• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Resistive switching behavior and mechanism of HfOx films with large on/off ratio by structure design

    2024-01-25 07:14:36XianglinHuang黃香林YingWang王英HuixiangHuang黃慧香LiDuan段理andTingtingGuo郭婷婷
    Chinese Physics B 2024年1期
    關(guān)鍵詞:王英

    Xianglin Huang(黃香林), Ying Wang(王英), Huixiang Huang(黃慧香), Li Duan(段理), and Tingting Guo(郭婷婷)

    School of Materials Science and Engineering,Chang’an University,Xi’an 710061,China

    Keywords: HfOx film,resistive switching,structure design,interface modulation

    1.Introduction

    For decades,great efforts have been devoted to seeking a novel non-volatile memory as the alternative to flash memory since its device size can not be reduced continuously to meet the requirements of portable devices with high storage density,considering the issue of increased leakage current.Recently,much attention has been paid to resistive random access memory (RRAM) as one of the most competitive candidates owing to its merits such as simple device structure, high storage density, and good compatibility with conventional complementary metal-oxide-semiconductor (CMOS) process, in which the resistances can be changed by an external electric field or magnetic field.[1–3]Through the study of a series of switching characteristics, several kinds of switching mechanism for RRAM have been proposed, such as the conductive filament model, space charge limited current effect, Schottky emission,and Poole–Franck effect.[4,5]Although the origin of resistive switching of RRAM device is still under investigation and debate, the significant role of the migration of ions and the redox reactions,which result in formation and rupture of conductive paths in switching layer, on the state of resistances has been widely accepted.[6,7]For binary oxide-based RRAM, migration of oxygen ions leaves an oxygen-deficient region in the film,which is mainly responsible for the resistive switching.[8–10]Research indicates that HfOxmaterials have shown some advantages as a promising switching layer for future nonvolatile memory due to their large band gap with high dielectric constant, easily controlled composition, nice scalability, and good switching performance.[11,12]However,similarly to most switching materials, HfOx-based RRAMs face several challenges in their applications,including random switching behaviors and an ambiguous switching mechanism.A clear understanding of microscopic physical mechanisms is the key point for improving the switching performance.Recently, employing bilayer instead of single-layered switching materials has attracted increasing attention owing to the low power consumption,more stable and controllable resistive switching.[13,14]Methods such as designing bilayer structures or inserting a buffer layer as an oxygen reservoir have been attempted to modulate the defects(mainly oxygen vacancies)in the films or at the interface,[15,16]which would be beneficial to suppressing the random formation of conductive path and to improving the device reliability owing to the modulation of defects.Nevertheless,the switching mechanism and effective method for improving the uniformity and reliability of switching behaviors have been under exploration.

    In this work, different device structures of HfOx/Ti and HfOx/TiOxare designed to improve switching performance and understand switching mechanisms of hafniumbased RRAM.The chemical composition and oxygen vacancies of HfOx-based samples are analyzed by x-ray photoelectron spectroscopy (XPS) technology.The switching characteristics in terms of memory window,distribution of switching parameters, and reliable properties are comparatively investigated.The switching mechanisms are illustrated based on the formation and rupture of oxygen vacancy filaments with the variation of barrier height.

    2.Experimental details

    In our experiment,the n+Si wafers were used as the bottom electrode and soaked in HF solution firstly to remove the oxides at the surface before cleaning, then cleaned by alcohol, acetone, and deionized water sequentially.Then HfOxfilms were deposited on Si substrates by radio-frequency magnetron sputtering using an Hf metal target as the source of Hf atoms with O2as the reactive gas.During the deposition,the Ar/O2was 12/3, the working pressure was 0.3 Pa, and the sputtering power was 70 W.Two different bilayer structures were designed for HfOx-based memory devices.After the fabrication of HfOxfilms, a thin Ti metal layer or TiOxlayer as an oxygen reservoir was deposited on HfOxfilms to form HfOx/Ti and HfOx/TiOx(15 nm/5 nm)structures.Ti layer and TiOxlayer were prepared with the gas flux for Ar of 15 SCCM and Ar/O2of 15/3, respectively.In addition, singlelayer HfOxfilms(20 nm)were also fabricated for comparison.All prepared films were post-annealed at 200°C for 10 min in a nitrogen atmosphere.Finally, the top electrodes of Cu were evaporated with a metal mask to pattern the size to form an MIM structure for measurement.The chemical composition of the films was characterized by XPS technology.The electrical measurements were carried out by an Agilent 4155C semiconductor parameter analyzer using a two-probe method.The voltage was applied on Cu electrode with the Si bottom electrode always grounded.

    3.Results and discussion

    Figure 1 shows the resistive switching characteristics of HfOx, HfOx/Ti, and HfOx/TiOxsamples.The initial states of the fresh samples are in a high resistance state (HRS) and an electroforming process is required to initiate the switching behavior, as presented in Fig.1(a).Compared with the HfOxsample, the forming voltage is reduced by designing a bilayer structure, which may be due to the modulation of defects at the interface.After the forming process,the reversible bipolar switching behavior can be realized by applying the voltage in a counterclockwise direction, as indicated by arrows in Fig.1(b).The currents increase abruptly at the set voltage, switching the sample from HRS to a low resistance state(LRS).During the reset process, the resistance switches back to HRS.The switching behaviors of HfOx,HfOx/Ti,and HfOx/TiOxsamples are displayed in Figs.1(b) and 1(d), respectively,and the corresponding cross-sectional TEM images are shown in the insets.The enlarged memory window and much better repeatability ofI–Vcurves can be observed for the HfOx/Ti and HfOx/TiOxsamples compared to the HfOxsample.It is worth noting that the lowest current for all samples is observed at non-zero voltage but the negative voltage.As seen from Fig.1(b),the minimum current in the HRS of the HfOxsample is not at 0 V,behaving an open circuit voltage of 0.06 V,which is likely due to the fixed charge or accumulated electrons at the surface of the Si substrate.In addition, the open circuit voltage increases for the bilayer structure,as seen in Figs.1(c) and 1(d).This phenomenon may be due to the displacement of current and related to the bulk heterojunction composite and the capacitance of the sandwich structure,[17,18]and further investigations are needed.

    To analyze the chemical bonding states of the prepared samples, the XPS measurements were carried out.All peaks were calibrated by Au 4f peak(83.8 eV).Figure 2(a)shows the XPS spectrum of Hf 4f in the bulk of HfOxfilm,which can be fitted as a double peak of Hf7/2and Hf5/2peaks,corresponding to Hf–O bond.[19]In Fig.2(b),the O 1s peak in the bulk of HfOxfilm can be deconvoluted into two peaks,lattice oxygen with lower binding energy(530.58 eV)and non-lattice oxygen with slightly higher energy(532.28 eV).[20]The concentration of oxygen vacancies is qualitatively estimated by non-lattice oxygen.[21,22]The XPS depth profile of the HfOx/Ti structure is performed to analyze the O 1s peak near the interface of the HfOx/Ti structure, as presented in Fig.2(c).In Fig.2(c),the fitted result of the O 1s peak is similar to that in Fig.2(b).The calculated result of oxygen vacancies near the interface of the HfOx/Ti structure(8.18%)is larger than that in the bulk of HfOxfilm(6.72%), which can be attributed to the absorption of oxygen atoms from the HfOxlayer to Ti layer.The inset of Fig.2(d)shows the XPS spectrum of Ti 2p in TiOxfilm.The Ti 2p spectrum can be fitted as a double peak of Ti 2p3/2and Ti 2p1/2with the binding energies of 458.25 eV and 464.25 eV,in agreement with the reported Ti4+/Ti3+.[23,24]In addition,the oxygen vacancies in TiOxfilm (10.27%) are larger than those in HfOxfilm, as shown in Fig.2(d).It can be inferred that the oxygen vacancies near the interface of the HfOx/TiOxstructure can be modulated as well.

    Figure 3(a)shows the distributions of switching voltages for HfOx,HfOx/Ti,and HfOx/TiOxsamples.Compared to the HfOxsample, better distributions ofVsetandVresetcan be obtained for HfOx/Ti and HfOx/TiOxsamples.However,no obvious reduced switching voltages are observed for the bilayer structure, except for the reset voltage of the HfOx/Ti sample,which may be due to the formation of an interfacial layer although more oxygen vacancies are created near the interface.Since defects can be produced by a higher operating current which is the primary source for the device breakdown,[14]the variations of reset currents are also studied, as displayed in the inset of Fig.3(a).As can be seen, decreasing reset current can be observed for bilayer structure samples,particularly for the HfOx/Ti sample,which is beneficial to the decrease of power consumption.Moreover, the HfOx/Ti sample exhibits a much-scattered distribution of reset current.The distributions of resistances in LRS and HRS for all samples are presented in Fig.3(b).Excellent uniformity of resistances can be observed for HfOx/Ti and HfOx/TiOxsamples compared to the HfOxsample.Furthermore, the memory window also improves greatly (>100) by designing the bilayer structure,which mainly results from the increasing resistance in HRS and may be related to the formation of an interfacial layer in the bilayer structure.Compared to the similar research,[25,26]a larger memory window and smaller switching voltages can be observed,indicating a promising application in the future.

    Fig.1.(a) The forming process of the prepared samples and the typical I–V curves of (b) HfOx, (c) HfOx/Ti, and (d) HfOx/TiOx samples.The insets in(b),(c),and(d)show the cross-sectional TEM images of HfOx,HfOx/Ti,and HfOx/TiOx samples,respectively.

    Fig.2.The XPS spectrum of(a)Hf 4f and(b)O 1s in HfOx film,(c)O 1s near the interface of the HfOx/Ti structure,and(d)O 1s in TiOx film.The inset of(c)shows the XPS depth profile of the HfOx/Ti structure.The inset of(d)shows the XPS spectrum of Ti 2p in TiOx film.

    Fig.3.The distributions of switching parameters of HfOx,HfOx/Ti,and HfOx/TiOx samples: (a)switching voltages,(b)resistances.The inset of(a)shows the corresponding distribution of reset current.

    Fig.4.The fitted I–V curves of HfOx,HfOx/Ti,and HfOx/TiOx samples.

    To explore the current conduction mechanism of the prepared samples,the correspondingI–Vcurves are replotted and fitted in a double-log scale,as displayed in Figs.4(a)–4(d).For the LRS of the HfOxsample,the current and voltage can be fitted as a straight line with a slope of about 1 in a low-voltage region, as shown in Fig.4(a), exhibiting ohmic conduction behavior.In the high-voltage region, the current is proportional to the square of the voltage,following Child’s law.For HRS, the conductive mechanism is slightly complicated and includes three regions: slope~1 at low voltage, slope~2 at higher voltage,and the current increased abruptly with the increased voltage(slope>3)due to the formation of conducting paths in the switching layer.Such carrier conduction behaviors can be well understood by the SCLC effect,[4,27,28]and are attributed to the trapping and de-trapping process of defects in the film,which are most likely associated with the oxygen vacancies.Similar fitted results can be observed for HfOx/Ti and the HRS of HfOx/TiOxsamples,as presented in Figs.4(b)and 4(c).However,it is found that the region of abruptly increasing current at high voltage can not be observed for the HRS of the HfOx/Ti sample.Other possible conduction mechanisms have been attempted, and the curve of the HfOx/Ti sample in HRS can be well fitted by Schottky emission, which was an interface-related mechanism, as indicated in Fig.4(d).The higher barrier height may lead to a larger memory window.Moreover,it is observed that the results of the fittedI–Vcurve in LRS for the HfOx/TiOxsamples are also different and the slope is much larger (in Fig.4(c)), which may be ascribed to the fact that partial traps are unfilled and the current density of unfilled ones varies more steeply with the voltage,[29]and the further investigation is required.Overall, the formation and rupture of oxygen vacancy filaments are responsible for the switching behavior of HfOx-based memory.

    To further investigate the reliability of the prepared samples,the endurance and retention properties are demonstrated,as presented in Figs.5(a) and 5(b).In Fig.5(a), large fluctuations are observed for the HfOxsample during switching cycles,which may be related to the random formation of oxygen vacancies during fabrication, and the least memory window is only 10.Better cycling characteristics can be observed for HfOx/Ti and HfOx/TiOxsamples,in which the resistances in two states can steadily switch over 120 cycles with the on/off ratio larger than 104,mainly attributed to the higher off states due to the higher barrier heights suppressing the electron leaps.Results show some performance advantages of our samples especially in on/off ratio by comparing with other similar bilayer-structured devices.[30–33]Good retention properties can be observed for all prepared samples, as displayed in Fig.5(b).The currents in LRS and HRS can maintain for 104s without obvious degeneration,showing the non-volatile property of the samples.

    Fig.5.(a)Endurance and(b)retention properties of HfOx,HfOx/Ti,and HfOx/TiOx samples.The read voltage was at 1 V.

    Fig.6.The physical model of(a)HfOx,(b)HfOx/Ti,and(c)HfOx/TiOx samples.

    Based on the above analysis, the physical models of the switching behaviors of HfOx, HfOx/Ti, and HfOx/TiOxsamples are proposed.For HfOxsamples, the movement of oxygen ions towards the anode under positive voltage leads to the creation of oxygen vacancies which form the oxygen vacancy chains connecting the top and bottom electrodes,assisting the transition of electrons and turning the samples into LRS,as indicated in Fig.6(a).By applying a negative voltage,the oxygen vacancy chains recovered with oxygen ions,rupturing the conductive paths,and switching the sample back to HRS.Owing to the random formation of oxygen vacancies in the film,the formation and rupture of filaments during each cycle are stochastic, resulting in the poor uniformity of switching parameters.

    For the bilayer structure of HfOx/Ti and HfOx/TiOxsamples, due to the interface modulation, the resistive switching characteristics are mainly dominated by a redox reaction or Joule heat near the interface, and the schematic diagrams are presented in Figs.6(b)and 6(c).Ti and TiOxlayers can act as an oxygen-reservoir layer.During the set process,the oxygen ions move towards the anode under the driving force of a positive electrical field and left oxygen vacancies in the film, especially creating more oxygen vacancies near the interface of the HfOx/Ti sample,as shown in Fig.6(b).The filaments are formed through the accumulation of oxygen vacancies gradually at the set process and then rupture at the weak points near the interface during the reset process.Furthermore,the higher barrier height was achieved during the reset process, which was contributed to the enlarged memory window.For the HfOx/TiOxsample,the different filaments are formed in TiOxand HfOxfilms,[34]the asymmetric conductive filaments lead to the weak points near the interface.On the other hand, due to the different dielectric constants of HfOxand TiOx,the filaments at the interface may be the weaker ones.[35]Therefore,under the negative voltage, larger currents at the weak point lead to the first rupture of filaments by the recovery of oxygen vacancies, accompanied by Joule heat at the same time,as displayed in the reset process of Fig.6(c).In addition, for bilayer structure,it is inferred that the filaments are not completely ruptured during the reset process and the residual filaments can act as lightning rods and promote the re-formation of fixed filaments along the last path during the subsequent set process.Therefore, much uniform and reliable switching performance can be observed for bilayer structure, which is consistent with Huang’ study that the heterostructure and its interface can improve the switching behaviors in multilayer structures.[20]Overall,the results indicate the improvement of switching performance by designing the device structure.

    4.Conclusions

    In summary, better switching performance including a larger on/off ratio (~104), uniform distribution of switching parameters, and lower reset current is obtained in the bilayer structures, especially in the HfOx/Ti sample due to the modulation of oxygen vacancies near the interface and barrier height.Different conduction mechanisms of Schottky emission are observed for the HfOx/Ti sample, which are closely related to the large memory window and the uniform distribution of the switching parameters.A filamentary model is proposed to clarify the switching behaviors of HfOx-based samples.Since the weak points of the filaments near the interface are firstly ruptured by the recovery of oxygen vacancies, the residual filaments can act as lightning rods to promote the reformation of fixed filaments, and better endurance properties can be observed for bilayer structure.Results indicate that the growth of oxygen vacancy filaments can be better controlled by designing a bilayer structure.

    Acknowledgements

    This work was financially supported by the National Natural Science Foundation of China(Grant No.51802025)and the Natural Science Basic Research Plan in Shaanxi Province of China(Grant No.2020JQ-384).

    猜你喜歡
    王英
    分析規(guī)范化介入護(hù)理配合在TAVR手術(shù)患者中的應(yīng)用
    少年陰陽師(九)
    充滿友誼的水筆
    大衛(wèi)上學(xué)去
    呼叫的良辰(中篇)
    櫻花雨
    吵架
    小說月刊(2017年9期)2017-09-13 18:26:35
    “走錯路”的交通局局長
    每當(dāng)我回到故鄉(xiāng)
    悼詩魂王英
    色94色欧美一区二区| 法律面前人人平等表现在哪些方面 | 国产成人免费无遮挡视频| 欧美日韩av久久| 精品亚洲成a人片在线观看| 捣出白浆h1v1| 欧美日韩成人在线一区二区| 大码成人一级视频| 老司机亚洲免费影院| 欧美日韩亚洲高清精品| 岛国毛片在线播放| bbb黄色大片| 青青草视频在线视频观看| 老司机亚洲免费影院| 丁香六月天网| 国产伦人伦偷精品视频| 爱豆传媒免费全集在线观看| 日韩免费高清中文字幕av| 欧美+亚洲+日韩+国产| 精品少妇黑人巨大在线播放| 波多野结衣一区麻豆| 搡老乐熟女国产| 午夜激情av网站| 欧美av亚洲av综合av国产av| 在线看a的网站| 成人国产av品久久久| 美女国产高潮福利片在线看| 一区福利在线观看| 亚洲精品自拍成人| 亚洲国产精品一区三区| 妹子高潮喷水视频| 日韩三级视频一区二区三区| 欧美日韩福利视频一区二区| 99久久综合免费| 在线亚洲精品国产二区图片欧美| 一二三四社区在线视频社区8| 最新的欧美精品一区二区| 国产男女内射视频| 又紧又爽又黄一区二区| 日韩精品免费视频一区二区三区| 在线看a的网站| 国产男人的电影天堂91| 水蜜桃什么品种好| 91麻豆精品激情在线观看国产 | 欧美日韩亚洲高清精品| 亚洲性夜色夜夜综合| 午夜老司机福利片| 一本综合久久免费| 欧美黑人精品巨大| 国产成人影院久久av| 一级毛片电影观看| 亚洲精品在线美女| 90打野战视频偷拍视频| 亚洲成国产人片在线观看| 国产免费一区二区三区四区乱码| 丝袜喷水一区| 伊人亚洲综合成人网| 国产男人的电影天堂91| 97精品久久久久久久久久精品| 精品一品国产午夜福利视频| a在线观看视频网站| 成人影院久久| 每晚都被弄得嗷嗷叫到高潮| 日韩熟女老妇一区二区性免费视频| 欧美精品一区二区免费开放| 首页视频小说图片口味搜索| av天堂久久9| 一区二区三区四区激情视频| 国产亚洲精品一区二区www | 亚洲国产欧美日韩在线播放| 国产亚洲欧美在线一区二区| 国产97色在线日韩免费| 岛国在线观看网站| 午夜福利乱码中文字幕| 久久精品亚洲av国产电影网| 免费在线观看日本一区| 精品人妻1区二区| 亚洲av日韩精品久久久久久密| 麻豆国产av国片精品| 国产成人av激情在线播放| 性色av一级| 在线天堂中文资源库| 精品熟女少妇八av免费久了| 精品久久久精品久久久| 少妇被粗大的猛进出69影院| 亚洲一区二区三区欧美精品| 看免费av毛片| 国产亚洲精品第一综合不卡| 麻豆av在线久日| 久久ye,这里只有精品| 亚洲精品第二区| 久久精品国产亚洲av香蕉五月 | 亚洲七黄色美女视频| 久久久久国产一级毛片高清牌| 热99国产精品久久久久久7| 国产成人系列免费观看| 这个男人来自地球电影免费观看| 99国产精品99久久久久| 在线观看一区二区三区激情| 最新的欧美精品一区二区| 久久综合国产亚洲精品| 亚洲精品一区蜜桃| 亚洲黑人精品在线| 中国国产av一级| 亚洲精品在线美女| 五月开心婷婷网| 国产精品秋霞免费鲁丝片| 欧美乱码精品一区二区三区| 国产免费福利视频在线观看| 亚洲国产欧美在线一区| 中文字幕精品免费在线观看视频| 欧美+亚洲+日韩+国产| 欧美日韩亚洲综合一区二区三区_| 狂野欧美激情性xxxx| 欧美日韩av久久| 国产一卡二卡三卡精品| 99久久国产精品久久久| 九色亚洲精品在线播放| 亚洲,欧美精品.| 久久九九热精品免费| 看免费av毛片| 男人添女人高潮全过程视频| tocl精华| netflix在线观看网站| 国产一区有黄有色的免费视频| 久久久久久久久久久久大奶| 国精品久久久久久国模美| 女人高潮潮喷娇喘18禁视频| 最近最新免费中文字幕在线| 真人做人爱边吃奶动态| 久久久精品免费免费高清| 桃红色精品国产亚洲av| 午夜日韩欧美国产| 两个人免费观看高清视频| 超色免费av| 亚洲色图综合在线观看| 免费黄频网站在线观看国产| 国产精品偷伦视频观看了| 91精品国产国语对白视频| 极品少妇高潮喷水抽搐| 这个男人来自地球电影免费观看| 法律面前人人平等表现在哪些方面 | 久久天躁狠狠躁夜夜2o2o| 满18在线观看网站| 99久久精品国产亚洲精品| netflix在线观看网站| 一个人免费看片子| 男女之事视频高清在线观看| 亚洲avbb在线观看| 9热在线视频观看99| 天天躁夜夜躁狠狠躁躁| 日韩三级视频一区二区三区| 欧美成狂野欧美在线观看| 少妇的丰满在线观看| 国产成人a∨麻豆精品| 激情视频va一区二区三区| 午夜精品国产一区二区电影| 国产又爽黄色视频| 母亲3免费完整高清在线观看| 中国国产av一级| 狠狠精品人妻久久久久久综合| 99精国产麻豆久久婷婷| 亚洲精品国产色婷婷电影| 少妇粗大呻吟视频| 肉色欧美久久久久久久蜜桃| 国产一区二区 视频在线| 午夜视频精品福利| 久久免费观看电影| 国产成人精品久久二区二区免费| 国产欧美日韩一区二区三 | 午夜91福利影院| 国产成人系列免费观看| 国产精品成人在线| 精品卡一卡二卡四卡免费| 巨乳人妻的诱惑在线观看| 又大又爽又粗| 美国免费a级毛片| 亚洲精品久久成人aⅴ小说| 在线观看免费日韩欧美大片| 91九色精品人成在线观看| 亚洲精品久久成人aⅴ小说| 中文字幕人妻熟女乱码| www日本在线高清视频| 亚洲成人国产一区在线观看| 最新在线观看一区二区三区| 侵犯人妻中文字幕一二三四区| 美女高潮喷水抽搐中文字幕| 国产成人欧美在线观看 | 亚洲一区中文字幕在线| 国产在线免费精品| 国产精品一区二区在线不卡| 天天躁夜夜躁狠狠躁躁| 欧美日韩成人在线一区二区| 在线 av 中文字幕| 精品久久久久久久毛片微露脸 | 搡老岳熟女国产| 最新的欧美精品一区二区| 亚洲国产欧美网| av欧美777| 后天国语完整版免费观看| 亚洲欧美日韩高清在线视频 | 久久毛片免费看一区二区三区| 亚洲久久久国产精品| 精品国产一区二区久久| 妹子高潮喷水视频| 久久免费观看电影| 99国产精品一区二区三区| 99国产精品免费福利视频| 国产97色在线日韩免费| 少妇粗大呻吟视频| 亚洲av欧美aⅴ国产| 看免费av毛片| 考比视频在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 激情视频va一区二区三区| 少妇裸体淫交视频免费看高清 | 久久精品国产亚洲av香蕉五月 | 中文字幕人妻熟女乱码| 黑人巨大精品欧美一区二区mp4| 女人久久www免费人成看片| 久久久国产一区二区| 狠狠精品人妻久久久久久综合| 美女大奶头黄色视频| 中文字幕高清在线视频| a级片在线免费高清观看视频| 国产一区二区在线观看av| 97精品久久久久久久久久精品| 黑丝袜美女国产一区| 青春草亚洲视频在线观看| 精品人妻1区二区| 亚洲五月婷婷丁香| 97人妻天天添夜夜摸| 国产精品.久久久| 法律面前人人平等表现在哪些方面 | 母亲3免费完整高清在线观看| 50天的宝宝边吃奶边哭怎么回事| 在线观看免费视频网站a站| 免费观看a级毛片全部| 久久精品亚洲熟妇少妇任你| 国产一区二区三区综合在线观看| 久久久久精品国产欧美久久久 | 欧美日韩视频精品一区| 少妇 在线观看| 国产有黄有色有爽视频| 国产精品秋霞免费鲁丝片| 亚洲五月色婷婷综合| 大香蕉久久网| 国产片内射在线| 午夜福利视频在线观看免费| 亚洲国产av影院在线观看| 精品少妇一区二区三区视频日本电影| 亚洲欧美一区二区三区黑人| 精品少妇内射三级| 日本精品一区二区三区蜜桃| 国产人伦9x9x在线观看| 免费黄频网站在线观看国产| 老司机午夜十八禁免费视频| 一边摸一边做爽爽视频免费| 欧美在线一区亚洲| 中文字幕高清在线视频| 19禁男女啪啪无遮挡网站| 丰满人妻熟妇乱又伦精品不卡| 亚洲伊人色综图| 香蕉国产在线看| 97人妻天天添夜夜摸| 丝袜美腿诱惑在线| 午夜免费鲁丝| 1024香蕉在线观看| 精品一区在线观看国产| 午夜福利乱码中文字幕| 老司机福利观看| 亚洲专区中文字幕在线| 久9热在线精品视频| 97人妻天天添夜夜摸| 国内毛片毛片毛片毛片毛片| 亚洲中文日韩欧美视频| 99国产精品免费福利视频| √禁漫天堂资源中文www| 亚洲成人免费av在线播放| 国产熟女午夜一区二区三区| 精品少妇一区二区三区视频日本电影| 免费女性裸体啪啪无遮挡网站| 国产免费视频播放在线视频| 人人妻人人爽人人添夜夜欢视频| 一级毛片电影观看| 国产淫语在线视频| 老司机午夜十八禁免费视频| 黑人巨大精品欧美一区二区蜜桃| 久久精品亚洲av国产电影网| 黄色视频在线播放观看不卡| 在线看a的网站| 欧美日韩国产mv在线观看视频| 男女床上黄色一级片免费看| 国产高清videossex| av在线老鸭窝| 菩萨蛮人人尽说江南好唐韦庄| 不卡一级毛片| 如日韩欧美国产精品一区二区三区| 曰老女人黄片| 国产免费福利视频在线观看| 欧美性长视频在线观看| 欧美日韩亚洲综合一区二区三区_| 日日爽夜夜爽网站| 亚洲精品国产精品久久久不卡| 高清在线国产一区| 国产主播在线观看一区二区| 人妻久久中文字幕网| 99国产极品粉嫩在线观看| 亚洲色图 男人天堂 中文字幕| 亚洲精品一卡2卡三卡4卡5卡 | netflix在线观看网站| 亚洲国产日韩一区二区| 国产99久久九九免费精品| 欧美激情 高清一区二区三区| 成人三级做爰电影| 巨乳人妻的诱惑在线观看| 免费不卡黄色视频| 国产精品影院久久| 日本vs欧美在线观看视频| 丝袜在线中文字幕| 男人操女人黄网站| 欧美 日韩 精品 国产| 黄片大片在线免费观看| 亚洲五月色婷婷综合| 国产精品久久久久久人妻精品电影 | 男人爽女人下面视频在线观看| 欧美激情高清一区二区三区| 丰满少妇做爰视频| 国产av精品麻豆| 99久久综合免费| 女人久久www免费人成看片| 国产99久久九九免费精品| 高清视频免费观看一区二区| 国产精品一区二区免费欧美 | 99久久99久久久精品蜜桃| 欧美激情极品国产一区二区三区| 国产99久久九九免费精品| 99re6热这里在线精品视频| 欧美精品av麻豆av| 欧美午夜高清在线| 中文字幕最新亚洲高清| 蜜桃在线观看..| 精品一区在线观看国产| 久久亚洲国产成人精品v| 夫妻午夜视频| 欧美变态另类bdsm刘玥| 中文字幕最新亚洲高清| av视频免费观看在线观看| 大片电影免费在线观看免费| 国产淫语在线视频| 久久久精品94久久精品| 在线永久观看黄色视频| 亚洲精品国产色婷婷电影| 久久精品国产亚洲av香蕉五月 | 中文字幕色久视频| 国产一区有黄有色的免费视频| 久久久久久亚洲精品国产蜜桃av| 91成人精品电影| 夜夜夜夜夜久久久久| 新久久久久国产一级毛片| 性少妇av在线| 精品亚洲乱码少妇综合久久| 久久久久国内视频| 99久久99久久久精品蜜桃| 动漫黄色视频在线观看| 黄色视频,在线免费观看| 亚洲欧洲精品一区二区精品久久久| 人人妻,人人澡人人爽秒播| 亚洲av欧美aⅴ国产| 99国产精品99久久久久| 久久久精品免费免费高清| 一区二区av电影网| 国产精品一区二区精品视频观看| 女人久久www免费人成看片| √禁漫天堂资源中文www| 国产深夜福利视频在线观看| 国产精品久久久久久人妻精品电影 | 亚洲国产av新网站| 精品福利观看| 老司机影院毛片| 搡老乐熟女国产| 国产在线观看jvid| 亚洲人成电影免费在线| 久热爱精品视频在线9| 久久精品人人爽人人爽视色| 免费一级毛片在线播放高清视频 | 少妇人妻久久综合中文| 91成人精品电影| 国产成人欧美在线观看 | 女人高潮潮喷娇喘18禁视频| av又黄又爽大尺度在线免费看| 国产真人三级小视频在线观看| 亚洲第一欧美日韩一区二区三区 | 亚洲,欧美精品.| 精品一区二区三区av网在线观看 | 性色av乱码一区二区三区2| 亚洲精品国产av成人精品| 久久人妻熟女aⅴ| 老司机深夜福利视频在线观看 | 婷婷成人精品国产| 最黄视频免费看| www.自偷自拍.com| 十分钟在线观看高清视频www| 一个人免费看片子| 国产精品 欧美亚洲| av视频免费观看在线观看| 中文字幕最新亚洲高清| 在线天堂中文资源库| 热re99久久国产66热| 国产精品av久久久久免费| 日韩免费高清中文字幕av| 日韩视频一区二区在线观看| 亚洲精品成人av观看孕妇| 国产男人的电影天堂91| 亚洲全国av大片| 欧美日韩成人在线一区二区| 黑人操中国人逼视频| kizo精华| 精品一区二区三区四区五区乱码| 91字幕亚洲| 一区二区三区精品91| 两性午夜刺激爽爽歪歪视频在线观看 | 国产精品 欧美亚洲| 精品亚洲乱码少妇综合久久| 在线观看免费日韩欧美大片| 又黄又粗又硬又大视频| 大香蕉久久网| 亚洲精品国产色婷婷电影| 国产日韩欧美在线精品| 极品人妻少妇av视频| 97精品久久久久久久久久精品| 麻豆av在线久日| 下体分泌物呈黄色| 亚洲精品中文字幕一二三四区 | 国产成人a∨麻豆精品| 日韩欧美一区二区三区在线观看 | 91老司机精品| 日韩视频在线欧美| 亚洲人成电影免费在线| 日韩中文字幕欧美一区二区| 久久久久久久久久久久大奶| 亚洲精品国产av成人精品| videosex国产| 丰满迷人的少妇在线观看| av欧美777| 国产精品 欧美亚洲| 久久久国产欧美日韩av| 日韩制服骚丝袜av| 国产精品一二三区在线看| 51午夜福利影视在线观看| 正在播放国产对白刺激| 天天躁狠狠躁夜夜躁狠狠躁| 午夜精品久久久久久毛片777| 亚洲欧美清纯卡通| 日韩,欧美,国产一区二区三区| 爱豆传媒免费全集在线观看| 黄色 视频免费看| 91成年电影在线观看| 国产精品 欧美亚洲| 波多野结衣av一区二区av| 18禁黄网站禁片午夜丰满| www日本在线高清视频| 精品一品国产午夜福利视频| 日韩一卡2卡3卡4卡2021年| 9热在线视频观看99| 成年美女黄网站色视频大全免费| 一本久久精品| 久久久久久久久久久久大奶| 老司机靠b影院| 女人精品久久久久毛片| 久久亚洲精品不卡| 人人妻人人添人人爽欧美一区卜| 俄罗斯特黄特色一大片| 亚洲欧美日韩另类电影网站| 99精品久久久久人妻精品| 在线观看人妻少妇| 欧美少妇被猛烈插入视频| 男女床上黄色一级片免费看| 国产亚洲精品一区二区www | 国产免费福利视频在线观看| 久久久精品区二区三区| 日本wwww免费看| 男女无遮挡免费网站观看| 久久综合国产亚洲精品| 国产精品av久久久久免费| 国产精品1区2区在线观看. | 一个人免费在线观看的高清视频 | 久久人妻福利社区极品人妻图片| 一级黄色大片毛片| 国产成人av教育| 美女中出高潮动态图| 精品第一国产精品| 俄罗斯特黄特色一大片| 秋霞在线观看毛片| 精品一区二区三区四区五区乱码| 久久精品aⅴ一区二区三区四区| 日本av手机在线免费观看| 91av网站免费观看| 一区二区三区激情视频| 色婷婷av一区二区三区视频| 另类亚洲欧美激情| 亚洲国产欧美网| 电影成人av| 纯流量卡能插随身wifi吗| 婷婷丁香在线五月| 十八禁网站网址无遮挡| 热99国产精品久久久久久7| 久久精品亚洲av国产电影网| 精品亚洲成a人片在线观看| 男女国产视频网站| 午夜福利在线免费观看网站| 曰老女人黄片| 国产极品粉嫩免费观看在线| 精品一品国产午夜福利视频| 亚洲精品av麻豆狂野| 中文字幕另类日韩欧美亚洲嫩草| 建设人人有责人人尽责人人享有的| 少妇人妻久久综合中文| 亚洲视频免费观看视频| 午夜91福利影院| 久久精品成人免费网站| 嫩草影视91久久| 午夜成年电影在线免费观看| 性高湖久久久久久久久免费观看| 在线 av 中文字幕| 精品熟女少妇八av免费久了| 精品视频人人做人人爽| 久久 成人 亚洲| 满18在线观看网站| 久久久久久人人人人人| 日本猛色少妇xxxxx猛交久久| 在线天堂中文资源库| 亚洲一区中文字幕在线| 免费在线观看黄色视频的| 国产精品香港三级国产av潘金莲| 日本av手机在线免费观看| 免费观看人在逋| 欧美国产精品va在线观看不卡| 满18在线观看网站| 一级黄色大片毛片| 国产熟女午夜一区二区三区| 嫩草影视91久久| 各种免费的搞黄视频| 午夜影院在线不卡| 国产高清videossex| 国产精品二区激情视频| 黄色毛片三级朝国网站| 午夜福利在线免费观看网站| av电影中文网址| 电影成人av| 黄色 视频免费看| 精品一区二区三区四区五区乱码| 97在线人人人人妻| 成年女人毛片免费观看观看9 | 菩萨蛮人人尽说江南好唐韦庄| 老熟女久久久| 少妇的丰满在线观看| 国产淫语在线视频| 正在播放国产对白刺激| 深夜精品福利| 久久国产亚洲av麻豆专区| 99精国产麻豆久久婷婷| 不卡av一区二区三区| 啪啪无遮挡十八禁网站| 国产精品国产三级国产专区5o| 成人黄色视频免费在线看| 久久久久久久大尺度免费视频| 国产精品久久久av美女十八| av福利片在线| av线在线观看网站| 男人操女人黄网站| 97精品久久久久久久久久精品| 视频在线观看一区二区三区| 老汉色∧v一级毛片| 99久久国产精品久久久| 涩涩av久久男人的天堂| 高清av免费在线| 久久av网站| 免费在线观看视频国产中文字幕亚洲 | 无限看片的www在线观看| 后天国语完整版免费观看| 精品视频人人做人人爽| 窝窝影院91人妻| 麻豆av在线久日| 丝袜喷水一区| 一级毛片精品| 男女边摸边吃奶| 免费黄频网站在线观看国产| 亚洲 欧美一区二区三区| 天天操日日干夜夜撸| 久久精品国产a三级三级三级| 亚洲国产精品一区三区| 国产福利在线免费观看视频| 亚洲av成人不卡在线观看播放网 | 丝袜美腿诱惑在线| 丝袜在线中文字幕| www.熟女人妻精品国产| 欧美激情高清一区二区三区| 久久久久久人人人人人| 搡老乐熟女国产| 在线看a的网站| 人人妻,人人澡人人爽秒播| 亚洲国产精品一区三区| 69av精品久久久久久 | 国内毛片毛片毛片毛片毛片| 每晚都被弄得嗷嗷叫到高潮| svipshipincom国产片| 欧美激情高清一区二区三区| 中文字幕制服av| 成人18禁高潮啪啪吃奶动态图| 在线看a的网站| 人人妻,人人澡人人爽秒播| 亚洲精品久久午夜乱码| 亚洲国产欧美一区二区综合| 一个人免费看片子|