• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Resistive switching behavior and mechanism of HfOx films with large on/off ratio by structure design

    2024-01-25 07:14:36XianglinHuang黃香林YingWang王英HuixiangHuang黃慧香LiDuan段理andTingtingGuo郭婷婷
    Chinese Physics B 2024年1期
    關(guān)鍵詞:王英

    Xianglin Huang(黃香林), Ying Wang(王英), Huixiang Huang(黃慧香), Li Duan(段理), and Tingting Guo(郭婷婷)

    School of Materials Science and Engineering,Chang’an University,Xi’an 710061,China

    Keywords: HfOx film,resistive switching,structure design,interface modulation

    1.Introduction

    For decades,great efforts have been devoted to seeking a novel non-volatile memory as the alternative to flash memory since its device size can not be reduced continuously to meet the requirements of portable devices with high storage density,considering the issue of increased leakage current.Recently,much attention has been paid to resistive random access memory (RRAM) as one of the most competitive candidates owing to its merits such as simple device structure, high storage density, and good compatibility with conventional complementary metal-oxide-semiconductor (CMOS) process, in which the resistances can be changed by an external electric field or magnetic field.[1–3]Through the study of a series of switching characteristics, several kinds of switching mechanism for RRAM have been proposed, such as the conductive filament model, space charge limited current effect, Schottky emission,and Poole–Franck effect.[4,5]Although the origin of resistive switching of RRAM device is still under investigation and debate, the significant role of the migration of ions and the redox reactions,which result in formation and rupture of conductive paths in switching layer, on the state of resistances has been widely accepted.[6,7]For binary oxide-based RRAM, migration of oxygen ions leaves an oxygen-deficient region in the film,which is mainly responsible for the resistive switching.[8–10]Research indicates that HfOxmaterials have shown some advantages as a promising switching layer for future nonvolatile memory due to their large band gap with high dielectric constant, easily controlled composition, nice scalability, and good switching performance.[11,12]However,similarly to most switching materials, HfOx-based RRAMs face several challenges in their applications,including random switching behaviors and an ambiguous switching mechanism.A clear understanding of microscopic physical mechanisms is the key point for improving the switching performance.Recently, employing bilayer instead of single-layered switching materials has attracted increasing attention owing to the low power consumption,more stable and controllable resistive switching.[13,14]Methods such as designing bilayer structures or inserting a buffer layer as an oxygen reservoir have been attempted to modulate the defects(mainly oxygen vacancies)in the films or at the interface,[15,16]which would be beneficial to suppressing the random formation of conductive path and to improving the device reliability owing to the modulation of defects.Nevertheless,the switching mechanism and effective method for improving the uniformity and reliability of switching behaviors have been under exploration.

    In this work, different device structures of HfOx/Ti and HfOx/TiOxare designed to improve switching performance and understand switching mechanisms of hafniumbased RRAM.The chemical composition and oxygen vacancies of HfOx-based samples are analyzed by x-ray photoelectron spectroscopy (XPS) technology.The switching characteristics in terms of memory window,distribution of switching parameters, and reliable properties are comparatively investigated.The switching mechanisms are illustrated based on the formation and rupture of oxygen vacancy filaments with the variation of barrier height.

    2.Experimental details

    In our experiment,the n+Si wafers were used as the bottom electrode and soaked in HF solution firstly to remove the oxides at the surface before cleaning, then cleaned by alcohol, acetone, and deionized water sequentially.Then HfOxfilms were deposited on Si substrates by radio-frequency magnetron sputtering using an Hf metal target as the source of Hf atoms with O2as the reactive gas.During the deposition,the Ar/O2was 12/3, the working pressure was 0.3 Pa, and the sputtering power was 70 W.Two different bilayer structures were designed for HfOx-based memory devices.After the fabrication of HfOxfilms, a thin Ti metal layer or TiOxlayer as an oxygen reservoir was deposited on HfOxfilms to form HfOx/Ti and HfOx/TiOx(15 nm/5 nm)structures.Ti layer and TiOxlayer were prepared with the gas flux for Ar of 15 SCCM and Ar/O2of 15/3, respectively.In addition, singlelayer HfOxfilms(20 nm)were also fabricated for comparison.All prepared films were post-annealed at 200°C for 10 min in a nitrogen atmosphere.Finally, the top electrodes of Cu were evaporated with a metal mask to pattern the size to form an MIM structure for measurement.The chemical composition of the films was characterized by XPS technology.The electrical measurements were carried out by an Agilent 4155C semiconductor parameter analyzer using a two-probe method.The voltage was applied on Cu electrode with the Si bottom electrode always grounded.

    3.Results and discussion

    Figure 1 shows the resistive switching characteristics of HfOx, HfOx/Ti, and HfOx/TiOxsamples.The initial states of the fresh samples are in a high resistance state (HRS) and an electroforming process is required to initiate the switching behavior, as presented in Fig.1(a).Compared with the HfOxsample, the forming voltage is reduced by designing a bilayer structure, which may be due to the modulation of defects at the interface.After the forming process,the reversible bipolar switching behavior can be realized by applying the voltage in a counterclockwise direction, as indicated by arrows in Fig.1(b).The currents increase abruptly at the set voltage, switching the sample from HRS to a low resistance state(LRS).During the reset process, the resistance switches back to HRS.The switching behaviors of HfOx,HfOx/Ti,and HfOx/TiOxsamples are displayed in Figs.1(b) and 1(d), respectively,and the corresponding cross-sectional TEM images are shown in the insets.The enlarged memory window and much better repeatability ofI–Vcurves can be observed for the HfOx/Ti and HfOx/TiOxsamples compared to the HfOxsample.It is worth noting that the lowest current for all samples is observed at non-zero voltage but the negative voltage.As seen from Fig.1(b),the minimum current in the HRS of the HfOxsample is not at 0 V,behaving an open circuit voltage of 0.06 V,which is likely due to the fixed charge or accumulated electrons at the surface of the Si substrate.In addition, the open circuit voltage increases for the bilayer structure,as seen in Figs.1(c) and 1(d).This phenomenon may be due to the displacement of current and related to the bulk heterojunction composite and the capacitance of the sandwich structure,[17,18]and further investigations are needed.

    To analyze the chemical bonding states of the prepared samples, the XPS measurements were carried out.All peaks were calibrated by Au 4f peak(83.8 eV).Figure 2(a)shows the XPS spectrum of Hf 4f in the bulk of HfOxfilm,which can be fitted as a double peak of Hf7/2and Hf5/2peaks,corresponding to Hf–O bond.[19]In Fig.2(b),the O 1s peak in the bulk of HfOxfilm can be deconvoluted into two peaks,lattice oxygen with lower binding energy(530.58 eV)and non-lattice oxygen with slightly higher energy(532.28 eV).[20]The concentration of oxygen vacancies is qualitatively estimated by non-lattice oxygen.[21,22]The XPS depth profile of the HfOx/Ti structure is performed to analyze the O 1s peak near the interface of the HfOx/Ti structure, as presented in Fig.2(c).In Fig.2(c),the fitted result of the O 1s peak is similar to that in Fig.2(b).The calculated result of oxygen vacancies near the interface of the HfOx/Ti structure(8.18%)is larger than that in the bulk of HfOxfilm(6.72%), which can be attributed to the absorption of oxygen atoms from the HfOxlayer to Ti layer.The inset of Fig.2(d)shows the XPS spectrum of Ti 2p in TiOxfilm.The Ti 2p spectrum can be fitted as a double peak of Ti 2p3/2and Ti 2p1/2with the binding energies of 458.25 eV and 464.25 eV,in agreement with the reported Ti4+/Ti3+.[23,24]In addition,the oxygen vacancies in TiOxfilm (10.27%) are larger than those in HfOxfilm, as shown in Fig.2(d).It can be inferred that the oxygen vacancies near the interface of the HfOx/TiOxstructure can be modulated as well.

    Figure 3(a)shows the distributions of switching voltages for HfOx,HfOx/Ti,and HfOx/TiOxsamples.Compared to the HfOxsample, better distributions ofVsetandVresetcan be obtained for HfOx/Ti and HfOx/TiOxsamples.However,no obvious reduced switching voltages are observed for the bilayer structure, except for the reset voltage of the HfOx/Ti sample,which may be due to the formation of an interfacial layer although more oxygen vacancies are created near the interface.Since defects can be produced by a higher operating current which is the primary source for the device breakdown,[14]the variations of reset currents are also studied, as displayed in the inset of Fig.3(a).As can be seen, decreasing reset current can be observed for bilayer structure samples,particularly for the HfOx/Ti sample,which is beneficial to the decrease of power consumption.Moreover, the HfOx/Ti sample exhibits a much-scattered distribution of reset current.The distributions of resistances in LRS and HRS for all samples are presented in Fig.3(b).Excellent uniformity of resistances can be observed for HfOx/Ti and HfOx/TiOxsamples compared to the HfOxsample.Furthermore, the memory window also improves greatly (>100) by designing the bilayer structure,which mainly results from the increasing resistance in HRS and may be related to the formation of an interfacial layer in the bilayer structure.Compared to the similar research,[25,26]a larger memory window and smaller switching voltages can be observed,indicating a promising application in the future.

    Fig.1.(a) The forming process of the prepared samples and the typical I–V curves of (b) HfOx, (c) HfOx/Ti, and (d) HfOx/TiOx samples.The insets in(b),(c),and(d)show the cross-sectional TEM images of HfOx,HfOx/Ti,and HfOx/TiOx samples,respectively.

    Fig.2.The XPS spectrum of(a)Hf 4f and(b)O 1s in HfOx film,(c)O 1s near the interface of the HfOx/Ti structure,and(d)O 1s in TiOx film.The inset of(c)shows the XPS depth profile of the HfOx/Ti structure.The inset of(d)shows the XPS spectrum of Ti 2p in TiOx film.

    Fig.3.The distributions of switching parameters of HfOx,HfOx/Ti,and HfOx/TiOx samples: (a)switching voltages,(b)resistances.The inset of(a)shows the corresponding distribution of reset current.

    Fig.4.The fitted I–V curves of HfOx,HfOx/Ti,and HfOx/TiOx samples.

    To explore the current conduction mechanism of the prepared samples,the correspondingI–Vcurves are replotted and fitted in a double-log scale,as displayed in Figs.4(a)–4(d).For the LRS of the HfOxsample,the current and voltage can be fitted as a straight line with a slope of about 1 in a low-voltage region, as shown in Fig.4(a), exhibiting ohmic conduction behavior.In the high-voltage region, the current is proportional to the square of the voltage,following Child’s law.For HRS, the conductive mechanism is slightly complicated and includes three regions: slope~1 at low voltage, slope~2 at higher voltage,and the current increased abruptly with the increased voltage(slope>3)due to the formation of conducting paths in the switching layer.Such carrier conduction behaviors can be well understood by the SCLC effect,[4,27,28]and are attributed to the trapping and de-trapping process of defects in the film,which are most likely associated with the oxygen vacancies.Similar fitted results can be observed for HfOx/Ti and the HRS of HfOx/TiOxsamples,as presented in Figs.4(b)and 4(c).However,it is found that the region of abruptly increasing current at high voltage can not be observed for the HRS of the HfOx/Ti sample.Other possible conduction mechanisms have been attempted, and the curve of the HfOx/Ti sample in HRS can be well fitted by Schottky emission, which was an interface-related mechanism, as indicated in Fig.4(d).The higher barrier height may lead to a larger memory window.Moreover,it is observed that the results of the fittedI–Vcurve in LRS for the HfOx/TiOxsamples are also different and the slope is much larger (in Fig.4(c)), which may be ascribed to the fact that partial traps are unfilled and the current density of unfilled ones varies more steeply with the voltage,[29]and the further investigation is required.Overall, the formation and rupture of oxygen vacancy filaments are responsible for the switching behavior of HfOx-based memory.

    To further investigate the reliability of the prepared samples,the endurance and retention properties are demonstrated,as presented in Figs.5(a) and 5(b).In Fig.5(a), large fluctuations are observed for the HfOxsample during switching cycles,which may be related to the random formation of oxygen vacancies during fabrication, and the least memory window is only 10.Better cycling characteristics can be observed for HfOx/Ti and HfOx/TiOxsamples,in which the resistances in two states can steadily switch over 120 cycles with the on/off ratio larger than 104,mainly attributed to the higher off states due to the higher barrier heights suppressing the electron leaps.Results show some performance advantages of our samples especially in on/off ratio by comparing with other similar bilayer-structured devices.[30–33]Good retention properties can be observed for all prepared samples, as displayed in Fig.5(b).The currents in LRS and HRS can maintain for 104s without obvious degeneration,showing the non-volatile property of the samples.

    Fig.5.(a)Endurance and(b)retention properties of HfOx,HfOx/Ti,and HfOx/TiOx samples.The read voltage was at 1 V.

    Fig.6.The physical model of(a)HfOx,(b)HfOx/Ti,and(c)HfOx/TiOx samples.

    Based on the above analysis, the physical models of the switching behaviors of HfOx, HfOx/Ti, and HfOx/TiOxsamples are proposed.For HfOxsamples, the movement of oxygen ions towards the anode under positive voltage leads to the creation of oxygen vacancies which form the oxygen vacancy chains connecting the top and bottom electrodes,assisting the transition of electrons and turning the samples into LRS,as indicated in Fig.6(a).By applying a negative voltage,the oxygen vacancy chains recovered with oxygen ions,rupturing the conductive paths,and switching the sample back to HRS.Owing to the random formation of oxygen vacancies in the film,the formation and rupture of filaments during each cycle are stochastic, resulting in the poor uniformity of switching parameters.

    For the bilayer structure of HfOx/Ti and HfOx/TiOxsamples, due to the interface modulation, the resistive switching characteristics are mainly dominated by a redox reaction or Joule heat near the interface, and the schematic diagrams are presented in Figs.6(b)and 6(c).Ti and TiOxlayers can act as an oxygen-reservoir layer.During the set process,the oxygen ions move towards the anode under the driving force of a positive electrical field and left oxygen vacancies in the film, especially creating more oxygen vacancies near the interface of the HfOx/Ti sample,as shown in Fig.6(b).The filaments are formed through the accumulation of oxygen vacancies gradually at the set process and then rupture at the weak points near the interface during the reset process.Furthermore,the higher barrier height was achieved during the reset process, which was contributed to the enlarged memory window.For the HfOx/TiOxsample,the different filaments are formed in TiOxand HfOxfilms,[34]the asymmetric conductive filaments lead to the weak points near the interface.On the other hand, due to the different dielectric constants of HfOxand TiOx,the filaments at the interface may be the weaker ones.[35]Therefore,under the negative voltage, larger currents at the weak point lead to the first rupture of filaments by the recovery of oxygen vacancies, accompanied by Joule heat at the same time,as displayed in the reset process of Fig.6(c).In addition, for bilayer structure,it is inferred that the filaments are not completely ruptured during the reset process and the residual filaments can act as lightning rods and promote the re-formation of fixed filaments along the last path during the subsequent set process.Therefore, much uniform and reliable switching performance can be observed for bilayer structure, which is consistent with Huang’ study that the heterostructure and its interface can improve the switching behaviors in multilayer structures.[20]Overall,the results indicate the improvement of switching performance by designing the device structure.

    4.Conclusions

    In summary, better switching performance including a larger on/off ratio (~104), uniform distribution of switching parameters, and lower reset current is obtained in the bilayer structures, especially in the HfOx/Ti sample due to the modulation of oxygen vacancies near the interface and barrier height.Different conduction mechanisms of Schottky emission are observed for the HfOx/Ti sample, which are closely related to the large memory window and the uniform distribution of the switching parameters.A filamentary model is proposed to clarify the switching behaviors of HfOx-based samples.Since the weak points of the filaments near the interface are firstly ruptured by the recovery of oxygen vacancies, the residual filaments can act as lightning rods to promote the reformation of fixed filaments, and better endurance properties can be observed for bilayer structure.Results indicate that the growth of oxygen vacancy filaments can be better controlled by designing a bilayer structure.

    Acknowledgements

    This work was financially supported by the National Natural Science Foundation of China(Grant No.51802025)and the Natural Science Basic Research Plan in Shaanxi Province of China(Grant No.2020JQ-384).

    猜你喜歡
    王英
    分析規(guī)范化介入護(hù)理配合在TAVR手術(shù)患者中的應(yīng)用
    少年陰陽師(九)
    充滿友誼的水筆
    大衛(wèi)上學(xué)去
    呼叫的良辰(中篇)
    櫻花雨
    吵架
    小說月刊(2017年9期)2017-09-13 18:26:35
    “走錯路”的交通局局長
    每當(dāng)我回到故鄉(xiāng)
    悼詩魂王英
    精品国产一区二区三区四区第35| 成人精品一区二区免费| 99国产极品粉嫩在线观看| 丰满人妻熟妇乱又伦精品不卡| 欧美人与性动交α欧美精品济南到| 成在线人永久免费视频| 不卡一级毛片| 国产伦一二天堂av在线观看| 成熟少妇高潮喷水视频| 日韩有码中文字幕| 给我免费播放毛片高清在线观看| 大陆偷拍与自拍| 免费在线观看完整版高清| 丝袜在线中文字幕| 美国免费a级毛片| 久久国产亚洲av麻豆专区| 亚洲av电影不卡..在线观看| 桃色一区二区三区在线观看| 精品欧美国产一区二区三| 亚洲av日韩精品久久久久久密| 一区二区日韩欧美中文字幕| 又紧又爽又黄一区二区| 黄色片一级片一级黄色片| 国产一区二区在线av高清观看| 精品一品国产午夜福利视频| 日韩欧美一区视频在线观看| 久久国产乱子伦精品免费另类| 97人妻精品一区二区三区麻豆 | 最近最新免费中文字幕在线| 国产亚洲精品久久久久5区| 精品国产乱码久久久久久男人| 久久中文字幕人妻熟女| 国产三级黄色录像| 亚洲片人在线观看| 97人妻精品一区二区三区麻豆 | 丁香六月欧美| 精品欧美一区二区三区在线| 欧美黄色淫秽网站| 亚洲av电影不卡..在线观看| 亚洲天堂国产精品一区在线| 久久国产亚洲av麻豆专区| 亚洲自偷自拍图片 自拍| 日韩大尺度精品在线看网址 | 久久精品aⅴ一区二区三区四区| 国产精品香港三级国产av潘金莲| 在线观看一区二区三区| 亚洲第一av免费看| 国产成人系列免费观看| 99re在线观看精品视频| 国产高清激情床上av| 久久婷婷人人爽人人干人人爱 | 老司机福利观看| e午夜精品久久久久久久| 亚洲欧美激情综合另类| 日本撒尿小便嘘嘘汇集6| 女人精品久久久久毛片| 欧美一级毛片孕妇| 亚洲av电影不卡..在线观看| 法律面前人人平等表现在哪些方面| 成人三级做爰电影| 久久久国产成人精品二区| 午夜福利成人在线免费观看| 黄色丝袜av网址大全| 亚洲情色 制服丝袜| 中文字幕高清在线视频| 真人做人爱边吃奶动态| 久久人妻av系列| 日韩大尺度精品在线看网址 | 久久香蕉国产精品| 啦啦啦 在线观看视频| 十八禁网站免费在线| 老汉色av国产亚洲站长工具| 日韩欧美三级三区| 国产亚洲欧美在线一区二区| 欧美日韩中文字幕国产精品一区二区三区 | 99精品在免费线老司机午夜| 免费在线观看日本一区| 国产成人精品久久二区二区免费| 午夜日韩欧美国产| 一边摸一边抽搐一进一出视频| 国产精品亚洲一级av第二区| 亚洲中文字幕一区二区三区有码在线看 | 中文字幕av电影在线播放| 一级毛片精品| 中文字幕av电影在线播放| 亚洲av片天天在线观看| 久久久久久久久中文| 午夜免费鲁丝| 少妇熟女aⅴ在线视频| 久久国产精品影院| 亚洲一区二区三区色噜噜| 伊人久久大香线蕉亚洲五| 亚洲人成网站在线播放欧美日韩| 国产在线男女| 亚洲性久久影院| 黄色日韩在线| 麻豆久久精品国产亚洲av| 国产av在哪里看| 国产一区二区三区av在线 | 老师上课跳d突然被开到最大视频| 又黄又爽又刺激的免费视频.| 国产精品野战在线观看| 成人国产综合亚洲| 色哟哟哟哟哟哟| avwww免费| 亚洲内射少妇av| 一个人免费在线观看电影| 免费观看的影片在线观看| 99精品久久久久人妻精品| 国产单亲对白刺激| 又黄又爽又刺激的免费视频.| 国内精品宾馆在线| 亚洲精品国产成人久久av| 亚洲五月天丁香| 麻豆成人午夜福利视频| 麻豆精品久久久久久蜜桃| 黄色丝袜av网址大全| 少妇的逼水好多| 少妇熟女aⅴ在线视频| 变态另类成人亚洲欧美熟女| 男女啪啪激烈高潮av片| 久久国产乱子免费精品| 久久久久久久久久黄片| 国产亚洲91精品色在线| 一级a爱片免费观看的视频| 精品国产三级普通话版| 免费av毛片视频| 色综合站精品国产| 色精品久久人妻99蜜桃| 桃色一区二区三区在线观看| 观看免费一级毛片| 真人做人爱边吃奶动态| 欧美精品啪啪一区二区三区| 熟女电影av网| 欧美+亚洲+日韩+国产| 日韩欧美一区二区三区在线观看| 亚洲性夜色夜夜综合| 天天躁日日操中文字幕| 少妇人妻精品综合一区二区 | 黄色日韩在线| 精品一区二区三区人妻视频| 亚洲乱码一区二区免费版| 久久婷婷人人爽人人干人人爱| 少妇的逼好多水| 天天躁日日操中文字幕| 可以在线观看的亚洲视频| 免费黄网站久久成人精品| 淫妇啪啪啪对白视频| 亚洲国产精品合色在线| 麻豆久久精品国产亚洲av| 国产不卡一卡二| 成年女人永久免费观看视频| 一边摸一边抽搐一进一小说| 一级黄片播放器| 久久精品国产亚洲av天美| 亚洲精华国产精华液的使用体验 | 日韩亚洲欧美综合| 亚洲不卡免费看| 18+在线观看网站| 人妻夜夜爽99麻豆av| 色噜噜av男人的天堂激情| 国产精品精品国产色婷婷| 日本 欧美在线| 韩国av在线不卡| 欧美潮喷喷水| 免费av不卡在线播放| 亚洲成人精品中文字幕电影| 床上黄色一级片| 国模一区二区三区四区视频| 国产美女午夜福利| 国产日本99.免费观看| 一个人免费在线观看电影| 国产熟女欧美一区二区| 精品无人区乱码1区二区| 色哟哟·www| 欧美精品啪啪一区二区三区| 黄色女人牲交| 亚洲美女黄片视频| 国产精品av视频在线免费观看| 亚洲精品色激情综合| 69av精品久久久久久| 国产亚洲精品久久久com| 干丝袜人妻中文字幕| 久久久久久久亚洲中文字幕| 国产探花极品一区二区| 亚洲中文字幕一区二区三区有码在线看| 日韩一本色道免费dvd| 婷婷六月久久综合丁香| 露出奶头的视频| 午夜免费激情av| 国产视频内射| 亚洲国产精品久久男人天堂| 91在线观看av| 精品不卡国产一区二区三区| 亚洲美女黄片视频| 精品久久久久久久久av| 99riav亚洲国产免费| 免费看av在线观看网站| 成人美女网站在线观看视频| 日韩精品中文字幕看吧| 1000部很黄的大片| 3wmmmm亚洲av在线观看| 亚洲狠狠婷婷综合久久图片| videossex国产| 亚洲精品456在线播放app | 日韩精品有码人妻一区| 九九热线精品视视频播放| 亚洲五月天丁香| 国产单亲对白刺激| 国产探花在线观看一区二区| 亚洲精品一卡2卡三卡4卡5卡| 日韩精品青青久久久久久| 精品午夜福利在线看| 国产高清有码在线观看视频| 精品欧美国产一区二区三| 欧美日韩亚洲国产一区二区在线观看| 国产精品无大码| 亚洲精品亚洲一区二区| 免费电影在线观看免费观看| 深爱激情五月婷婷| 久久九九热精品免费| 久久精品国产99精品国产亚洲性色| 日韩一区二区视频免费看| 欧美最新免费一区二区三区| 亚洲精品在线观看二区| 97超视频在线观看视频| 日本爱情动作片www.在线观看 | 久久精品综合一区二区三区| 性色avwww在线观看| 一进一出抽搐动态| 国产一区二区三区在线臀色熟女| 他把我摸到了高潮在线观看| 亚洲成人中文字幕在线播放| 亚洲真实伦在线观看| 亚洲乱码一区二区免费版| 人妻夜夜爽99麻豆av| 亚洲中文字幕日韩| 三级男女做爰猛烈吃奶摸视频| 成人国产综合亚洲| 内射极品少妇av片p| 波多野结衣巨乳人妻| 亚洲在线自拍视频| 亚洲第一电影网av| 亚洲久久久久久中文字幕| 麻豆av噜噜一区二区三区| 97超级碰碰碰精品色视频在线观看| 亚洲人成伊人成综合网2020| 精品无人区乱码1区二区| 99精品在免费线老司机午夜| 女同久久另类99精品国产91| 人人妻,人人澡人人爽秒播| 哪里可以看免费的av片| 免费人成视频x8x8入口观看| 日本黄色片子视频| 少妇的逼水好多| 日本黄大片高清| 亚洲av免费在线观看| 99久久无色码亚洲精品果冻| 国产中年淑女户外野战色| 精品久久久久久久久久免费视频| 国产精品98久久久久久宅男小说| 美女大奶头视频| 成人特级av手机在线观看| 亚洲国产色片| 亚洲在线自拍视频| 国产极品精品免费视频能看的| 国内揄拍国产精品人妻在线| 亚洲av一区综合| 成年免费大片在线观看| 人妻丰满熟妇av一区二区三区| 国产老妇女一区| 国产蜜桃级精品一区二区三区| 久久久久久久精品吃奶| 亚洲人成伊人成综合网2020| 中文字幕久久专区| 久久久久国产精品人妻aⅴ院| 3wmmmm亚洲av在线观看| 亚洲av熟女| 女人被狂操c到高潮| 亚洲性久久影院| 人人妻人人澡欧美一区二区| 九九热线精品视视频播放| 精品无人区乱码1区二区| 国产成人一区二区在线| 97人妻精品一区二区三区麻豆| 欧美激情在线99| 免费黄网站久久成人精品| 免费av不卡在线播放| 美女黄网站色视频| 色精品久久人妻99蜜桃| 欧美国产日韩亚洲一区| av天堂中文字幕网| 国产蜜桃级精品一区二区三区| 午夜福利在线观看吧| 日日夜夜操网爽| 亚洲精品亚洲一区二区| 淫秽高清视频在线观看| 国产淫片久久久久久久久| 日韩一区二区视频免费看| 日韩欧美 国产精品| 国产亚洲91精品色在线| 国产真实乱freesex| 观看免费一级毛片| 麻豆久久精品国产亚洲av| 亚洲无线在线观看| 99热这里只有是精品在线观看| 欧美日本视频| 婷婷色综合大香蕉| 欧美在线一区亚洲| 99久久成人亚洲精品观看| 国产亚洲精品久久久久久毛片| 我的女老师完整版在线观看| 男人的好看免费观看在线视频| 国产精品野战在线观看| 男人舔奶头视频| 日本免费a在线| 亚洲精品乱码久久久v下载方式| 亚洲人成网站在线播放欧美日韩| 国产成年人精品一区二区| 国产精品嫩草影院av在线观看 | .国产精品久久| 99热网站在线观看| 久久国内精品自在自线图片| 99热精品在线国产| 午夜福利在线在线| 69人妻影院| av黄色大香蕉| 中文亚洲av片在线观看爽| 国产精品人妻久久久影院| 99在线视频只有这里精品首页| 成人精品一区二区免费| 1000部很黄的大片| 超碰av人人做人人爽久久| 欧洲精品卡2卡3卡4卡5卡区| 国产高清不卡午夜福利| 长腿黑丝高跟| 少妇人妻精品综合一区二区 | 性欧美人与动物交配| 成年版毛片免费区| 波多野结衣高清作品| 狂野欧美白嫩少妇大欣赏| 黄色配什么色好看| 无遮挡黄片免费观看| 亚洲黑人精品在线| 内地一区二区视频在线| 久久精品91蜜桃| 嫩草影院精品99| 欧美极品一区二区三区四区| 欧美日韩综合久久久久久 | 久久久久九九精品影院| 亚洲在线自拍视频| 精品人妻1区二区| 亚洲精品影视一区二区三区av| 亚洲欧美日韩高清在线视频| 自拍偷自拍亚洲精品老妇| 欧美黑人巨大hd| 免费观看精品视频网站| 男人舔奶头视频| 啪啪无遮挡十八禁网站| 国产精品一区二区免费欧美| 精品人妻1区二区| 久久天躁狠狠躁夜夜2o2o| 日韩大尺度精品在线看网址| 色在线成人网| 最近最新免费中文字幕在线| 国产高清三级在线| 免费在线观看影片大全网站| 日韩强制内射视频| 人妻久久中文字幕网| 日本黄色视频三级网站网址| 能在线免费观看的黄片| 久久国产精品人妻蜜桃| 大型黄色视频在线免费观看| 精品免费久久久久久久清纯| av黄色大香蕉| 久久热精品热| 国内毛片毛片毛片毛片毛片| 别揉我奶头 嗯啊视频| 老熟妇仑乱视频hdxx| 国产精品爽爽va在线观看网站| 女的被弄到高潮叫床怎么办 | 日日啪夜夜撸| 欧美成人一区二区免费高清观看| 精品国内亚洲2022精品成人| 日韩欧美精品v在线| 亚洲五月天丁香| 在线播放无遮挡| 他把我摸到了高潮在线观看| 午夜精品久久久久久毛片777| 啦啦啦韩国在线观看视频| 精品不卡国产一区二区三区| 国产一区二区亚洲精品在线观看| 欧美3d第一页| av.在线天堂| 最近中文字幕高清免费大全6 | 小说图片视频综合网站| 亚洲国产欧洲综合997久久,| 男人狂女人下面高潮的视频| 国产精品亚洲一级av第二区| 亚洲av美国av| 成年女人毛片免费观看观看9| 精品一区二区三区人妻视频| 精品免费久久久久久久清纯| 亚洲av成人精品一区久久| 国内少妇人妻偷人精品xxx网站| 女人十人毛片免费观看3o分钟| 可以在线观看毛片的网站| 国内揄拍国产精品人妻在线| av女优亚洲男人天堂| 欧美激情久久久久久爽电影| 床上黄色一级片| 女的被弄到高潮叫床怎么办 | 毛片女人毛片| av在线亚洲专区| 97超视频在线观看视频| 国产精品伦人一区二区| 成年女人看的毛片在线观看| 少妇裸体淫交视频免费看高清| 可以在线观看毛片的网站| 91av网一区二区| 在线免费十八禁| 亚洲经典国产精华液单| 欧美性猛交╳xxx乱大交人| 又黄又爽又刺激的免费视频.| 人人妻人人澡欧美一区二区| 久久国内精品自在自线图片| 亚洲欧美日韩东京热| 欧美精品国产亚洲| 蜜桃久久精品国产亚洲av| 欧美+亚洲+日韩+国产| 国内毛片毛片毛片毛片毛片| 亚洲男人的天堂狠狠| 亚洲国产高清在线一区二区三| 嫩草影院新地址| 久久久精品大字幕| 日日撸夜夜添| 女的被弄到高潮叫床怎么办 | 可以在线观看的亚洲视频| 一个人看的www免费观看视频| 嫩草影院精品99| 成人欧美大片| eeuss影院久久| 中文字幕精品亚洲无线码一区| 亚洲电影在线观看av| 91久久精品国产一区二区成人| 99热精品在线国产| 久久婷婷人人爽人人干人人爱| 国产精品,欧美在线| 欧美不卡视频在线免费观看| 丰满乱子伦码专区| 蜜桃久久精品国产亚洲av| 日韩欧美 国产精品| 欧美一区二区国产精品久久精品| 日本在线视频免费播放| 亚洲中文字幕日韩| 亚洲精品色激情综合| 日韩欧美精品免费久久| 亚洲av不卡在线观看| 婷婷亚洲欧美| 精品一区二区免费观看| 97热精品久久久久久| 国产成人a区在线观看| 亚洲一区二区三区色噜噜| 亚洲av成人av| 一级黄片播放器| 亚洲最大成人中文| 亚洲精品成人久久久久久| 岛国在线免费视频观看| 蜜桃久久精品国产亚洲av| 欧美日韩综合久久久久久 | 在线天堂最新版资源| 丰满人妻一区二区三区视频av| 男人的好看免费观看在线视频| 亚洲在线观看片| 午夜福利高清视频| АⅤ资源中文在线天堂| 国产成人aa在线观看| 赤兔流量卡办理| av在线观看视频网站免费| 少妇裸体淫交视频免费看高清| 欧美中文日本在线观看视频| 亚洲av五月六月丁香网| 久久久久久久久久黄片| 亚洲欧美精品综合久久99| 自拍偷自拍亚洲精品老妇| 精品人妻熟女av久视频| 久久精品91蜜桃| 国产又黄又爽又无遮挡在线| 亚洲美女黄片视频| 国产成人av教育| 不卡一级毛片| 日本一二三区视频观看| 少妇高潮的动态图| 91在线精品国自产拍蜜月| 欧美激情国产日韩精品一区| 国产一区二区三区在线臀色熟女| 亚洲在线观看片| 国产精品免费一区二区三区在线| 精品99又大又爽又粗少妇毛片 | 在线免费观看不下载黄p国产 | 性色avwww在线观看| 看免费成人av毛片| 偷拍熟女少妇极品色| 午夜免费男女啪啪视频观看 | 欧美性猛交黑人性爽| 欧美最黄视频在线播放免费| 亚州av有码| 中文在线观看免费www的网站| 黄片wwwwww| 99久国产av精品| 精品久久久久久,| 免费在线观看成人毛片| 欧美+亚洲+日韩+国产| 亚洲人与动物交配视频| 精品一区二区三区视频在线观看免费| 久久天躁狠狠躁夜夜2o2o| 欧美最新免费一区二区三区| 色精品久久人妻99蜜桃| h日本视频在线播放| 免费搜索国产男女视频| 天天一区二区日本电影三级| 一夜夜www| 又黄又爽又免费观看的视频| 欧美成人性av电影在线观看| 亚洲va日本ⅴa欧美va伊人久久| 精品免费久久久久久久清纯| 亚洲性久久影院| 偷拍熟女少妇极品色| 搡老熟女国产l中国老女人| 最近视频中文字幕2019在线8| 日韩欧美在线乱码| 色综合站精品国产| 99热精品在线国产| 久久人人爽人人爽人人片va| 真实男女啪啪啪动态图| 亚洲自偷自拍三级| 观看免费一级毛片| 国产精品一及| 久久久久久久久久久丰满 | 色播亚洲综合网| 日本熟妇午夜| 99国产精品一区二区蜜桃av| 天天一区二区日本电影三级| 亚洲av熟女| 老熟妇乱子伦视频在线观看| 日本a在线网址| 亚洲色图av天堂| 欧美黑人巨大hd| 麻豆成人av在线观看| a在线观看视频网站| 日本-黄色视频高清免费观看| 禁无遮挡网站| 亚洲中文字幕一区二区三区有码在线看| 亚洲av免费高清在线观看| 国内精品美女久久久久久| 国产精品一区www在线观看 | 可以在线观看的亚洲视频| 又粗又爽又猛毛片免费看| 很黄的视频免费| 午夜福利18| 亚洲成a人片在线一区二区| 少妇人妻一区二区三区视频| 成熟少妇高潮喷水视频| 国产高清激情床上av| 午夜久久久久精精品| 91麻豆精品激情在线观看国产| 国产又黄又爽又无遮挡在线| 亚洲熟妇中文字幕五十中出| 窝窝影院91人妻| 91久久精品国产一区二区三区| 免费av观看视频| 最近中文字幕高清免费大全6 | 伦理电影大哥的女人| 一区二区三区四区激情视频 | 国产高清有码在线观看视频| 大又大粗又爽又黄少妇毛片口| 国产欧美日韩精品亚洲av| 最近最新中文字幕大全电影3| 2021天堂中文幕一二区在线观| 1024手机看黄色片| 此物有八面人人有两片| 欧美中文日本在线观看视频| 少妇被粗大猛烈的视频| 成人亚洲精品av一区二区| 久久久久久久久大av| 99热这里只有是精品50| 波多野结衣高清作品| 成人精品一区二区免费| 超碰av人人做人人爽久久| 白带黄色成豆腐渣| 国模一区二区三区四区视频| 亚洲一区二区三区色噜噜| 国产真实乱freesex| av中文乱码字幕在线| 91麻豆av在线| 国产不卡一卡二| 天堂影院成人在线观看| 桃色一区二区三区在线观看| 男人舔奶头视频| 91精品国产九色| 国产伦精品一区二区三区视频9| 久久精品国产亚洲av天美| 亚洲精品色激情综合| 小蜜桃在线观看免费完整版高清| 舔av片在线| 日韩精品中文字幕看吧| 男插女下体视频免费在线播放| 成人av一区二区三区在线看| 久99久视频精品免费| 2021天堂中文幕一二区在线观| 欧美成人免费av一区二区三区| 高清日韩中文字幕在线| 免费在线观看日本一区| 嫩草影院精品99| 欧美激情久久久久久爽电影|