,...,n.

    Theorem 4 For the noisy initial state ?ρAB(1)in Eq.(42),assume that the Alice and Bobs perform noisy measurements Eqs.(43), (44)or(47), (48)and Eqs.(45), (46)or(49), (50),respectively.Ifβ1≥β2, then the expected CHSH value ofρAB(k)satisfies the inequality

    whereθ ∈(0,π/4],ν,βi,γk,ηkandμk ∈[0,1] fori=1,2,k=1,2,...,n,andcjis the Schmidt coeffciient of|ψ〉forj=1,2,...,.A proof of Theorem 4 will be given in Appendix D.

    By Theorem 4, we get a sufficient condition of persistency of sharing nonlocality noisily in the case of the arbitraryfinite dimension.

    Theorem 5 For the noisy initial state ?ρAB(1)in Eq.(42),assume the Alice and Bobs perform noisy measurements as in Eqs.(43), (44)or(47), (48)and Eqs.(45), (46)or(49), (50),respectively,andβ1≥β2.Then there existnBobs sharing the nonlocality of the noisy initial state ?ρAB(1)with Alice if there existsε >0 such that

    where

    with

    for anyk=1,2,...,n,andciis the Schmidt coeffciient of|ψ〉,i=1,2,...,.

    Furthermore, we get another sufficient condition for the persistency of sharing nonlocality when part of the noises disappears,which extends the sufficient persistency condition for the two-qubit case to the arbitrary finite-dimension case.

    Theorem 6 For the noisy initial state ?ρAB(1)in Eq.(42),let the Alice and Bobs perform noisy measurements in Eqs.(43), (44)or(47), (48)and Eqs.(45), (46)or(49), (50),respectively.Ifγn(β1+β2)ν=2 for somen, then there exist at leastnindependent Bobs who can share the nonlocality of the noisy initial state ?ρAB(1)with the single Alice for arbitrary given noisy parametersγk,μj ∈(0,1],k=1,2,...,n ?1 andj=1,2,...,n.

    5.Discussion and conclusion

    The aim of the paper is to determine how many Bobs can share the nonlocality with Alice at most in a noisy environment.For a given measurement strategy, two kinds of noises are considered on the initial states and measurements respectively.We establish a CHSH type inequality and obtain two persistency conditions of sharing nonlocality noisily.We also analyze the influence of the noises to persistency, that is, the maximal number of Bobs who can share with Alice.It is significant to find other anti-noise measurement strategy, which can result in the better persistency.

    Note also that we consider only two different noise factors.From experimental perspectives,it would be more interesting to analyze errors that occur during physical implementation,such as the exponential decrease in coherence of quantum states.Apart from loss in coherence,nonlocality sharing becomes challenging due to photon loss, noise in photon detection,and many other factors.

    Appendix A:Proof of Theorem 1

    When the noisy measurement strategy Eqs.(27)–(32)are performed, then the CHSH value of Alice and Bob(k)can be computed as follows:

    By using the Lüders rule,we have

    where the third equation comes from

    fori=0,1.Then,using Eq.(A2),we have

    Similar to Eq.(A4),we get

    By recursion,we get

    It follows from Eqs.(A8)–(A11)and(A1)that

    Proof of Theorem 1 For the case ofT(ˉρAB(1)) =diag(?αδ,αδ,δ),from Eq.(A12)we have

    Using Eqs.(A13)–(A16)in Eq.(A12),we get

    Appendix B:Proof of Theorem 2

    From>2,k=1,2,...,n,it is equivalent to

    Define a function

    Obviously,f(θ,α,δ,β1,β2,μ1,...,μk,γ1,...,γk,η1,...,ηk?1)>0,then the inequality(B1)can be written as

    we have

    this implies that there existsε >0 such thatηk= (1+ε)f(θ,α,δ,β1,β2,μ1,...,μk,γ1,...,γk,η1,...,ηk?1).

    Denote byXkthe set{ε,α,δ,β1,β2,μi,γi}ki=1.Furthermore,we define a sequenceηk(θ,Xk)as follows:

    Ifηi(θ,Xi)<1 fori=1,2,...,k ?1,then

    Thus,ηk(θ,Xk)<1 when

    Set

    We can rewrite inequality (B4) as (1+ε)(2k ?cos(θ)ak)<bksin(θ)and get

    The solution of inequality(B7)satisfies

    where

    for anyk=1,2,...,n,i.e.,θk ∈(arctan[xk2(ε)],arctan[xk1(ε)]).Therefore,if

    Appendix C:Proof of Theorem 3

    From assumption,γn(β1+β2)δ=2,denote byYkthe set of given nonzero parameters{ε,α,μs,γt}k,k?1s=1,t=1,one has

    We can define a new sequence(pi(θ))iof the following form:

    Appendix D:Proof of Theorem 4

    In the following, we give a brief proof, which is similar to the proof of Theorem 1.When bothsandtare even,we use Eqs.(43),(44)and Eqs.(45),(46)as noisy measurements,we get

    where

    For the casek=1,we have

    It follows from the Lüders rule, Eqs.(A3)–(A5) in Ref.[33] and Eqs.(D2), (D3), (D7)–(D9) that Eq.(D1) is transformed into

    Then, we consider the case that bothsandtare odd,which is the most complex case.In this case,we use Eqs.(47),(48) and Eqs.(49), (50) as the noisy measurements for Alice and Bob(k),respectively.By calculation,we get

    where

    for someθ ∈(0,π/4]andk=1,2,...,n.Similar to the proof of Theorem 1,we can get

    Combining the form of noisy initial state ?ρAB(1)with Eqs.(D11)–(D22)andβ1≥β2,Eq.(D1)can be rewritten as

    For the case of even(odd)tand odd(even)s,it is analogous to prove inequality(51).

    Acknowledgements

    This work is supported by the National Natural Science Foundation of China (Grant Nos.12271394 and 12071336)and the Key Research and Development Program of Shanxi Province(Grant No.202102010101004).

    国产深夜福利视频在线观看| 亚洲人成77777在线视频| 一级a爱视频在线免费观看| 97精品久久久久久久久久精品| 一级黄色大片毛片| 狂野欧美激情性bbbbbb| 9热在线视频观看99| 水蜜桃什么品种好| 不卡av一区二区三区| 夜夜骑夜夜射夜夜干| 欧美 亚洲 国产 日韩一| 91九色精品人成在线观看| 一本久久精品| 亚洲一区中文字幕在线| 老司机影院成人| 99久久综合免费| 在线观看免费高清a一片| 精品少妇内射三级| 日日夜夜操网爽| 啦啦啦视频在线资源免费观看| 国产免费视频播放在线视频| 亚洲 欧美一区二区三区| 99久久综合免费| 免费在线观看视频国产中文字幕亚洲 | 男女无遮挡免费网站观看| 日韩 欧美 亚洲 中文字幕| 亚洲国产看品久久| 亚洲,欧美精品.| 黄色一级大片看看| 精品国产乱码久久久久久男人| 亚洲精品久久成人aⅴ小说| 极品少妇高潮喷水抽搐| 精品亚洲乱码少妇综合久久| 美女中出高潮动态图| 精品一区二区三卡| 赤兔流量卡办理| 尾随美女入室| 日韩熟女老妇一区二区性免费视频| 香蕉丝袜av| 狠狠婷婷综合久久久久久88av| 99国产精品一区二区蜜桃av | 岛国毛片在线播放| 国产av精品麻豆| 久久久亚洲精品成人影院| 一区二区三区精品91| 国产精品偷伦视频观看了| 国产熟女午夜一区二区三区| 视频区图区小说| e午夜精品久久久久久久| 精品欧美一区二区三区在线| 国产成人啪精品午夜网站| 欧美日韩视频高清一区二区三区二| 99国产精品99久久久久| 国产在视频线精品| 欧美国产精品va在线观看不卡| 男人爽女人下面视频在线观看| 又紧又爽又黄一区二区| 亚洲精品在线美女| 狠狠精品人妻久久久久久综合| 啦啦啦在线观看免费高清www| 一本一本久久a久久精品综合妖精| 日韩大片免费观看网站| 叶爱在线成人免费视频播放| 人成视频在线观看免费观看| 欧美97在线视频| 美女高潮到喷水免费观看| 蜜桃在线观看..| 日韩视频在线欧美| 97在线人人人人妻| 纯流量卡能插随身wifi吗| 婷婷色av中文字幕| 伊人久久大香线蕉亚洲五| 青春草视频在线免费观看| 欧美黄色片欧美黄色片| 欧美老熟妇乱子伦牲交| 日韩熟女老妇一区二区性免费视频| 男女免费视频国产| 婷婷色麻豆天堂久久| 操美女的视频在线观看| www.熟女人妻精品国产| 亚洲精品国产色婷婷电影| 久久久久久久精品精品| 一区二区三区乱码不卡18| 黄网站色视频无遮挡免费观看| 免费黄频网站在线观看国产| 亚洲人成网站在线观看播放| 女人久久www免费人成看片| 电影成人av| 如日韩欧美国产精品一区二区三区| 视频区图区小说| 亚洲成国产人片在线观看| 国产日韩一区二区三区精品不卡| 中文字幕av电影在线播放| 久久精品亚洲熟妇少妇任你| 女性被躁到高潮视频| 一本大道久久a久久精品| 一边摸一边做爽爽视频免费| 久久久久久久大尺度免费视频| 悠悠久久av| 国产xxxxx性猛交| 国产一区二区三区综合在线观看| 在线看a的网站| 国产一区二区三区av在线| 爱豆传媒免费全集在线观看| 久久ye,这里只有精品| 亚洲色图综合在线观看| 在现免费观看毛片| 亚洲精品中文字幕在线视频| 亚洲精品一区蜜桃| 亚洲精品久久成人aⅴ小说| 亚洲第一av免费看| 亚洲第一青青草原| 国产一区二区激情短视频 | 亚洲欧美色中文字幕在线| 国产欧美日韩一区二区三 | 性色av一级| 亚洲第一av免费看| 岛国毛片在线播放| 香蕉丝袜av| 久久精品亚洲av国产电影网| 性少妇av在线| 欧美久久黑人一区二区| 一本久久精品| 中文字幕制服av| 亚洲精品一二三| 亚洲少妇的诱惑av| 男女午夜视频在线观看| 日本欧美视频一区| 午夜免费男女啪啪视频观看| 91精品三级在线观看| 天堂中文最新版在线下载| 精品国产乱码久久久久久小说| 欧美国产精品一级二级三级| 欧美日韩国产mv在线观看视频| 久热爱精品视频在线9| 自线自在国产av| 男人添女人高潮全过程视频| 午夜福利,免费看| 国产精品一区二区在线观看99| 亚洲av日韩在线播放| 亚洲人成电影免费在线| 亚洲欧洲精品一区二区精品久久久| 黄色毛片三级朝国网站| 亚洲一区中文字幕在线| 欧美亚洲日本最大视频资源| 亚洲国产毛片av蜜桃av| 美女高潮到喷水免费观看| 操出白浆在线播放| 国产在线一区二区三区精| 午夜精品国产一区二区电影| 在线观看人妻少妇| www.999成人在线观看| 国产有黄有色有爽视频| 免费高清在线观看视频在线观看| 各种免费的搞黄视频| 亚洲中文日韩欧美视频| 日韩中文字幕欧美一区二区 | 欧美激情高清一区二区三区| 久久精品亚洲av国产电影网| 久久久国产一区二区| 丝袜美足系列| 黄色 视频免费看| 免费在线观看完整版高清| 1024视频免费在线观看| 色综合欧美亚洲国产小说| 色视频在线一区二区三区| 久久国产精品影院| 精品亚洲成a人片在线观看| 亚洲精品美女久久av网站| 久久久久久久久久久久大奶| 亚洲av男天堂| 一级毛片女人18水好多 | 色94色欧美一区二区| 久久九九热精品免费| 亚洲精品国产一区二区精华液| 精品国产国语对白av| 久久久久久人人人人人| avwww免费| 纵有疾风起免费观看全集完整版| 亚洲欧美成人综合另类久久久| 久久久久久久精品精品| 亚洲五月色婷婷综合| 精品国产一区二区三区四区第35| 国产亚洲欧美在线一区二区| 亚洲五月婷婷丁香| 亚洲国产中文字幕在线视频| 日韩免费高清中文字幕av| 中文字幕亚洲精品专区| 精品一品国产午夜福利视频| 色网站视频免费| 波多野结衣一区麻豆| svipshipincom国产片| 热99国产精品久久久久久7| 国产高清视频在线播放一区 | 亚洲国产毛片av蜜桃av| 欧美黑人欧美精品刺激| 国产精品久久久久久人妻精品电影 | svipshipincom国产片| 天天躁日日躁夜夜躁夜夜| 成年av动漫网址| 19禁男女啪啪无遮挡网站| 成年人黄色毛片网站| 午夜久久久在线观看| 我要看黄色一级片免费的| av线在线观看网站| 亚洲久久久国产精品| 国产黄色免费在线视频| 国产亚洲午夜精品一区二区久久| 中文字幕精品免费在线观看视频| 久久久久久久国产电影| 99国产精品免费福利视频| 麻豆av在线久日| 高清av免费在线| 一级a爱视频在线免费观看| 精品人妻1区二区| 少妇精品久久久久久久| 99精国产麻豆久久婷婷| 性少妇av在线| 咕卡用的链子| 日本欧美视频一区| 99精国产麻豆久久婷婷| 亚洲国产av新网站| 久久 成人 亚洲| 晚上一个人看的免费电影| 免费在线观看完整版高清| 婷婷色麻豆天堂久久| 午夜久久久在线观看| 五月天丁香电影| 精品人妻一区二区三区麻豆| 99国产综合亚洲精品| 少妇的丰满在线观看| 最近手机中文字幕大全| 国产一级毛片在线| 国产91精品成人一区二区三区 | 亚洲精品国产av蜜桃| 欧美激情 高清一区二区三区| 满18在线观看网站| 中文字幕色久视频| 久久久久网色| 国产亚洲av片在线观看秒播厂| 色94色欧美一区二区| 菩萨蛮人人尽说江南好唐韦庄| 一区二区三区乱码不卡18| 在线观看人妻少妇| 最近最新中文字幕大全免费视频 | 好男人电影高清在线观看| 国产亚洲欧美在线一区二区| 亚洲欧洲国产日韩| 91精品伊人久久大香线蕉| 亚洲国产精品国产精品| 国产有黄有色有爽视频| 国产一区亚洲一区在线观看| 不卡av一区二区三区| 日韩电影二区| 亚洲国产欧美一区二区综合| 国产亚洲欧美精品永久| 欧美 亚洲 国产 日韩一| 久久国产精品男人的天堂亚洲| 1024视频免费在线观看| 国产精品一区二区在线不卡| 一区二区三区激情视频| 欧美黑人欧美精品刺激| 国产熟女午夜一区二区三区| 免费一级毛片在线播放高清视频 | 69精品国产乱码久久久| 青春草亚洲视频在线观看| 秋霞在线观看毛片| kizo精华| 中国美女看黄片| 热re99久久国产66热| 免费少妇av软件| 99国产精品一区二区蜜桃av | av国产久精品久网站免费入址| 搡老岳熟女国产| 亚洲av欧美aⅴ国产| 国产日韩一区二区三区精品不卡| 在线亚洲精品国产二区图片欧美| 欧美黄色片欧美黄色片| 99热国产这里只有精品6| 少妇 在线观看| 51午夜福利影视在线观看| 男男h啪啪无遮挡| 亚洲成av片中文字幕在线观看| 午夜激情久久久久久久| av天堂在线播放| 波多野结衣一区麻豆| 亚洲精品第二区| 久久99一区二区三区| 午夜福利视频精品| 亚洲国产日韩一区二区| 人人妻人人添人人爽欧美一区卜| 欧美老熟妇乱子伦牲交| 国产精品一区二区在线不卡| 久久毛片免费看一区二区三区| 国产男人的电影天堂91| 国产免费又黄又爽又色| 少妇的丰满在线观看| 18禁观看日本| 99热国产这里只有精品6| 亚洲精品在线美女| 久久性视频一级片| 性色av一级| 亚洲一区二区三区欧美精品| 国产精品免费视频内射| 日韩av不卡免费在线播放| 欧美精品啪啪一区二区三区 | 这个男人来自地球电影免费观看| 97精品久久久久久久久久精品| 亚洲国产精品一区二区三区在线| av不卡在线播放| 99国产综合亚洲精品| 真人做人爱边吃奶动态| 成人亚洲精品一区在线观看| 色播在线永久视频| 国产亚洲欧美在线一区二区| 午夜福利视频精品| 90打野战视频偷拍视频| 一区二区三区四区激情视频| 欧美人与善性xxx| www.熟女人妻精品国产| 久久久欧美国产精品| 又粗又硬又长又爽又黄的视频| 亚洲少妇的诱惑av| 一级毛片 在线播放| 丝瓜视频免费看黄片| 美女主播在线视频| 狠狠精品人妻久久久久久综合| 香蕉国产在线看| 一区二区三区激情视频| 如日韩欧美国产精品一区二区三区| 国产亚洲av高清不卡| 日韩一本色道免费dvd| 美女国产高潮福利片在线看| 大型av网站在线播放| 美国免费a级毛片| 国产成人精品在线电影| 午夜日韩欧美国产| 国产免费现黄频在线看| 色播在线永久视频| 亚洲九九香蕉| 热99国产精品久久久久久7| 国产有黄有色有爽视频| 日本欧美国产在线视频| 欧美激情高清一区二区三区| 在现免费观看毛片| 久久久久久久久久久久大奶| 侵犯人妻中文字幕一二三四区| 国产福利在线免费观看视频| a 毛片基地| 男的添女的下面高潮视频| 国产片特级美女逼逼视频| 国产免费福利视频在线观看| 丝袜脚勾引网站| cao死你这个sao货| 少妇 在线观看| 色精品久久人妻99蜜桃| 一级黄片播放器| 国产精品 国内视频| 午夜激情av网站| 亚洲国产欧美一区二区综合| 欧美成人午夜精品| 如日韩欧美国产精品一区二区三区| 国产老妇伦熟女老妇高清| 香蕉丝袜av| 婷婷色综合www| 国产亚洲精品久久久久5区| 女人爽到高潮嗷嗷叫在线视频| 天天添夜夜摸| 丝袜美足系列| 国产伦人伦偷精品视频| a 毛片基地| 一级片免费观看大全| 九色亚洲精品在线播放| 免费高清在线观看视频在线观看| 亚洲精品中文字幕在线视频| 又大又黄又爽视频免费| 新久久久久国产一级毛片| 欧美黄色淫秽网站| 日韩 欧美 亚洲 中文字幕| 午夜激情久久久久久久| 少妇被粗大的猛进出69影院| 久久人人爽av亚洲精品天堂| 捣出白浆h1v1| 真人做人爱边吃奶动态| 香蕉丝袜av| 热99国产精品久久久久久7| 满18在线观看网站| 亚洲精品第二区| 免费人妻精品一区二区三区视频| 另类精品久久| 日本一区二区免费在线视频| videos熟女内射| 亚洲国产av影院在线观看| 老熟女久久久| 爱豆传媒免费全集在线观看| 久久精品aⅴ一区二区三区四区| 丰满人妻熟妇乱又伦精品不卡| 另类亚洲欧美激情| 一级毛片女人18水好多 | 女性被躁到高潮视频| 亚洲黑人精品在线| 韩国高清视频一区二区三区| 日韩伦理黄色片| 亚洲精品一区蜜桃| 777米奇影视久久| 欧美黑人精品巨大| 成人18禁高潮啪啪吃奶动态图| 欧美人与善性xxx| 亚洲,一卡二卡三卡| 岛国毛片在线播放| 日韩免费高清中文字幕av| 亚洲国产精品一区二区三区在线| 97精品久久久久久久久久精品| 在线观看免费日韩欧美大片| 久久久久久人人人人人| 最新在线观看一区二区三区 | 老司机午夜十八禁免费视频| 在线观看一区二区三区激情| 国产成人啪精品午夜网站| 蜜桃在线观看..| 日本av手机在线免费观看| 国产在线免费精品| 夜夜骑夜夜射夜夜干| 天天操日日干夜夜撸| 五月天丁香电影| 男女边摸边吃奶| 欧美日韩精品网址| 中文欧美无线码| 黄色 视频免费看| 久久久精品国产亚洲av高清涩受| 亚洲第一av免费看| 在线观看国产h片| 日韩视频在线欧美| 国产日韩一区二区三区精品不卡| 五月开心婷婷网| 一级毛片我不卡| 高清黄色对白视频在线免费看| 亚洲专区国产一区二区| 国产精品一国产av| 新久久久久国产一级毛片| 国产男人的电影天堂91| 国产伦理片在线播放av一区| 国产1区2区3区精品| 叶爱在线成人免费视频播放| 九色亚洲精品在线播放| 观看av在线不卡| 精品人妻1区二区| 成人三级做爰电影| 亚洲av美国av| 久久精品国产综合久久久| 大话2 男鬼变身卡| 亚洲欧美激情在线| av福利片在线| 热re99久久国产66热| 国产伦人伦偷精品视频| 国产视频一区二区在线看| 麻豆国产av国片精品| 亚洲av成人不卡在线观看播放网 | 国产片特级美女逼逼视频| 男女边摸边吃奶| 人妻一区二区av| 狂野欧美激情性xxxx| 免费在线观看影片大全网站 | 黄频高清免费视频| 青春草亚洲视频在线观看| 午夜影院在线不卡| 成人手机av| 狂野欧美激情性bbbbbb| 亚洲欧美精品自产自拍| 一级毛片我不卡| 国产男女超爽视频在线观看| 国产成人免费无遮挡视频| 欧美激情 高清一区二区三区| 国产精品 欧美亚洲| 乱人伦中国视频| 国产成人av教育| 在线亚洲精品国产二区图片欧美| 国产精品一国产av| 激情视频va一区二区三区| 这个男人来自地球电影免费观看| 97人妻天天添夜夜摸| 久久99一区二区三区| 国产老妇伦熟女老妇高清| 亚洲国产精品一区二区三区在线| 亚洲自偷自拍图片 自拍| 欧美日韩亚洲综合一区二区三区_| 99久久99久久久精品蜜桃| 国产成人精品在线电影| 精品国产国语对白av| 国产av精品麻豆| 精品久久久精品久久久| 天天添夜夜摸| 丰满少妇做爰视频| 99精国产麻豆久久婷婷| av国产久精品久网站免费入址| 成人亚洲精品一区在线观看| 免费一级毛片在线播放高清视频 | 伦理电影免费视频| 免费少妇av软件| 欧美黄色淫秽网站| 国产日韩欧美亚洲二区| 欧美日韩一级在线毛片| 免费看av在线观看网站| 只有这里有精品99| 亚洲精品第二区| 丝袜人妻中文字幕| 亚洲精品成人av观看孕妇| 18在线观看网站| 亚洲精品在线美女| 国产色视频综合| 国产一级毛片在线| 日本午夜av视频| 亚洲专区中文字幕在线| 女警被强在线播放| 亚洲av成人不卡在线观看播放网 | 一级片'在线观看视频| 日韩 欧美 亚洲 中文字幕| 国产男女内射视频| 日韩欧美一区视频在线观看| av网站在线播放免费| 久久精品aⅴ一区二区三区四区| 中文字幕最新亚洲高清| 99国产精品免费福利视频| 日日夜夜操网爽| 90打野战视频偷拍视频| 国语对白做爰xxxⅹ性视频网站| 精品国产一区二区三区久久久樱花| 亚洲欧美清纯卡通| 99国产精品一区二区蜜桃av | 又大又爽又粗| 精品亚洲成a人片在线观看| 制服人妻中文乱码| 久久国产精品大桥未久av| 亚洲五月色婷婷综合| 亚洲伊人久久精品综合| 久久亚洲国产成人精品v| 99九九在线精品视频| 最新的欧美精品一区二区| 亚洲精品一区蜜桃| 久久国产精品人妻蜜桃| 大陆偷拍与自拍| 国产精品一二三区在线看| 成人国语在线视频| 亚洲精品美女久久久久99蜜臀 | 国产精品国产三级专区第一集| 97在线人人人人妻| 久久人人爽av亚洲精品天堂| 男女之事视频高清在线观看 | 18在线观看网站| 男女午夜视频在线观看| 丰满人妻熟妇乱又伦精品不卡| 亚洲人成77777在线视频| 99热全是精品| 两人在一起打扑克的视频| 人妻一区二区av| 久久精品亚洲熟妇少妇任你| 99香蕉大伊视频| 一区福利在线观看| 真人做人爱边吃奶动态| 国产黄色免费在线视频| 精品亚洲成a人片在线观看| 黄片播放在线免费| 久久人妻熟女aⅴ| 亚洲国产欧美日韩在线播放| 亚洲国产中文字幕在线视频| 国产精品一区二区在线观看99| 麻豆乱淫一区二区| 亚洲免费av在线视频| 在线精品无人区一区二区三| 男人爽女人下面视频在线观看| bbb黄色大片| 亚洲视频免费观看视频| 91九色精品人成在线观看| 成年人黄色毛片网站| 精品国产一区二区三区四区第35| 真人做人爱边吃奶动态| 亚洲av欧美aⅴ国产| 乱人伦中国视频| 夫妻午夜视频| 黑丝袜美女国产一区| 另类精品久久| 午夜久久久在线观看| 国产高清不卡午夜福利| 亚洲成人免费电影在线观看 | 国产伦理片在线播放av一区| 在现免费观看毛片| 少妇人妻 视频| 欧美黄色片欧美黄色片| 亚洲一区中文字幕在线| 日本wwww免费看| 国产一卡二卡三卡精品| 夜夜骑夜夜射夜夜干| 最黄视频免费看| 免费看不卡的av| 欧美性长视频在线观看| 国产成人av教育| 久久av网站| 亚洲欧美一区二区三区久久| 亚洲欧美一区二区三区黑人| 欧美成人午夜精品| 欧美人与性动交α欧美精品济南到| 亚洲五月色婷婷综合| 18禁国产床啪视频网站| 亚洲精品av麻豆狂野| 免费女性裸体啪啪无遮挡网站| 狂野欧美激情性bbbbbb| 久9热在线精品视频| av在线app专区| 亚洲欧美成人综合另类久久久| 国产免费视频播放在线视频| 亚洲av日韩在线播放| 美女视频免费永久观看网站| 首页视频小说图片口味搜索 | 欧美日韩一级在线毛片| 搡老岳熟女国产|