• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Physical mechanism of oxygen diffusion in the formation of Ga2O3 Ohmic contacts

    2024-01-25 07:14:36SuYuXu徐宿雨MiaoYu于淼DongYangYuan袁東陽BoPeng彭博LeiYuan元磊YuMingZhang張玉明andRenXuJia賈仁需
    Chinese Physics B 2024年1期
    關(guān)鍵詞:東陽彭博

    Su-Yu Xu(徐宿雨), Miao Yu(于淼),?, Dong-Yang Yuan(袁東陽), Bo Peng(彭博),Lei Yuan(元磊), Yu-Ming Zhang(張玉明), and Ren-Xu Jia(賈仁需),?

    1Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices,School of Microelectronics,Xidian University,Xi’an 710071,China

    2The 13th Research Institute China Electronics Technology Group Corporation,Shijiazhuang 050051,China

    Keywords: Ga2O3,Ohmic contacts,oxygen diffusion,density functional theory

    1.Introduction

    Gallium oxide (Ga2O3) is an ultra-wide bandgap semiconductor material that has garnered significant attention as a candidate for next-generation power electronics and optoelectronic devices.[1–10]It is characterized by its excellent chemical and thermal stability,high visible light transmission rate,and Si-compatible preparation process that enables mass production.Nevertheless, the development of Ga2O3-based devices is still in its infancy, and numerous challenges, including the formation of good Ohmic contacts, persist.[11–16]The formation of Ohmic contacts between metal electrodes and semiconductors is a fundamental prerequisite for any semiconductor device to operate successfully.The magnitude of the contact resistance between the metal and semiconductor is a crucial factor that influences the performance of the device, particularly its power, noise frequency, and thermal stability.However,the precise mechanism governing the formation of Ohmic contacts between metals and Ga2O3remains incompletely understood.Prior research has demonstrated that the Au-covered Ti(Ti/Au)electrode, annealed at 400°C,exhibits the lowest Ohmic contact resistance with Ga2O3, and thus is the most commonly used approach to achieve Ohmic contact with gallium oxide.[17–21]Although the rapid annealing of Ti/Au electrodes is known to result in interdiffusion at the interface between the electrode and Ga2O3,the exact role played by the diffusion of various elements in the formation of Ohmic contacts in Ga2O3is not yet clear.[22]As oxygen diffusion is the most pronounced interfacial diffusion,studying the contribution of oxygen element diffusion to the formation of Ohmic contacts is critical for gallium oxide.

    This study investigates the contribution of oxygen atom diffusion to the formation of Ohmic contacts in Ga2O3.Specifically, we prepared titanium/gold electrodes on a single crystal gallium oxide substrate and evaluated their currentvoltage characteristics, energy dispersive x-ray elemental mapping spectrum,and electron energy loss spectroscopy.We constructed interface models of gallium oxide and titanium and calculated their charge density, partial density of state,planar electrostatic potential energy,and current–voltage characteristics.Our results reveal that oxygen atoms at the Ga2O3interface diffuse into the titanium layer,where they oxidize the Ti and leave oxygen vacancies near the interface.The presence of these vacancies lowers the interfacial potential barrier, enhances the overlap degree of electron cloud at the interface,and ultimately facilitates the flow of electrons across the interfacial potential barrier, enabling Ohmic properties.These findings provide valuable insights into the underlying mechanisms governing the formation of Ohmic contacts and underscore the importance of considering oxygen atom diffusion in the design of Ga2O3-based electronic devices.

    2.Methods

    The Ti/Au electrodes were deposited on a single crystal commercial Ga2O3substrate with a (ˉ201) phase using direct current magnetron sputtering.The Ti electrode was sputtered at a power of 50 W for 1200 s, while the Au electrode was sputtered at a power of 20 W for 3600 s.In this work, the thickness of Ti is about 50 nm and the thickness of Au is about 110 nm.Subsequently, the samples underwent rapid thermal annealing(RTA)for 120 s under a nitrogen atmosphere at an annealing temperature of 470°C, in accordance with established protocols.[22]The current–voltage(I–V)characteristics were measured using a cascade probe table fitted with an Agilent B1500A.The structural and elemental features of the electrodes and the interface were characterized using Thermo Scientific Tecnai F20 transmission electron microscopy.In this study,all calculations were performed using density functional theory with the linear combination of atomic orbitals(LCAO)method, as implemented in the Quantum ATK package.The MGGA-TB09 exchange–correlation functional was employed to describe the exchange–correlation energy between electrons, while the PseudoDojo pseudopotential was used to model the electron–ion interaction potential.[23,24]Brillouin zone integration in reciprocal space was carried out using a grid density ofk-points of 12×2×1, and the cut-off energy was set to 550 eV.The convergence criteria for energy,force,stress, and displacement during the calculations were set at 5×10?6eV, 0.03 eV/?A, 0.02 GPa, and 5×10?4?A, respectively,to ensure high accuracy and reliability of the results.

    3.Results and discussion

    In this study, we fabricated Ti/Au electrodes on a single crystal Ga2O3substrate oriented along the(ˉ201)direction.The electrical behavior of the device before and after rapid thermal annealing (RTA) was evaluated usingI–Vmeasurements,as illustrated in Fig.1(a).TheI–Vcurve prior to RTA exhibited distinct Schottky characteristics,while theI–Vcurve following RTA displayed clear Ohmic behavior, indicating a significant change in the quality of the interface.To determine the specific contact resistance of the RTA-treated sample,we employed the transmission line model(TLM)method.[25]The electrode structure utilized for this measurement is depicted in Fig.1(b).By varying the electrode spacing, we obtained theI–Vcharacteristics as shown in Fig.1(c), from which we extracted the specific contact resistanceρcand plotted it against electrode spacing,as shown in Fig.1(d).The specific contact resistance of the RTA-treated sample was found to be 2.21×10?5?·cm2.These results reveal that the initial Ti/Ga2O3contact is Schottky in nature, and that the RTA treatment is critical in transforming it to an Ohmic contact.The change in the electrical behavior of the interface is likely attributed to the reduction of the barrier height at the Ti/Ga2O3junction caused by the thermal treatment.

    Fig.1.(a) Comparison of I–V characteristics for Ti/Au electrodes with and without rapid annealing; (b) electrode structure for contact resistance measurement using TLM method; (c) effect of electrode spacing on I–V characteristics; (d) fitting curve for extracting contact resistance of Ti/Au electrodes.

    Figure 2 displays the x-ray photoelectron spectroscopy(XPS)spectrum of the interface between Ti and Ga2O3in the unannealed sample.The binding energies of all peaks are calibrated to the C 1s peak located at 284.8 eV.The spectrum exhibits distinct peaks of Ga at approximately 1116 eV, O at approximately 530 eV, and Ti at approximately 460 eV.The XPS spectrum of Ti at the interface is presented in the inset,revealing a double-peak spacing of 5.7 eV between the Ti 2p1/2and Ti 2p3/2orbital peaks.This indicates that Ti in its elemental state is present at the interface of the unannealed sample,and no reactions have occurred at the interface.[26]

    Fig.2.The XPS analysis of the interface between unannealed Ti and Ga2O3,with insert showing the Ti XPS spectrum at the interface.

    Fig.3.The EDX elemental mapping spectrum of the Ti/Au–Ga2O3 interface after rapid thermal annealing.

    The energy-dispersive x-ray (EDX) element mapping spectrum of the annealed sample is displayed in Fig.3.The spectrum demonstrates the distribution of O, Ti, Ga, and Au elements.The deep blue area indicates the distribution of O elements, the light blue area indicates the distribution of Ti elements, the purple area indicates the distribution of Ga elements,and the orange area indicates the distribution of Au elements.It is evident that a substantial amount of oxygen exists in the Ti metal layer at the interface.To further examine the valence state of Ti at the interface,we conducted electron energy loss spectroscopy(EELS)on the sample after rapid thermal annealing and thoroughly analyzed the high-energy loss region of the EELS.[27,28]

    The EELS results are illustrated in Fig.4,where the three peak values marked as A,B,and C correspond to energy values of 458.3 eV, 460.7 eV, and 463.3 eV, respectively.These results demonstrate that the Ti at the interface is in the Ti3+state after rapid annealing.[29]

    Fig.4.The electron energy loss spectroscopy of Ti at the Ti/Au interface after rapid annealing.

    Table 1 presents the elemental proportion distribution of the Ga2O3layer at the interface.The O-to-Ga ratio is close to 1:1, much less than 2:3.Since the preparation and structural characterization of the sample were carried out under anoxic conditions,the oxygen in the Ti layer is attributed to the diffusion of oxygen atoms in the Ga2O3caused by rapid annealing.The findings of the related tests support this hypothesis.The current–voltage testing results,when combined with the previously discussed results, indicate that rapid annealing changes the Ti/Au electrode and Ga2O3from a Schottky contact to an Ohmic contact.The diffusion of oxygen atoms at the interface can be regarded as the most prominent change caused by rapid annealing.This indicates that the diffusion of oxygen at the interface of Ga2O3may have a significant influence on the formation of Ohmic contact.

    Table 1.Element ratio distribution at the Ti/Au–Ga2O3 interface after rapid annealing.

    To investigate the impact of interfacial oxygen diffusion on the formation of Ohmic contact between Ti and gallium oxide, we selected the (ˉ201) crystal phase of gallium oxide and the (100) crystal phase of Ti to construct various nanodevice models with different contact interfaces.Prior to building the interface models,we optimized the Ga2O3bulk material,and the results are illustrated in Fig.5(a).The bulk material parameters,namelya=12.43 ?A,b=3.08 ?A,c=5.87 ?A,α=γ=90°,andβ=103.68°,respectively,were determined.Furthermore, the energy band structure of Ga2O3is depicted in Fig.5(b),revealing a quasi-direct band gap of 4.87 eV.Both the lattice constant and the band gap width are consistent with previously reported experimental and calculated values.[30–32]

    After optimizing the lattice structure of Ga2O3, we used 5 layers of Ga2O3in the(ˉ201)direction and 5 layers of Ti in the(100)direction as metal electrodes to build a device model.The parameter of the device model isa=3.08 ?A,b=14.96 ?A,c= 37 ?A,α=β=γ= 90°.Our study involved the generation of three interface models to describe the interaction between Ga2O3and Ti.These models included a direct contact model, a low concentration oxygen diffusion model, and a high concentration oxygen diffusion model.The direct contact model (M-direct) describes the absence of oxygen atom diffusion into the Ti layer upon contact with Ga2O3.In contrast, the low concentration oxygen diffusion model (M-low)represents the diffusion of oxygen atoms at a low concentration into the Ti layer, while the high concentration oxygen diffusion model (M-high) represents the diffusion of oxygen atoms at a high concentration into the Ti layer.The interface model between Ti and Ga2O3in direct contact is depicted in Fig.6(a).Due to differences in lattice constants,the interface experiences a slight degree of lattice distortion,while remaining well-matched.Figures 6(b)and 6(c)illustrate the oxygen diffusion models.Oxygen atoms from Ga2O3diffuse into the Ti layer,leaving oxygen vacancies at the interface.Figure 6(b)represents oxygen diffusion at a low concentration, with one oxygen atom diffusing into the Ti layer.Figure 6(c)represents oxygen diffusion at a high concentration, with two oxygen atoms diffusing into the Ti layer.In M-low,the Ti atoms at the oxygen vacancies move towards adjacent Ti atoms and share an oxygen atom with them,thus pulling the oxygen atoms on the Ga2O3side towards the Ti layer.In contrast, M-high is characterized by a more significant lattice distortion at the interface due to the Ti atoms moving larger distances.Ti atoms at the vacant sites take oxygen atoms from the deeper layers of Ga2O3, leading to a more pronounced tendency towards mutual diffusion at the interface.The high reactivity of Ti with oxygen results in Ti being more reductive than Ga.[33]Rapid annealing tends to move oxygen atoms towards the Ti layer,leading to the diffusion of oxygen atoms at the interface.

    Fig.6.Optimization of Ga2O3/Ti interface model with varying oxygen diffusion concentrations.(M-direct: no oxygen diffusion,M-low: low oxygen diffusion concentration,M-high: high oxygen diffusion concentration).

    Electron cloud density is a key electronic property that characterizes the spatial distribution of electrons in a material.It quantifies the probability of finding an electron at a given point in space and is a fundamental parameter for understanding the electronic structure of materials.[34]Figure 7 presents the electron cloud density distributions for three distinct systems, namely, M-direct, M-low, and M-high, which are shown in panels(a),(b),and(c),respectively.The yellow regions in the figure represent the areas with non-zero electron cloud density, while the equivalence surface of the electron cloud density is set to a constant value of 0.025e/Bohr3for all systems,thereby enabling a direct comparison of the electron cloud distributions across the different systems.Fluctuations in the electron cloud density at the interface have a significant impact on the barrier height.Our results reveal that M-low and M-high exhibit significantly higher electron density at the interface as compared to M-direct,indicating that there are more available electron orbitals near the interface that facilitate easier electron transport between the two materials.Specifically,the presence of oxygen atoms on the surface of Ga2O3entering the Ti layer contributes to an increase in the electron cloud density at the interface,resulting in the formation of new electron orbitals that enable electron transport between the interfaces.

    Fig.7.Distribution of electron cloud density for Ga2O3/Ti interface models with varying oxygen diffusion concentrations.(a)M-direct: no oxygen diffusion,(b)M-low: low oxygen diffusion concentration,and(c)M-high:high oxygen diffusion concentration.

    In order to conduct a thorough analysis of the impact of diffusing oxygen atoms at the interface on the electronic structure of the system during electron transport,we have performed calculations of the partial density of states(PDOS)at the interface.The PDOS results for M-direct, M-low, and M-high are presented in Figs.8(a), 8(b), and 8(c), respectively.Given that the conduction band electrons at the interface mainly stem from Ti-3d orbital electrons and the valence band electrons are primarily contributed by O-2p orbital electrons,we have focused our investigation on these two regions.The density of states for O-2p and Ti-3d electrons in the Mdirect, M-low, and M-high systems are depicted in Fig.8(d).For the M-direct system, the cut-off energy of O-2p orbital electrons is?5.30 eV, and that of Ti-3d orbital electrons is?3.23 eV, giving rise to a potential barrier of 2.07 eV.Analogously, the potential barrier between O-2p orbital electrons and Ti-3d orbital electrons for the M-low system is 1.80 eV,and that for the M-high system is 0.58 eV.The results demonstrate that the diffusion of oxygen atoms into the Ti layer at the interface leads to a reduction in the potential barrier for electron transport, and this reduction becomes more pronounced as the concentration of diffusing oxygen atoms increases.This phenomenon arises due to the creation of new electron-occupied states for O-2p orbital electrons in Ga2O3at higher energy levels,resulting from the oxygen vacancies that are formed by the oxygen atoms at the interface.Concurrently,the oxygen atoms that enter the Ti layer combine with Ti to generate new electron-occupied states for Ti-3d orbital electrons at lower energy levels, thereby decreasing the potential barrier, which promotes the formation of Ohmic properties.The diffusion of oxygen atoms at the interface is a promising strategy for effectively reducing the interfacial potential barrier of the Ti–Ga2O3interface.

    Fig.8.Partial density of states (PDOS) at the Ga2O3/Ti interface with varying oxygen diffusion concentrations.(a) PDOS for M-direct, (b) PDOS for M-low,(c)PDOS for M-high,and(d)PDOS of O-2p orbital electrons and Ti-3d orbital electrons at the interface for M-direct,M-low,and M-high.

    The planar electrostatic potential was calculated for different interface models, and the results are presented in Fig.9(a).The differences in electrostatic potential between Ti and Ga2O3in M-direct, M-low, and M-high are 5.35 eV,4.9 eV,and 4 eV respectively.Upon contact,a notable potential difference was observed between the Ti and Ga2O3interfaces, with the Ga2O3side exhibiting a lower potential.This phenomenon indicates that free electrons from the Ga2O3migrated towards the Ti, generating a built-in electric field that demonstrated Schottky properties.Comparatively, the potential difference between M-low and M-high interfaces was significantly lower than that of M-direct.Furthermore,the greater the concentration of diffused oxygen atoms, the more pronounced the potential difference reduction, which was consistent with density of states calculations.The planar electrostatic potential is directly linked to the charge transferred at the interface.To determine this, Bader charges of M-direct,M-low, and M-high at the interface were calculated, and the results are presented in Fig.9(b).The Bader charge values of M-low,and M-high are 10.62e,8.75e,and 7.80erespectively.The charge transferred at the interface was significantly lower for M-low and M-high compared to M-direct.This was due to the bonding of oxygen atoms with Ti atoms in the Ti layer, which resulted in a reduction in the number of charges transferred at the interface,thereby lowering the potential difference at the interface.

    Fig.9.Planar electrostatic potential and Bader charge at the interface between Ga2O3 and Ti for M-direct,M-low,and M-high models.

    We employed a combined approach based on density functional theory and non-equilibrium Green’s function to investigate the current–voltage(I–V)characteristics of M-direct,M-low, and M-high systems.[35,36]The results, presented in Fig.10, indicate a distinct difference in theI–Vbehavior between the three systems.Specifically, theI–Vcurve of Mdirect exhibited a Schottky-like behavior with an order of magnitude smaller current compared to that of M-low and M-high.This observation strongly suggests the presence of a Schottky contact at the interface between Ti and Ga2O3in direct contact.In contrast,M-low and M-high displayed distinct Ohmic characteristics, with theI–Vcurve’s slope for M-low being lower than that of M-high, indicating a lower contact resistance and superior Ohmic properties.Our theoretical analysis further revealed that the observed interfacial characteristics can be attributed to the diffusion of oxygen atoms from the Ga2O3surface into the Ti layer.This process creates new electron orbitals at the interface, lowering the interfacial barrier, and increasing the probability of electron tunneling at the interface, resulting in the Ohmic behavior observed in M-low and M-high.Our findings highlight the importance of oxygen diffusion in tuning the interfacial properties of the Ti/Ga2O3system and provide new insights into the design of high-performance electronic devices.

    Fig.10.First principles calculation of the current–voltage characteristics for Ga2O3/Ti interface models with varying oxygen diffusion concentrations.

    4.Conclusion

    In this investigation,we examined the critical role of oxygen diffusion in the development of Ohmic contact between Ti and Ga2O3.Specifically, we fabricated Ti/Au electrodes on single crystal Ga2O3substrates, and our results revealed that direct contact between Ti and Ga2O3is initially Schottky in nature,transitioning to Ohmic behavior after rapid thermal annealing(RTA).We further observed via energy-dispersive xray spectroscopy(EDX)and electron energy loss spectroscopy(EELS)the diffusion of oxygen atoms from Ga2O3into the titanium layer after RTA, which caused the Ti to oxidize to a+3-valence state.To gain deeper insights into the underlying mechanisms driving the formation of Ohmic contacts,we employed density functional theory to construct several interface models.Our analysis of charge density, partial density of state, planar electrostatic potential energy, andI–Vcharacteristic calculations showed that oxygen diffusion decreases the interface potential barrier and enhances electron tunneling through the interface potential barrier.These outcomes explain the observed Ohmic behavior of the Ti/Ga2O3system.The experimental findings were in good agreement with the calculated results.This study provides valuable insights into the mechanisms behind the formation of Ohmic contacts between Ti and Ga2O3, which could have implications for the development of high-performance electronic devices.Further studies could explore the impact of variations in processing parameters on the formation and properties of Ohmic contacts.

    Acknowledgment

    Projects supported by the National Natural Science Foundation of China (Grant Nos.61874084, 61974119, and U21A20501).

    猜你喜歡
    東陽彭博
    青年文學(xué)家(2023年24期)2023-10-12 11:57:30
    古韻東陽
    人大代表約見制度的東陽實踐
    牛敏、崔旌濤、孫海姣、彭博作品選
    美術(shù)界(2017年3期)2017-06-22 17:06:39
    莆田東陽:兩朝“進(jìn)士村”的前世今生
    Underestimation of Oceanic Warm Cloud Occurrences by the Cloud Profiling Radar Aboard CloudSat
    東陽:大樹底下長出草
    東陽木雕選等
    雕塑(1995年1期)1995-07-15 02:38:16
    国产成人freesex在线| 一个人观看的视频www高清免费观看| 男女边吃奶边做爰视频| 大香蕉97超碰在线| 国产精品成人在线| 最近中文字幕高清免费大全6| av又黄又爽大尺度在线免费看| 国产一区二区在线观看日韩| 九九在线视频观看精品| 老师上课跳d突然被开到最大视频| 欧美高清性xxxxhd video| 日本三级黄在线观看| 乱码一卡2卡4卡精品| 国产精品人妻久久久久久| 亚洲欧美精品自产自拍| 国产国拍精品亚洲av在线观看| 最后的刺客免费高清国语| 久久久久久久国产电影| 亚洲最大成人中文| 视频区图区小说| 国产黄片视频在线免费观看| 欧美极品一区二区三区四区| 少妇高潮的动态图| 亚洲欧洲国产日韩| 午夜老司机福利剧场| 九九爱精品视频在线观看| 天天一区二区日本电影三级| 少妇人妻一区二区三区视频| 69人妻影院| 欧美丝袜亚洲另类| 久久精品国产亚洲av涩爱| 国产黄色免费在线视频| 国产精品女同一区二区软件| 晚上一个人看的免费电影| 欧美人与善性xxx| 只有这里有精品99| 亚洲精品国产色婷婷电影| 日本欧美国产在线视频| 男人添女人高潮全过程视频| 成人毛片a级毛片在线播放| 亚洲自偷自拍三级| 熟女人妻精品中文字幕| 尾随美女入室| eeuss影院久久| 91在线精品国自产拍蜜月| 超碰97精品在线观看| 亚洲欧美成人精品一区二区| 久久国产乱子免费精品| 亚洲精品久久午夜乱码| 直男gayav资源| 成人亚洲精品一区在线观看 | 黄色配什么色好看| 99久久精品热视频| 午夜老司机福利剧场| 国产日韩欧美亚洲二区| 1000部很黄的大片| 久久ye,这里只有精品| 最近2019中文字幕mv第一页| 人人妻人人爽人人添夜夜欢视频 | av专区在线播放| 老师上课跳d突然被开到最大视频| 欧美激情在线99| 亚洲欧美清纯卡通| 一级毛片黄色毛片免费观看视频| 亚洲精品一二三| 午夜免费观看性视频| 国产大屁股一区二区在线视频| 中文字幕人妻熟人妻熟丝袜美| 99热这里只有精品一区| 成人亚洲精品av一区二区| 午夜精品国产一区二区电影 | 一个人看的www免费观看视频| 三级经典国产精品| 九九在线视频观看精品| 午夜免费男女啪啪视频观看| 国产欧美亚洲国产| 夫妻性生交免费视频一级片| 在线看a的网站| av免费观看日本| 精品久久久久久久久亚洲| 3wmmmm亚洲av在线观看| 欧美精品国产亚洲| 亚洲精品久久午夜乱码| 青青草视频在线视频观看| 视频中文字幕在线观看| 一本一本综合久久| 免费观看的影片在线观看| 99久久精品国产国产毛片| 国产亚洲av嫩草精品影院| 搡女人真爽免费视频火全软件| 美女国产视频在线观看| 国产欧美另类精品又又久久亚洲欧美| 搡女人真爽免费视频火全软件| 搡老乐熟女国产| 日韩制服骚丝袜av| 欧美成人一区二区免费高清观看| 久久99热这里只有精品18| 免费不卡的大黄色大毛片视频在线观看| 日韩大片免费观看网站| 久久久成人免费电影| 国产男人的电影天堂91| 黄色怎么调成土黄色| 一本久久精品| 99热这里只有是精品在线观看| 国产大屁股一区二区在线视频| 亚洲最大成人中文| 91久久精品电影网| 视频区图区小说| 国内少妇人妻偷人精品xxx网站| 一个人看视频在线观看www免费| 久久精品国产亚洲网站| 日本一二三区视频观看| 黄色怎么调成土黄色| 亚洲精品色激情综合| 国产黄a三级三级三级人| 免费观看无遮挡的男女| 一二三四中文在线观看免费高清| 亚洲精品国产av成人精品| 成人特级av手机在线观看| 久久久久九九精品影院| 我要看日韩黄色一级片| 国产精品久久久久久精品电影| 亚洲美女视频黄频| 日产精品乱码卡一卡2卡三| 亚洲色图av天堂| 久久鲁丝午夜福利片| av天堂中文字幕网| 中文天堂在线官网| 久久鲁丝午夜福利片| 亚洲精品,欧美精品| 国产精品人妻久久久影院| 一级毛片久久久久久久久女| videossex国产| 亚洲精品国产av成人精品| 亚洲国产色片| 中文字幕制服av| 一级av片app| 欧美3d第一页| 国产老妇伦熟女老妇高清| 熟妇人妻不卡中文字幕| 国产探花在线观看一区二区| 欧美 日韩 精品 国产| 国产精品伦人一区二区| 男男h啪啪无遮挡| 免费不卡的大黄色大毛片视频在线观看| 国产精品爽爽va在线观看网站| 久久久久久伊人网av| 爱豆传媒免费全集在线观看| 嫩草影院新地址| 高清欧美精品videossex| 色视频www国产| 婷婷色综合www| 久久人人爽av亚洲精品天堂 | 免费黄网站久久成人精品| 插阴视频在线观看视频| 成人二区视频| 中文字幕久久专区| 国产精品麻豆人妻色哟哟久久| 精品一区二区三卡| 香蕉精品网在线| 大码成人一级视频| 夜夜看夜夜爽夜夜摸| 日韩视频在线欧美| 韩国av在线不卡| 大香蕉97超碰在线| 精品一区二区三卡| av福利片在线观看| 国产乱人视频| 91久久精品国产一区二区三区| 亚洲人与动物交配视频| 另类亚洲欧美激情| 亚洲精品视频女| 国产亚洲91精品色在线| 一个人观看的视频www高清免费观看| 女的被弄到高潮叫床怎么办| 久久亚洲国产成人精品v| 两个人的视频大全免费| 国内少妇人妻偷人精品xxx网站| 搡女人真爽免费视频火全软件| 舔av片在线| 国产精品精品国产色婷婷| 国产视频内射| 蜜桃亚洲精品一区二区三区| 搞女人的毛片| 欧美精品人与动牲交sv欧美| 国产黄a三级三级三级人| 亚洲av电影在线观看一区二区三区 | 欧美区成人在线视频| 国产精品福利在线免费观看| 久久精品人妻少妇| 欧美国产精品一级二级三级 | 久久久色成人| av在线app专区| 人妻 亚洲 视频| 国产白丝娇喘喷水9色精品| 涩涩av久久男人的天堂| 精品久久久噜噜| av在线亚洲专区| 蜜臀久久99精品久久宅男| 看十八女毛片水多多多| 免费av观看视频| 国产探花在线观看一区二区| 亚洲人成网站高清观看| 高清视频免费观看一区二区| 99热这里只有是精品50| 国产老妇女一区| 人妻一区二区av| 国产午夜精品久久久久久一区二区三区| 少妇裸体淫交视频免费看高清| 最近的中文字幕免费完整| 国产精品麻豆人妻色哟哟久久| .国产精品久久| 五月伊人婷婷丁香| 欧美另类一区| 狂野欧美激情性bbbbbb| 天堂网av新在线| 亚洲第一区二区三区不卡| 最近最新中文字幕免费大全7| 欧美激情在线99| 免费黄网站久久成人精品| 国产精品一区二区性色av| 国产黄片视频在线免费观看| 国产淫语在线视频| 日日撸夜夜添| 亚洲国产成人一精品久久久| 亚洲精品久久久久久婷婷小说| 国产免费一区二区三区四区乱码| 免费看光身美女| 2018国产大陆天天弄谢| 99久久人妻综合| 神马国产精品三级电影在线观看| 日本欧美国产在线视频| 久久久久久久久久人人人人人人| 午夜免费鲁丝| 欧美日本视频| 国产亚洲午夜精品一区二区久久 | eeuss影院久久| 亚洲成人久久爱视频| 99久久九九国产精品国产免费| 国产亚洲午夜精品一区二区久久 | 精品久久国产蜜桃| 99热这里只有是精品50| 久久精品久久久久久噜噜老黄| 久久精品夜色国产| 日韩欧美 国产精品| 69av精品久久久久久| 成人欧美大片| 自拍欧美九色日韩亚洲蝌蚪91 | 国产中年淑女户外野战色| av福利片在线观看| 丝袜美腿在线中文| 免费看光身美女| 国国产精品蜜臀av免费| 欧美一级a爱片免费观看看| 精品久久久久久久久亚洲| 狂野欧美白嫩少妇大欣赏| 三级男女做爰猛烈吃奶摸视频| av在线天堂中文字幕| 国产一区有黄有色的免费视频| 少妇人妻一区二区三区视频| 国产精品国产三级国产专区5o| 制服丝袜香蕉在线| 亚洲va在线va天堂va国产| 免费看光身美女| 丰满乱子伦码专区| 日韩电影二区| 国产欧美另类精品又又久久亚洲欧美| 亚洲图色成人| 久久国产乱子免费精品| 日韩一区二区三区影片| 在线观看av片永久免费下载| 日本欧美国产在线视频| 精品国产露脸久久av麻豆| 色视频在线一区二区三区| 欧美97在线视频| 欧美精品一区二区大全| 久久久久久久午夜电影| 久久韩国三级中文字幕| 又大又黄又爽视频免费| 久久精品国产自在天天线| 国产黄a三级三级三级人| 蜜桃亚洲精品一区二区三区| 免费av不卡在线播放| 亚洲av.av天堂| 精品一区二区三区视频在线| 看免费成人av毛片| 久久久国产一区二区| 国产爱豆传媒在线观看| 大码成人一级视频| 国产精品国产三级国产专区5o| 黄色配什么色好看| 成年女人看的毛片在线观看| 啦啦啦在线观看免费高清www| 男插女下体视频免费在线播放| 狠狠精品人妻久久久久久综合| 大陆偷拍与自拍| 一边亲一边摸免费视频| 啦啦啦啦在线视频资源| 最近中文字幕2019免费版| 精品久久国产蜜桃| 啦啦啦啦在线视频资源| 欧美变态另类bdsm刘玥| 国产精品蜜桃在线观看| 少妇的逼水好多| 国产乱人视频| 一级二级三级毛片免费看| 蜜桃久久精品国产亚洲av| 亚洲成色77777| 草草在线视频免费看| 美女内射精品一级片tv| videos熟女内射| 国产极品天堂在线| 久久97久久精品| 真实男女啪啪啪动态图| 午夜福利在线在线| 丝袜美腿在线中文| 国产亚洲av片在线观看秒播厂| 日本与韩国留学比较| 日韩 亚洲 欧美在线| 亚洲电影在线观看av| 国产成人a∨麻豆精品| 国产一区二区三区综合在线观看 | 能在线免费看毛片的网站| 久久久久国产网址| 91久久精品国产一区二区成人| 内射极品少妇av片p| 久久影院123| 国产伦精品一区二区三区四那| 777米奇影视久久| 观看免费一级毛片| 18禁裸乳无遮挡动漫免费视频 | 色哟哟·www| av在线老鸭窝| 爱豆传媒免费全集在线观看| 亚洲在线观看片| 久久久久久伊人网av| 日本三级黄在线观看| 在线观看一区二区三区| 亚洲人成网站在线播| 97人妻精品一区二区三区麻豆| 日韩一区二区三区影片| 黄片无遮挡物在线观看| 亚洲精品成人av观看孕妇| 欧美精品人与动牲交sv欧美| 久久久久国产精品人妻一区二区| 亚洲精品视频女| 亚洲人与动物交配视频| 亚洲精品久久久久久婷婷小说| 欧美xxxx性猛交bbbb| 国产永久视频网站| 久久精品国产亚洲网站| 国产午夜精品久久久久久一区二区三区| 日韩一区二区三区影片| 街头女战士在线观看网站| 麻豆乱淫一区二区| 亚洲精品,欧美精品| 久久精品国产亚洲网站| 国产午夜精品久久久久久一区二区三区| 麻豆精品久久久久久蜜桃| 汤姆久久久久久久影院中文字幕| 国产69精品久久久久777片| 欧美亚洲 丝袜 人妻 在线| 国产精品国产三级国产专区5o| 国产黄色免费在线视频| 国产69精品久久久久777片| 日本与韩国留学比较| 色视频www国产| av播播在线观看一区| 色视频www国产| 中文欧美无线码| 女人被狂操c到高潮| 欧美亚洲 丝袜 人妻 在线| 久久久久性生活片| 成人黄色视频免费在线看| 亚洲成人一二三区av| 深夜a级毛片| 又爽又黄无遮挡网站| 亚洲欧美精品专区久久| 亚洲av不卡在线观看| 五月伊人婷婷丁香| 久久精品国产a三级三级三级| 日本wwww免费看| 欧美成人午夜免费资源| 99久久中文字幕三级久久日本| 国产日韩欧美亚洲二区| 自拍欧美九色日韩亚洲蝌蚪91 | 国产大屁股一区二区在线视频| 99久久中文字幕三级久久日本| 国产亚洲av片在线观看秒播厂| 亚洲精品乱久久久久久| 美女被艹到高潮喷水动态| 精品久久国产蜜桃| 亚洲无线观看免费| 丝袜美腿在线中文| 高清午夜精品一区二区三区| 亚洲av免费高清在线观看| 身体一侧抽搐| 水蜜桃什么品种好| 蜜臀久久99精品久久宅男| 日本黄色片子视频| 久久久久精品久久久久真实原创| 乱码一卡2卡4卡精品| 黑人高潮一二区| 欧美一级a爱片免费观看看| 国产av不卡久久| 精品久久久久久久人妻蜜臀av| 我要看日韩黄色一级片| 特级一级黄色大片| 国产成人a∨麻豆精品| 欧美日韩综合久久久久久| 午夜福利视频1000在线观看| 国内少妇人妻偷人精品xxx网站| av女优亚洲男人天堂| 高清午夜精品一区二区三区| 久久综合国产亚洲精品| 韩国av在线不卡| 一级毛片黄色毛片免费观看视频| 国产成人a∨麻豆精品| 高清视频免费观看一区二区| 国产一区二区亚洲精品在线观看| 99久久人妻综合| 精品国产乱码久久久久久小说| 午夜爱爱视频在线播放| 午夜福利在线观看免费完整高清在| 欧美性感艳星| 免费人成在线观看视频色| 777米奇影视久久| 老师上课跳d突然被开到最大视频| 99热国产这里只有精品6| 天堂俺去俺来也www色官网| 成人毛片a级毛片在线播放| 欧美xxxx黑人xx丫x性爽| 免费大片黄手机在线观看| 狂野欧美激情性xxxx在线观看| 国产成人a区在线观看| 成人国产麻豆网| 成人亚洲精品av一区二区| 看非洲黑人一级黄片| 超碰97精品在线观看| 免费观看av网站的网址| 欧美xxxx黑人xx丫x性爽| 免费看光身美女| 麻豆国产97在线/欧美| 欧美成人精品欧美一级黄| 国产精品一区二区性色av| 欧美成人一区二区免费高清观看| 亚洲欧美日韩东京热| 一级二级三级毛片免费看| 80岁老熟妇乱子伦牲交| 日韩三级伦理在线观看| 欧美高清性xxxxhd video| 少妇人妻一区二区三区视频| 在线免费观看不下载黄p国产| 寂寞人妻少妇视频99o| 下体分泌物呈黄色| 国产 一区精品| 欧美成人午夜免费资源| 国产国拍精品亚洲av在线观看| 看十八女毛片水多多多| 毛片一级片免费看久久久久| av在线蜜桃| 最近的中文字幕免费完整| 少妇人妻一区二区三区视频| 涩涩av久久男人的天堂| 一级毛片电影观看| 精品酒店卫生间| 国产亚洲精品久久久com| 亚洲精品亚洲一区二区| 久久久久久久国产电影| 欧美精品国产亚洲| 亚洲性久久影院| 天天躁日日操中文字幕| 中文天堂在线官网| 香蕉精品网在线| 免费电影在线观看免费观看| 少妇的逼水好多| 一区二区三区四区激情视频| 国产有黄有色有爽视频| 免费在线观看成人毛片| 又大又黄又爽视频免费| 联通29元200g的流量卡| 青青草视频在线视频观看| 在线a可以看的网站| 国产 精品1| 91aial.com中文字幕在线观看| 亚洲av在线观看美女高潮| 自拍欧美九色日韩亚洲蝌蚪91 | 男女那种视频在线观看| 欧美性猛交╳xxx乱大交人| 网址你懂的国产日韩在线| 毛片女人毛片| 国产午夜精品久久久久久一区二区三区| 久久精品国产亚洲av天美| 一级片'在线观看视频| 色5月婷婷丁香| av国产久精品久网站免费入址| 永久免费av网站大全| 美女高潮的动态| 菩萨蛮人人尽说江南好唐韦庄| 美女被艹到高潮喷水动态| 嫩草影院新地址| 肉色欧美久久久久久久蜜桃 | 久久精品久久久久久噜噜老黄| 国产成人a区在线观看| 99九九线精品视频在线观看视频| 色网站视频免费| 精品人妻熟女av久视频| 在线观看一区二区三区| 成人欧美大片| 91久久精品国产一区二区成人| av在线蜜桃| 亚洲精品456在线播放app| 久久久久久久久大av| 人妻 亚洲 视频| 国产成人免费无遮挡视频| 国产免费福利视频在线观看| 一级av片app| 色吧在线观看| 日日摸夜夜添夜夜添av毛片| 日韩欧美精品免费久久| 国产亚洲5aaaaa淫片| 亚洲精品乱码久久久v下载方式| 国产成人福利小说| 99久久九九国产精品国产免费| 精品一区二区三区视频在线| eeuss影院久久| 日韩电影二区| 一二三四中文在线观看免费高清| 在线看a的网站| 天堂俺去俺来也www色官网| 哪个播放器可以免费观看大片| 美女视频免费永久观看网站| 3wmmmm亚洲av在线观看| 久久久精品94久久精品| 在线观看一区二区三区激情| 国产欧美亚洲国产| 亚洲va在线va天堂va国产| 午夜福利网站1000一区二区三区| 国产精品一区www在线观看| 亚洲av欧美aⅴ国产| 狂野欧美白嫩少妇大欣赏| 亚洲真实伦在线观看| 欧美 日韩 精品 国产| 久久99热这里只有精品18| 亚洲人成网站高清观看| 国产一区二区亚洲精品在线观看| 色5月婷婷丁香| 欧美zozozo另类| 大陆偷拍与自拍| 99久国产av精品国产电影| 色播亚洲综合网| av福利片在线观看| 最近手机中文字幕大全| 大陆偷拍与自拍| av国产久精品久网站免费入址| 精品国产露脸久久av麻豆| 禁无遮挡网站| 大陆偷拍与自拍| 国产精品熟女久久久久浪| 永久免费av网站大全| 水蜜桃什么品种好| 欧美日韩精品成人综合77777| av在线老鸭窝| 亚洲最大成人av| av天堂中文字幕网| 久久久久精品性色| 国产极品天堂在线| 成人亚洲精品av一区二区| 免费av毛片视频| 男女无遮挡免费网站观看| 黑人高潮一二区| a级一级毛片免费在线观看| av在线天堂中文字幕| 亚洲最大成人中文| 亚洲va在线va天堂va国产| 在线看a的网站| 干丝袜人妻中文字幕| av免费在线看不卡| 成人美女网站在线观看视频| 久久影院123| 欧美日韩综合久久久久久| 一本一本综合久久| 男人舔奶头视频| 国产v大片淫在线免费观看| 免费电影在线观看免费观看| 99久久精品一区二区三区| 99九九线精品视频在线观看视频| 成人高潮视频无遮挡免费网站| 丰满少妇做爰视频| 精品人妻偷拍中文字幕| 国产精品久久久久久久久免| 又大又黄又爽视频免费| 天堂网av新在线| 观看美女的网站| 黄色日韩在线| 午夜福利视频1000在线观看| 久久精品人妻少妇| 亚洲精品乱码久久久v下载方式| 国产精品三级大全| 久久精品国产亚洲av天美| 久久久久久国产a免费观看| 白带黄色成豆腐渣| 精品一区二区三区视频在线| 2021天堂中文幕一二区在线观| 久久精品国产a三级三级三级| 一级片'在线观看视频| 在线播放无遮挡| 插阴视频在线观看视频| 国产永久视频网站| 熟妇人妻不卡中文字幕| 国产av不卡久久| 人妻制服诱惑在线中文字幕| 免费观看的影片在线观看| 欧美亚洲 丝袜 人妻 在线| 高清在线视频一区二区三区|