• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High-order harmonic generation of ZnO crystals in chirped and static electric fields

    2024-01-25 07:27:46LingYuZhang張玲玉YongLinHe何永林ZhuoXuanXie謝卓璇FangYanGao高芳艷QingYunXu徐清蕓XinLeiGe葛鑫磊XiangYiLuo羅香怡andJingGuo郭靜
    Chinese Physics B 2024年1期
    關鍵詞:郭靜

    Ling-Yu Zhang(張玲玉), Yong-Lin He(何永林), Zhuo-Xuan Xie(謝卓璇), Fang-Yan Gao(高芳艷),Qing-Yun Xu(徐清蕓), Xin-Lei Ge(葛鑫磊), Xiang-Yi Luo(羅香怡), and Jing Guo(郭靜),?

    1Institute of Atomic and Molecular Physics,Jilin University,Changchun 130012,China

    2School of Physics and Electromechanical Engineering,Hexi University,Zhangye 734000,China

    3Institute of Theoretical Physics,Hexi University,Zhangye 734000,China

    4College of Physical Science and Technology,Bohai University,Jinzhou 121013,China

    5College of Physics and Electronic Information,Baicheng Normal University,Baicheng 137000,China

    Keywords: high-order harmonic generation, the semiconductor Bloch equation, k-resolved inter-band harmonic spectrum,four-step semiclassical model

    1.Introduction

    High-order harmonics generation(HHG)driven by laser not only is a special nonlinear optical phenomenon, but also has become an important way to make extreme UV or soft xray band light source and desktop attosecond light source in the laboratory,[1,2]which provides a feasible scheme for synthesizing attosecond pulses to observe the internal electron dynamics of atoms and molecules,and also makes it possible to further explore and control microscopic particles.The physical mechanism of HHG is mainly given by the semi-classical three-step model proposed by Corkum in 1993.[3]In 2019,Luet al.[4]proposed a four-step model to study HHG in solids,which can be explained as follows: (i) Electrons in the valence band are accelerated by a laser field.(ii)Tunneling excitation occurs at the minimum band gap.(iii) Subsequently,electron and hole pairs accelerate within the band.(iv) Finally,electron and hole recombine and emit harmonic photons with band-gap energy.Compared with the three-step model,the four-step model mainly has a pre-acceleration process.In 2020,Songet al.[5]studied ZnO driven by multi-color pulses to enhance HHG,and proved the occurrence of intra-band preacceleration,which confirmed the proposed four-step model of HHG from semiconductor.

    Based on the research of high harmonics in gas, the description of the harmonic radiation process in solids is gradually perfected,and compared with the electron dynamics process in gas, there is a bit of differences for ultrafast electron dynamics in solids.In order to improve the harmonic efficiency and to extend the high-order harmonic spectrum, researchers have taken many methods in research of high-order harmonic generation from gas,such as using the chirp to control the laser waveform and controlling the dynamics of HHG.Spatially inhomogeneous fields,[6]two-color field,[7]and its combination with chirped pulse,[8,9]as well as the combination of static electric field and chirp[9,10]are used to extend the cutoff energy.For example, Mohebbi[11]used the combination of chirped laser pulse, non-chirped laser pulse and static electric field to drive helium atoms to enhance HHG,and then synthesized a clean 38 as isolated attosecond pulse.Liuet al.[12]introduced a two-color chirped pulse to extend the platform of HHG, and also added a controlled IR or UV pulse to improve the harmonic efficiency.Koushkiet al.[9]showed that adding a static electric field to a two-color chirped laser field can significantly increase the harmonic cutoff and obtain pulses with a minimum duration of 21 as.

    However,the emission of high harmonics driven by combined fields in solids needs to be further studied.Since the HHG process in solids is more complicated than that in atoms, which is due to the coincident movement of electrons and holes in the conduction band and valence band in solids,[13–17]the interference between high harmonics emitted by different channels,[18]or between inter-band and intra-band currents.[19]Based on this,we study the HHG of the combined field along theΓ–Mdirection of the ZnO crystal by solving the SBEs.The characteristics of harmonic spectra are analyzed based on the recollision model.Moreover,k-resolved inter-band harmonic spectra are also given.The incomplete X-structure of the inter-band harmonic spectrum can be analyzed by the four-step model.

    In the rest of this paper,we present the theoretical method used here in Section 2.The calculation results and discussion are given in Section 3.Finally, the conclusions are given in Section 4.Atomic units are used throughout the text unless stated otherwise.

    2.Theoretical method

    HHG in solids can be investigated by many theoretical methods, such as the time-dependent Schr¨odinger equation(TDSE),[20–25]the time-dependent density functional theory (TDDFT),[26–31]and the semiconductor Bloch equation(SBE).[32–38]In this paper, we use SBEs to simulate HHG in solids:[14,15,39,40]

    Our simulation is based on a two-band model, including a valence band and a conduction band.Therefore in Eq.(1)nm=v,crepresents band population, v and c refer to valence band and conduction band, respectively, andπmm'(K,t) represents the quantum coherence between valence band and conduction band.?mm'(K,t) =E(t)·dmm'[K+A(t)] is the Rabi frequency, whereE(t)is the electric field anddmm'[K+A(t)] is the momentumdependent transition dipole moment of the crystal between the two bands.Here, eiSmm'is the phase term, andSmm'(K,t)=t?∞{εm[K+A(t')]?εm'[K+A(t')]}dt'is the classical action,εmandεm'refer to band energy,andT2is the dephasing time.According to Bloch’s acceleration theorem,crystal momentumK(t)=k ?A(t) is in a moving coordinate system,K(t)is the time-dependent momentum under the laser field,kis the initial momentum,is the vector potential of the laser field.In the semiconductor Bloch equations,we are usingK+A(t)to denotek,andA(t)depends ont,so the variables are represented only byKandt.The polarization, which represents the polarizability between two energy bands,is defined as[14]

    The intra-band current and the inter-band current are expressed as[14]

    whereυm(k)=?kεm(k)denotes the velocity of valence band(m=v) and conduction band (m=c).The intra-band and inter-band harmonic spectra are obtained by taking the Fourier transform of the intra-band current and inter-band current after derivation of time, respectively, and the total harmonic spectrum is obtained from the total currents:

    The one-dimensional SBE is adopted for simulation,and laser field can be expressed as

    wheref(t)is a Gaussian type envelope,τis the full width at half maximum (FWHM).E0,ω0, and?0are the peak value,frequency,and carrier envelope phase of electric field,respectively;αis the chirped parameter;βis the amplitude ratio between the static electric field and the fundamental frequency field(E0).The polarization direction of the laser pulse is along theΓ–Mdirection of ZnO crystal.

    In solid, electrons (holes) move according to Newtonian equations:, where ˉhkis the momentum.The details are as follows:

    The intraband current and interband current can be calculated by the solid strong field approximation formula[14]

    In the solid strong field approximation theory,the contribution of interband polarization near the saddle point dominates.The phase term in the interband current is

    At the saddle point,the first derivative of the phase term with respect to the three variablesk,t',tis equal to 0,and the three saddle point equations can be given as follows:

    Three saddle point equations are given,and three saddle point conditions can be obtained: (i)k(t) =k0+A(t)?A(t')denotes the electron tunneling from the minimum band gapk0at timet', which is called the tunneling condition.(ii)Δxe?Δxh=0 represents the recollision of electrons and holes in real space, and the harmonic photons are emitted when the collision occurs,which is called the recollision condition.(iii)ω=εc[k(t)]?εv[k(t)] indicates that the energy of the harmonic photon radiated upon recollision is equal to the instantaneous band gap when the electron–hole pair recombines,which is called the energy conservation condition.If only(i)and(ii)are considered, thek-space quasi-classical model can be obtained.If (i), (ii), and (iii) are considered at the same time, the real space recollision model can be obtained.The real space recollision model holds that electrons undergo three processes,namely tunneling ionization,electron acceleration,and electron hole pair recombination,and finally we can realize harmonic radiation.[41]

    3.Results and discussion

    In our calculations, we use fundamental pulse (α=0,β=0) withE0= 0.0037 a.u.(I= 0.48 TW/cm2),λ=3200 nm,ω0=0.0142 a.u.,?0=0, andτ=10.3 fs orτ=64 fs.The chirp parameterαis selected to be 3×10?6and 5×10?6.The amplitude ratio between the static electric field and the fundamental frequency field,β, is chosen as 0.2 and 0.4.Although the static field ofβ=0.4 is slightly higher, it may be difficult to realize experimentally, but low-frequency laser field(such as CO2laser)can be used instead.[10,42,43]The total duration is taken as 4 o.c.and 25 o.c.(o.c.:optical cycle)in the simulation.Firstly, the structure top view of ZnO and the valence band and conduction band are shown in Figs.1(a)and 1(b).Figure 1(a)shows the top view of ZnO in real space,which presents a hexagonal honeycomb structure.We focus on the band structure along theΓ–Mdirection of the crystal,as shown in Fig.1(b),including a valence band and a conduction band,marked by solid line and dashed line,respectively.In order to compare the influence of chirp parameters and amplitude ratios of static electric field to fundamental frequency pulse on HHG, the harmonics under different parameters or amplitude ratios of fields are shown in Fig.2.

    Fig.1.(a) Top view of wurtzite ZnO with the Zn (the blue balls) and O(the orange balls)atoms.(b)Energy band structure of ZnO along the Γ–M direction, considering the two-band model with a valence band and a conduction band.

    It can be seen from Figs.2(a1) and 2(b1) that the harmonics drop rapidly from 0 to the 7th order,and the intensity of the harmonics is almost constant from 9th to 29th order,about 10?7orders of magnitude,and the cutoff is of the 29th order.With the introduction of chirped pulse with 4 o.c.and 25 o.c.in Figs.2(a1) and 2(b1), we can see that harmonic modulation is obvious.Moreover,the existence of static electric field can improve the harmonic efficiency, as shown in Figs.2(a2) and 2(b2).When the combination of single-color chirp-free pulse and static electric field is considered(α=0,β/=0), the modulation in the harmonic platform is reduced,and the interference structure of harmonics below the 7th order is obvious.Driven by the combination of single-color chirped pulse and static electric field,we can obtain relatively continuous harmonic spectrum.Compared with the 4-period case,the harmonic spectrum presents similar characteristic with the 25-period case.Furthermore, we also consider the influence of the combined pulse of chirped pulse and static electric field on HHG, and find that the harmonic intensity in Figs.2(a3)and 2(b3) is roughly 1 or 2 orders of magnitude higher than that in Figs.2(a1) and 2(b1).However, compared to HHG driven by the combination of single-color chirp-free pulse and static electric field in Figs.2(a2)and 2(b2),the modulation of the harmonic driven by the combination of chirped pulse and static electric field is more obvious [as shown in Figs.2(a3)and 2(b3)].

    The harmonics are optimized.By changing the laser intensity of the single-color chirp-free field, the peak intensity of the electric field reaches the peak intensity of the combination of the single-color field and the static electric field(E0=0.0044 a.u.,E01=0.0051 a.u.),and calculating the harmonic spectrum in Figs.3(a) and 3(b), we find that the harmonic intensity is improved.When the static electric field is added, the harmonic efficiency is indeed improved and relatively continuous harmonic spectra are obtained with the 4-period and 25-period cases,and with the 4-period case the harmonics are smoother.Moreover, by changing the carrier envelope phase(CEP)of the single-color chirp-free laser pulse,harmonics are seldom changed,which is not shown.

    The harmonic spectrum is calculated when the amplitude ratio of the static electric field to the fundamental laser field is negative (β=?0.2,β=?0.4), as shown in Fig.4.We can find that the harmonic efficiency is improved no matter whetherβis positive or negative.However, when positive values are taken, relatively continuous harmonics can be obtained.

    Fig.2.HHG from ZnO driven by different fields in 4-period and 25-period cases.(a1)–(a3)HHG in the single-color chirped pulse(α =3×10?6,5×10?6),the combination of single-color chirp-free pulse and static electric field(β =0,0.2,0.4),and the combination of single-color chirped pulse and static electric field with duration of 4 optical cycles.(b1)–(b3)Results with pulse duration of 25 optical cycles.Other laser parameters are the same as those in(a1)–(a3).

    Fig.3.The total harmonic spectrum under the laser field with(a)4 o.c.and(b)25 o.c.at different laser intensities.

    In the case of HHG in gas, the introduction of chirp pulse and static electric field can greatly improve the cutoff frequency,[11,44,45]and enhance the harmonic efficiency.[46,47]However, in our work, the intensity of the harmonic plateau is improved, but the cutoff cannot be extended.This phenomenon is quite different from the results of HHG in gas.In order to analyze the internal reasons for these differences,we first give the profile and vector potential of each field,and the time-dependent electron population in the conduction band.For the convenience of the analysis, we only consider the 4-period case.

    Figure 5 shows the electric field profiles of different laser fields,the vector potential,and the electron population of conduction band.We can see that with static electric field, the ionization probability of electron is greater than that of singlecolor chirp free pulse and chirped pulse.The fast excitation of electrons is still related to the peak value of electric field and corresponding vector potential.When the electric field reaches its peak value and the value of the corresponding vector potential is not 0, the electron is rapidly excited to the conduction band [see Fig.5(b)].Because the addition of the static electric field breaks the symmetry of the field in the adjacent half period, the maximum peak value of the laser field increases,so that the probability of electron ionization increases [see Figs.5(a)and 5(c)].

    In order to clearly understand the physical mechanism of the large difference between the harmonic spectra in ZnO and the gas, we present the time-frequency of the harmonics in ZnO.Based on the change of the field waveform and the rapid excitation rate of electrons at the peak value of the electric field, the harmonic spectrum in Fig.2 is further analyzed in combination with the time frequency, as shown in Fig.6.The harmonics mainly contribute from short trajectories by a single-color chirp free pulse in Fig.6(a).By introducing the chirped pulse,the contribution of long quantum trajectories is enhanced,leading to the appearance of modulation in the harmonics, and the interference structure is evident in Fig.6(b),which is consistent with the harmonic spectrum in Fig.2(a1).Similar results can be obtained in the case of 25 o.c.

    Fig.5.(a)Electric field profiles of single-color chirp free pulse,singlecolor chirped pulse, combination of single-color chirp free pulse and static electric field, and combination of single-color chirped pulse and static electric field.(b) The vector potential corresponding to (a).(c) Evolution of electron population in conduction band as a function of time in each field.

    In the case of 4 o.c., the main contribution of harmonics is from short trajectories when ZnO is driven by single-color chirp-free pulse and there are mainly two peaks in the timefrequency distribution of harmonics.Some electrons are excited to the conduction band att=?0.5 o.c.and return to the valence band aroundt=0 o.c., radiating harmonics, corresponding to harmonic peaks of the time-frequency distribution aroundt=0 o.c.The harmonic peak aroundt=0.5 o.c.mainly stems from the fast excitation of electrons att=0 o.c.when the pulse reaches its peak.The time frequency agrees well with the classical recollision trajectory in Fig.6.In Fig.6(b), compared with the chirp free pulse, the amplitude and frequency of the chirp pulse are smaller, and the probability of electron ionization is lower att <0 o.c.As a result,the probability of electron returning to valence band and recombination with hole aftert=0 o.c.is reduced, and the harmonic signal of radiation is weakened.Corresponding to Figs.2(a1) and 2(b1), the intensity of the high-energy region of harmonics decreases slightly.However,the strong signal of harmonic peak aroundt=0.5 o.c.is mainly due to tunneling excitation of electrons att=0 o.c.,when the laser field reaches its peak, and the probability of electron ionization reaches its maximum.Att=0.5 o.c., the amplitude and instantaneous frequency of the chirp field increase, then the possibility of recollision of electron–hole pairs increases, and the emitted harmonic signal is enhanced,which leads to a slightly increase in the intensity of the harmonic plateau as shown in Figs.2(a1)and 2(b1).

    In Figs.6(c) and 6(d), in the presence of static electric field, for low order harmonics, both long and short quantum trajectories have important contribution,corresponding to strong harmonic spectrum modulation.[40]For the part larger than 17th order, the short trajectory makes the great contribution to HHG,and the long trajectory is largely suppressed,corresponding to relatively continuous harmonic spectrum in Figs.2(a2)and 2(a3)and Figs.2(b2)and 2(b3).

    The total harmonic spectrum is mainly contributed by the inter-band harmonic spectrum,so we also givek-resolved profile of the inter-band harmonic spectra analyzed by a four-step model.

    Fig.7.The k-resolved profile of inter-band harmonic spectra generation by different fields.(a1)–(d1)The k-resolved profile of interband harmonic spectra by single-color chirp-free pulse (α =0, β =0), single-color chirped pulse (α =5×10?6), the combination of single-color chirp-free pulse and static electric field (β =0.2), and the combination field of single-color chirped pulse and static electric field(α =5×10?6,β =0.2)with the duration of 4 o.c.(a2)–(d2)Results with a pulse duration of 25 o.c.Other parameters are the same as those in(a1)–(d1).

    Figures 7(a1)–7(d1)and 7(a2)–7(d2)show thek-resolved inter-band harmonic spectra for a single-color chirp free pulse,a single-color chirped pulse, a combined field of single-color chirp free pulse and static electric field,and a combined field of single-color chirped pulse and static electric field with 4 o.c.and 25 o.c., respectively.In the case of 4 o.c., some electrons whose initial momentum is not 0 move to the top of the valence band driven by the laser field, and this is called the pre-acceleration process.The electrons that reach the top of the valence band will be excited to the bottom of the conduction band more easily, and the electrons excited to the conduction band and the holes in the valence band will undergo Bloch oscillation together in the laser field.Since the peak values of laser pulses in the adjacent half periods are different, the electrons moving on the conduction band will move at different distances on both sides of theΓpoint.In adjacent half-cycle, when the peak value of pulse is small, electron–hole pairs are driven to move neark= 0, while the peak value of pulse is large,electron–hole pairs are driven to move far away fromk= 0, resulting in incomplete X-type structures ofk-resolved inter-band harmonic spectra in Figs.7(a1)–7(d1).In the case of 25-period single-color chirp free pulse as shown in Fig.7(a2) and single-color chirped pulse as shown in Fig.7(b2),thek-resolved inter-band harmonics presents the X-type structure.Under the chirped pulse,the inter-band harmonic spectrum ink-space is asymmetric with respect tok=0.After the static electric field is added,k-resolved inter-band harmonic spectrum has a periodic incomplete X-type intensity distribution structure along thekdirection[see Figs.7(c2)and 7(d2)].Due to the introduction of 25-period pulses,k-resolved inter-band harmonic spectrum shows a periodic sloping structure as shown in Figs.7(c1) and 7(c2) and Figs.7(d1) and 7(d2).

    Incomplete X-typek-resolved profile of interband harmonic spectrum can be explained by the four-step model.In Figs.8(a1)–8(a3),we can see that the electron tunnels from the top of the valence band att=0 o.c.,and then presents Bloch oscillation in the conduction band.Att=0.25 o.c., vector potential reaches its peaks at?0.2573 a.u., and the electron moves tok(t) =?0.2573 a.u.Att= 0.55 o.c., the vector potential is approximately 0 and the electron returns to the bottom of the conduction band.Att=0.75 o.c., the vector potential reaches peak of 0.0988 a.u., and the electron also moves to thek(t)=0.0988 a.u.In addition,the electrons have a pre-acceleration process in the valence band before tunneling.Therefore,in the case of 4 o.c.,thek-resolved inter-band harmonics finally present an incomplete X-shaped structure as shown in Fig.7(a1).In the 4-period single-color chirped field(see Figs.8(b1)–8(b3)), the asymmetric X-type structure can also be analyzed by the motion of electrons ink-space.Beforet=0.026 o.c., the electron near the top of the valence band goes through a pre-acceleration process tok=0 a.u.and then the electrons are excited att=0.026 o.c.Att=0.24 o.c.,the vector potential reaches a peak of?0.2088 a.u.and the electron moves tok(t)=?0.2088 a.u.The electron then accelerates.The vector potential is 0 and the electron returns to the bottom of the conduction band att=0.48 o.c.Att=0.68 o.c.,the vector potential reaches another peak of 0.1197 a.u., and the electron also moves to thek(t)=0.1197 a.u.The velocity of the electron decreases to 0 and returns to the lowest point of the conduction band, and then reaches the bottom of the conduction band att=1 o.c.

    In the presence of static electric field,the asymmetric motion of electrons with the change of laser field and vector potential can also be analyzed.Because the static electric field greatly breaks the symmetry of the laser field,k-resolved interband harmonic spectrum only reflects a part of the X-type structure.

    In order to visualize how the laser field affects the electron trajectory, we present the population of transient conduction band.In the 4-period case [see Figs.9(a1)–9(d1)], the electron Bloch oscillation is small, while in the 25-period case,the oscillation is significant [see Figs.9(a2)–9(d2)], and the electron Bloch oscillation is much stronger when the chirped pulse is introduced in Figs.9(b1) and 9(b2) and Figs.9(d1)and 9(d2).Introducing the static electric field, the region reflecting the electrons oscillating is wider, and electrons cross the edge of the first Brillouin zone and experience a Bragg reflection, superimposing the Bloch oscillations[15,24,35,48,49]in the band[see Figs.9(c1)and 9(c2)and Figs.9(d1)and 9(d2)],so that the radiation of multi-channel harmonics occurs,which plays an important role in promoting the harmonic efficiency.Thek-resolved inter-band harmonics in Figs.7(c1)and 7(c2)and Figs.7(d1)and 7(d2)show a periodic slope structure.

    Fig.8.The electric field and vector potential of [(a1), (a2)] single-color chirp-free pulse and[(b1), (b2)] single-color chirped pulse in single cycle.Schematic diagram of the motion of the electron driven by(a3)a single-color chirp-free pulse and(b3)a single-color chirped pulse in k-space.

    Fig.9.The time-dependent population of conduction band by laser pulse with(a1)–(d1)4 o.c.and(a2)–(d2)25 o.c.

    In Figs.9(a1)–9(d1), in the 4-period case, it can be seen that the asymmetry of the electron oscillation ink-space is consistent with the asymmetry of the electron motion analyzed in Fig.8.Electrons travel longer distances along the negative half axis and shorter distances along the positive half axis of the crystal momentum ink-space.This also corresponds to the X-type structure with asymmetrick-resolved inter-band harmonic spectra in Figs.7(a1)–7(d1).However, in the case of 25-period [see Figs.9(a2) and 9(b2)], due to the presence of the pre-acceleration process and the conservation of energy,the correspondingk-resolved inter-band harmonic spectrum shows a relatively symmetric X-type structure[see Figs.7(a2)and 7(b2)].

    4.Conclusions

    We have studied HHG in ZnO crystals under chirped field and static electric field with 4 o.c.and 25 o.c.In the singlecolor chirped laser field,the harmonic cutoff does not extend,but the interference structure is enhanced.In the presence of the static electric field, the harmonic cutoff also remains unchanged, but the harmonic efficiency is improved.The obvious interference structure of harmonics originates from the interference between short and long trajectories,while the continuous harmonics larger than the 17th order in the static electric field are mainly contributed by the short trajectories.By analyzing the motion of electrons inkspace, we explain the incomplete X-type structure of the harmonic spectrum in the asymmetric chirped pulse and static electric field.By singlecolor chirp-free pulses with 25 cycles,k-resolved inter-band harmonic spectrum exhibits a complete X-shaped structure,which reflects the energy conservation and pre-acceleration process.Because the two peak values of the laser field in adjacent half periods have different sizes, resulting in different movement distances of electrons on both sides of theΓpoint,thek-resolved inter-band harmonic spectrum presents an incomplete X-type intensity distribution structure.At the same time,we also explain the existence of the pre-acceleration process.In the presence of the static electric field,electrons cross the first BZ and experience a Bragg reflection,as well as a superposition of oscillation in the conduction band, thus resulting in the radiation of multi-channel harmonics.In addition,time-dependent conduction band population is given,which is consistent with the electron motion in the conduction band.

    Acknowledgments

    This work was supported by the Natural Science Foundation of Jilin Province (Grant No.20220101010JC) and the National Natural Science Foundation of China (Grant No.12074146).

    猜你喜歡
    郭靜
    Photoelectron momentum distributions of Ne and Xe dimers in counter-rotating circularly polarized laser fields
    Exploration of magnetic field generation of by direct ionization and coherent resonant excitation?
    Molecular photoelectron momentum and angular distributions of N2 molecules by ultrashort attosecond laser pulses*
    Ultrafast photoionization of ions and molecules by orthogonally polarized intense laser pulses: Effects of the time delay*
    Helicity of harmonic generation and attosecond polarization with bichromatic circularly polarized laser fields?
    Dependence of photoelectron-momentum distribution of H+2 moleculeon orientation angleand laser ellipticity*
    The Strategy on Starbucks’Brand Building
    智富時代(2018年5期)2018-07-18 17:52:04
    “溫柔的綁架”,北漂女追巨款淪為冷酷兇手
    女士(2016年1期)2016-07-05 07:41:45
    乱系列少妇在线播放| 天天躁日日操中文字幕| 国产男人的电影天堂91| 大片电影免费在线观看免费| 国产男女内射视频| 青青草视频在线视频观看| 一区二区三区乱码不卡18| 亚洲av免费高清在线观看| 日韩 亚洲 欧美在线| 丰满少妇做爰视频| 精品久久久精品久久久| 韩国av在线不卡| 性色av一级| 直男gayav资源| 乱码一卡2卡4卡精品| 亚洲av中文字字幕乱码综合| 少妇高潮的动态图| 51国产日韩欧美| 亚洲精品日韩在线中文字幕| 国产在线视频一区二区| 久久久久久人妻| 亚洲av成人精品一区久久| 日本黄色日本黄色录像| 大话2 男鬼变身卡| 亚洲欧美成人综合另类久久久| 少妇的逼好多水| 深爱激情五月婷婷| 亚洲国产精品成人久久小说| 中文字幕免费在线视频6| 日日啪夜夜爽| 久久人人爽人人片av| av在线播放精品| 18禁裸乳无遮挡动漫免费视频| 日韩欧美精品免费久久| 在线观看av片永久免费下载| 91午夜精品亚洲一区二区三区| 精品熟女少妇av免费看| 男女下面进入的视频免费午夜| 一级a做视频免费观看| av国产久精品久网站免费入址| 麻豆成人午夜福利视频| 欧美极品一区二区三区四区| 另类亚洲欧美激情| 网址你懂的国产日韩在线| 女人久久www免费人成看片| 成年女人在线观看亚洲视频| 尤物成人国产欧美一区二区三区| 深爱激情五月婷婷| 高清日韩中文字幕在线| 亚洲美女视频黄频| 一边亲一边摸免费视频| 成人国产av品久久久| 国产高清不卡午夜福利| 国产视频内射| 中文字幕人妻熟人妻熟丝袜美| 亚洲无线观看免费| 肉色欧美久久久久久久蜜桃| 边亲边吃奶的免费视频| 性高湖久久久久久久久免费观看| 亚洲欧美成人精品一区二区| 成人午夜精彩视频在线观看| 少妇高潮的动态图| 午夜福利高清视频| 亚洲怡红院男人天堂| 成人毛片a级毛片在线播放| 日韩国内少妇激情av| 成人亚洲欧美一区二区av| 交换朋友夫妻互换小说| 久久99热这里只有精品18| 国产综合精华液| 99热6这里只有精品| 日日啪夜夜爽| 日韩视频在线欧美| 国产白丝娇喘喷水9色精品| 亚洲精品,欧美精品| 久久人人爽人人爽人人片va| 亚洲婷婷狠狠爱综合网| 乱系列少妇在线播放| 简卡轻食公司| 亚洲图色成人| 内地一区二区视频在线| 内射极品少妇av片p| 精品人妻偷拍中文字幕| 一本色道久久久久久精品综合| 偷拍熟女少妇极品色| 最近手机中文字幕大全| 99热全是精品| 欧美高清成人免费视频www| 黄色一级大片看看| 国产av精品麻豆| 国产探花极品一区二区| 99视频精品全部免费 在线| 亚洲伊人久久精品综合| 日韩成人av中文字幕在线观看| 免费黄色在线免费观看| 精品一品国产午夜福利视频| 人体艺术视频欧美日本| 国产一区二区三区av在线| 看非洲黑人一级黄片| 在线观看国产h片| 简卡轻食公司| av专区在线播放| 免费av不卡在线播放| 亚洲成人av在线免费| av播播在线观看一区| 国产乱人视频| 亚洲电影在线观看av| 国产一区二区三区av在线| 少妇人妻 视频| 色吧在线观看| 日韩大片免费观看网站| 午夜免费鲁丝| 一级a做视频免费观看| av又黄又爽大尺度在线免费看| 国产国拍精品亚洲av在线观看| 99热网站在线观看| 观看美女的网站| 午夜福利视频精品| 亚洲欧美日韩另类电影网站 | 另类亚洲欧美激情| 亚洲第一区二区三区不卡| 日本午夜av视频| 99久久精品热视频| 97在线视频观看| 一本一本综合久久| 香蕉精品网在线| h视频一区二区三区| 在线看a的网站| 国产真实伦视频高清在线观看| 精品久久久久久久久亚洲| 欧美精品一区二区免费开放| 少妇丰满av| 亚洲精品国产成人久久av| 成年人午夜在线观看视频| 亚洲人成网站在线播| 人妻一区二区av| 日韩av不卡免费在线播放| 久久久久视频综合| 能在线免费看毛片的网站| 极品教师在线视频| 日韩电影二区| 国产高潮美女av| 久久久午夜欧美精品| av免费观看日本| 99热网站在线观看| 少妇猛男粗大的猛烈进出视频| 天堂俺去俺来也www色官网| 涩涩av久久男人的天堂| 在线播放无遮挡| 国内少妇人妻偷人精品xxx网站| 亚洲天堂av无毛| 在线观看国产h片| 久久久久性生活片| 哪个播放器可以免费观看大片| 最近最新中文字幕免费大全7| 美女内射精品一级片tv| 欧美xxxx性猛交bbbb| 亚洲丝袜综合中文字幕| 国产成人精品久久久久久| 七月丁香在线播放| 六月丁香七月| 免费黄色在线免费观看| 国产免费又黄又爽又色| 人妻制服诱惑在线中文字幕| 国产女主播在线喷水免费视频网站| 日韩制服骚丝袜av| 久久影院123| 日韩亚洲欧美综合| 国产日韩欧美在线精品| 久久久久久久久久久免费av| 免费人妻精品一区二区三区视频| 亚洲国产av新网站| 男女下面进入的视频免费午夜| 日本猛色少妇xxxxx猛交久久| 天天躁日日操中文字幕| 蜜桃亚洲精品一区二区三区| 亚洲欧美成人精品一区二区| 亚洲欧美成人精品一区二区| 成人亚洲欧美一区二区av| 久久女婷五月综合色啪小说| 日韩av不卡免费在线播放| 国产亚洲91精品色在线| 亚洲,一卡二卡三卡| 国产精品一二三区在线看| 日韩电影二区| 大陆偷拍与自拍| 国产 一区精品| 亚洲内射少妇av| 久久久久网色| 欧美3d第一页| 欧美成人午夜免费资源| 日韩成人伦理影院| 少妇高潮的动态图| 看非洲黑人一级黄片| 天美传媒精品一区二区| 日本黄色片子视频| 久久人人爽人人片av| 亚洲av不卡在线观看| 美女中出高潮动态图| 精品一区二区三卡| 亚洲欧美日韩东京热| 亚洲精品自拍成人| 汤姆久久久久久久影院中文字幕| 亚洲国产av新网站| 久久影院123| 成年人午夜在线观看视频| 尤物成人国产欧美一区二区三区| 在线精品无人区一区二区三 | 少妇的逼水好多| 国产熟女欧美一区二区| 91精品国产国语对白视频| 建设人人有责人人尽责人人享有的 | 五月开心婷婷网| 一个人看的www免费观看视频| 国产精品不卡视频一区二区| a级一级毛片免费在线观看| 亚洲人与动物交配视频| 18禁动态无遮挡网站| 全区人妻精品视频| 丰满迷人的少妇在线观看| 国产精品国产三级国产专区5o| 岛国毛片在线播放| 麻豆国产97在线/欧美| 一级av片app| 欧美区成人在线视频| 日本猛色少妇xxxxx猛交久久| 99热这里只有是精品在线观看| 国产成人freesex在线| 精品一区二区免费观看| 国产片特级美女逼逼视频| 国产成人精品一,二区| 80岁老熟妇乱子伦牲交| 少妇的逼好多水| 99国产精品免费福利视频| 国产成人精品一,二区| 免费人成在线观看视频色| 一级毛片aaaaaa免费看小| 人人妻人人爽人人添夜夜欢视频 | 美女内射精品一级片tv| 18禁在线无遮挡免费观看视频| 免费大片18禁| 男男h啪啪无遮挡| 亚洲国产欧美在线一区| 欧美日韩视频高清一区二区三区二| 最后的刺客免费高清国语| 熟女人妻精品中文字幕| 精品亚洲成a人片在线观看 | 精品久久国产蜜桃| 六月丁香七月| 午夜精品国产一区二区电影| 日日摸夜夜添夜夜添av毛片| 久久国产精品大桥未久av | 国产精品av视频在线免费观看| 亚洲av电影在线观看一区二区三区| 欧美成人a在线观看| 最近的中文字幕免费完整| 中国三级夫妇交换| 久久久久人妻精品一区果冻| 国产69精品久久久久777片| 精品一区二区三区视频在线| 国产91av在线免费观看| 亚洲人成网站在线观看播放| 国产白丝娇喘喷水9色精品| 高清黄色对白视频在线免费看 | 你懂的网址亚洲精品在线观看| 国产爱豆传媒在线观看| 亚洲成人中文字幕在线播放| 18禁裸乳无遮挡动漫免费视频| 亚洲,一卡二卡三卡| 下体分泌物呈黄色| 涩涩av久久男人的天堂| 国产精品.久久久| 黄片无遮挡物在线观看| 国产精品三级大全| 热99国产精品久久久久久7| 直男gayav资源| 黄色配什么色好看| 国产精品无大码| 一级二级三级毛片免费看| 少妇 在线观看| 秋霞伦理黄片| 亚洲成色77777| 亚洲国产精品专区欧美| 国产精品久久久久久久久免| 男的添女的下面高潮视频| av卡一久久| 欧美日本视频| 精品久久久久久久久av| 老熟女久久久| 久久99蜜桃精品久久| 夜夜骑夜夜射夜夜干| 久久精品国产亚洲av涩爱| 国产精品人妻久久久影院| 免费看av在线观看网站| 国产黄色免费在线视频| 简卡轻食公司| 国产高清不卡午夜福利| 91久久精品国产一区二区成人| 欧美97在线视频| 草草在线视频免费看| 日本黄色片子视频| 午夜日本视频在线| 免费观看的影片在线观看| 国产在线免费精品| 综合色丁香网| 国产精品国产av在线观看| 97超视频在线观看视频| 99热这里只有精品一区| 国产精品偷伦视频观看了| 人妻少妇偷人精品九色| 寂寞人妻少妇视频99o| 在线观看美女被高潮喷水网站| 小蜜桃在线观看免费完整版高清| 欧美国产精品一级二级三级 | 人妻夜夜爽99麻豆av| 好男人视频免费观看在线| 99国产精品免费福利视频| 精品一区在线观看国产| 另类亚洲欧美激情| 国产精品三级大全| 观看免费一级毛片| 久久人妻熟女aⅴ| 日日啪夜夜撸| 亚洲美女搞黄在线观看| 欧美日韩亚洲高清精品| 蜜桃久久精品国产亚洲av| 日韩国内少妇激情av| 91aial.com中文字幕在线观看| 黄色怎么调成土黄色| 国产视频内射| 十八禁网站网址无遮挡 | 日日啪夜夜撸| 国产免费视频播放在线视频| 久久久久久久久久久丰满| 男的添女的下面高潮视频| 偷拍熟女少妇极品色| 亚洲精品第二区| 日本欧美视频一区| 亚洲天堂av无毛| 久久精品久久久久久久性| 精品人妻偷拍中文字幕| 97精品久久久久久久久久精品| 亚洲欧美一区二区三区黑人 | 免费少妇av软件| 国产成人91sexporn| 18禁动态无遮挡网站| 精品人妻视频免费看| 少妇熟女欧美另类| 亚洲精品日韩在线中文字幕| 欧美xxxx性猛交bbbb| 国产精品一区二区性色av| 插阴视频在线观看视频| 精品国产一区二区三区久久久樱花 | 蜜桃亚洲精品一区二区三区| 欧美日韩视频精品一区| 国产美女午夜福利| 在线观看av片永久免费下载| 一级黄片播放器| 国产高潮美女av| 国产精品久久久久成人av| 国产在线免费精品| 亚洲高清免费不卡视频| 国产熟女欧美一区二区| 亚洲欧美清纯卡通| 久久人妻熟女aⅴ| 中文字幕精品免费在线观看视频 | 久久精品夜色国产| 亚洲精品乱码久久久久久按摩| 国产片特级美女逼逼视频| 日本黄大片高清| 国产免费一区二区三区四区乱码| 久久女婷五月综合色啪小说| 亚洲综合精品二区| 国产精品久久久久久久电影| 国产老妇伦熟女老妇高清| av在线蜜桃| 99久久精品国产国产毛片| 成年美女黄网站色视频大全免费 | 精品久久久久久久末码| 久久久久久久久久人人人人人人| 一级二级三级毛片免费看| 日日啪夜夜爽| 高清黄色对白视频在线免费看 | 日本-黄色视频高清免费观看| 男女下面进入的视频免费午夜| 欧美一区二区亚洲| 国产 一区 欧美 日韩| 亚洲精品乱码久久久久久按摩| 91精品伊人久久大香线蕉| 国产淫语在线视频| 亚洲美女黄色视频免费看| 嫩草影院入口| 青春草视频在线免费观看| 亚洲精品久久久久久婷婷小说| 卡戴珊不雅视频在线播放| 欧美一级a爱片免费观看看| 在线观看免费日韩欧美大片 | 永久网站在线| 搡老乐熟女国产| 亚洲图色成人| 2022亚洲国产成人精品| 少妇猛男粗大的猛烈进出视频| 小蜜桃在线观看免费完整版高清| 久久久久久伊人网av| 蜜桃亚洲精品一区二区三区| 成人毛片a级毛片在线播放| 亚洲aⅴ乱码一区二区在线播放| 伦理电影大哥的女人| 国产免费视频播放在线视频| 国产有黄有色有爽视频| 简卡轻食公司| 中文欧美无线码| 美女高潮的动态| 国产真实伦视频高清在线观看| 国产精品久久久久久精品古装| 亚洲美女黄色视频免费看| 特大巨黑吊av在线直播| 亚洲av.av天堂| 精品亚洲成a人片在线观看 | 久久鲁丝午夜福利片| 91久久精品国产一区二区成人| 老司机影院毛片| 我要看黄色一级片免费的| 两个人的视频大全免费| 99热这里只有是精品在线观看| 成人黄色视频免费在线看| 晚上一个人看的免费电影| 日韩伦理黄色片| 亚洲精品国产av蜜桃| 视频区图区小说| 久久精品国产鲁丝片午夜精品| 国产精品国产三级国产av玫瑰| 联通29元200g的流量卡| 成人特级av手机在线观看| 人人妻人人看人人澡| 欧美日韩视频高清一区二区三区二| 久久久久国产网址| 国产免费一区二区三区四区乱码| 我的老师免费观看完整版| 亚洲欧美中文字幕日韩二区| 黄片无遮挡物在线观看| 久久久久久久久久久丰满| 黑人高潮一二区| 男女无遮挡免费网站观看| 亚洲内射少妇av| 91精品一卡2卡3卡4卡| 在线观看美女被高潮喷水网站| 女人久久www免费人成看片| 一区二区三区乱码不卡18| 亚洲第一区二区三区不卡| 麻豆成人午夜福利视频| 国产极品天堂在线| 国产视频内射| 亚洲美女视频黄频| 亚洲av成人精品一区久久| 九色成人免费人妻av| 国产精品国产av在线观看| 精品少妇久久久久久888优播| 波野结衣二区三区在线| 国产精品久久久久久精品电影小说 | 最近手机中文字幕大全| 日韩中字成人| 水蜜桃什么品种好| 国产av精品麻豆| 免费观看无遮挡的男女| 亚洲精品一二三| xxx大片免费视频| 精品亚洲成国产av| 99热国产这里只有精品6| 超碰97精品在线观看| freevideosex欧美| 精品人妻熟女av久视频| 精品国产露脸久久av麻豆| 少妇猛男粗大的猛烈进出视频| 日韩,欧美,国产一区二区三区| 狂野欧美激情性xxxx在线观看| 成人一区二区视频在线观看| 最近最新中文字幕免费大全7| 精品亚洲乱码少妇综合久久| 亚洲美女视频黄频| 久久久久久久亚洲中文字幕| 日韩不卡一区二区三区视频在线| 女的被弄到高潮叫床怎么办| 国产精品无大码| 婷婷色av中文字幕| 国产午夜精品久久久久久一区二区三区| 建设人人有责人人尽责人人享有的 | 亚洲av国产av综合av卡| 国产成人aa在线观看| 男人舔奶头视频| 午夜激情福利司机影院| 精品国产乱码久久久久久小说| 国产在线一区二区三区精| 精品久久久久久久久av| 日韩,欧美,国产一区二区三区| 最近手机中文字幕大全| 亚洲真实伦在线观看| 国产精品蜜桃在线观看| 中文精品一卡2卡3卡4更新| 色5月婷婷丁香| 天天躁日日操中文字幕| 日韩欧美 国产精品| 男人狂女人下面高潮的视频| 爱豆传媒免费全集在线观看| kizo精华| 一级毛片我不卡| 这个男人来自地球电影免费观看 | 纯流量卡能插随身wifi吗| 美女国产视频在线观看| a级一级毛片免费在线观看| 女人十人毛片免费观看3o分钟| av福利片在线观看| 精品人妻熟女av久视频| 日韩不卡一区二区三区视频在线| 精品一品国产午夜福利视频| 免费观看无遮挡的男女| 男的添女的下面高潮视频| 久久久久久久大尺度免费视频| 777米奇影视久久| 久久久欧美国产精品| 啦啦啦视频在线资源免费观看| 免费观看在线日韩| 国产视频内射| 亚洲一级一片aⅴ在线观看| 中国美白少妇内射xxxbb| 最后的刺客免费高清国语| 久久久午夜欧美精品| 熟妇人妻不卡中文字幕| 免费av中文字幕在线| 成人高潮视频无遮挡免费网站| 夜夜骑夜夜射夜夜干| 亚洲欧美精品专区久久| 一级爰片在线观看| 日本av手机在线免费观看| 国产免费福利视频在线观看| 欧美成人精品欧美一级黄| 啦啦啦在线观看免费高清www| 伊人久久精品亚洲午夜| 亚洲四区av| 哪个播放器可以免费观看大片| 欧美一级a爱片免费观看看| 久久久久久久精品精品| 1000部很黄的大片| 91精品国产九色| 一级片'在线观看视频| 内射极品少妇av片p| 日韩亚洲欧美综合| 街头女战士在线观看网站| 高清在线视频一区二区三区| 成人漫画全彩无遮挡| 欧美日韩综合久久久久久| 国产黄色视频一区二区在线观看| 九九久久精品国产亚洲av麻豆| 国产精品人妻久久久久久| 国语对白做爰xxxⅹ性视频网站| 国产黄色免费在线视频| 精品亚洲成国产av| 日韩成人av中文字幕在线观看| 国产精品一区二区性色av| 纯流量卡能插随身wifi吗| 国国产精品蜜臀av免费| 亚洲欧美日韩东京热| 丝袜脚勾引网站| 26uuu在线亚洲综合色| 人妻 亚洲 视频| 91久久精品国产一区二区成人| 久久精品人妻少妇| 中文字幕人妻熟人妻熟丝袜美| 日韩强制内射视频| 免费观看av网站的网址| 干丝袜人妻中文字幕| 久久人人爽人人爽人人片va| 亚洲欧美成人精品一区二区| 18禁裸乳无遮挡免费网站照片| freevideosex欧美| 少妇精品久久久久久久| 一级a做视频免费观看| 伦理电影大哥的女人| 99热6这里只有精品| 又大又黄又爽视频免费| 一级毛片aaaaaa免费看小| 大片免费播放器 马上看| 国内少妇人妻偷人精品xxx网站| 亚洲av在线观看美女高潮| 伦理电影免费视频| 精品国产露脸久久av麻豆| 国产精品伦人一区二区| 国产精品三级大全| 99视频精品全部免费 在线| 一级av片app| 多毛熟女@视频| h日本视频在线播放| 久久99热6这里只有精品| 国产成人精品婷婷| 黄色日韩在线| 少妇人妻精品综合一区二区| 一本—道久久a久久精品蜜桃钙片| 人人妻人人看人人澡| 久久国内精品自在自线图片| 男女下面进入的视频免费午夜| 亚洲精华国产精华液的使用体验| 亚洲国产最新在线播放| 一区在线观看完整版| 久久婷婷青草| 18禁裸乳无遮挡免费网站照片| 观看av在线不卡| 久久这里有精品视频免费| 一区二区三区乱码不卡18| 五月伊人婷婷丁香| 午夜免费观看性视频| 成人一区二区视频在线观看| 我的女老师完整版在线观看| 久久av网站| 国产 精品1| 亚洲av男天堂|