摘要: 首先, 用二次B樣條有限元法求解Fisher-Kolmogorov(FK)方程, 證明半離散格式與全離散格式解的穩(wěn)定性與收斂性; 其次, 用Crank-Nicolson方法離散時間變量, 得到近似解的收斂階為O((Δt)2+h3); 最后, 用數(shù)值算例驗證了理論分析結(jié)果及B樣條有限元法的有效性.
關(guān)鍵詞: Fisher-Kolmogorov方程; 二次B樣條有限元法; 穩(wěn)定性; 收斂性
中圖分類號: O241.82" 文獻標志碼: A" 文章編號: 1671-5489(2024)04-0878-08
B-Spline Finite Element Method of Second OrderNonlinear Parabolic Equation
QIN Dandan1, WANG Daming1, HUANG Wenzhu2
(1. Department of Foundation, Aviation University of Air Force, Changchun 130022, China;
2. School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China)
Abstract: Firstly, we uesd the quadratic B-spline finite element method to solve the Fisher-Kolmogorov (FK) equation, and proved the stab
ility and convergence of solutions for the semi-discrete scheme and the fully discrete scheme. Secondly, the time variable was discretized by using the Crank-Nicolson method a
nd the convergence order of the approximate solution was O((Δt)2+h3). Finally, the numerical example verified theoretical analysis results and the effectiveness of the B-spline finite element method.
Keywords: Fisher-Kolmogorov equation; quadratic B-spline finite element method; stability; convergence
B樣條是具有緊支集的分段多項式函數(shù), 由于其只有一種類型的基函數(shù), 因此有限元剛度矩陣對稱稀疏且規(guī)模小于Lagrange和Hermite型有限元, 從而節(jié)省存儲空間, 提高計算速度. 此外, B樣條的光滑性優(yōu)于Lagrange和Hermite型函數(shù). 基于上述因素, B樣條常被選為有限元基函數(shù)[1-4].
本文討論Fisher-Kolmogorov(FK)方程[5-6]的二次B樣條有限元法, FK方程研究了生物種群擴散與適應間的相互關(guān)系, 形如:
ut-Δu+u3-u=0," (x,t)∈Ω×(0,T].
文獻[7]和文獻[8]將四階導數(shù)項加入FK方程得到了擴展的Fisher-Kolmogorov(EFK)方程.
1 半離散格式
考慮FK方程的初邊值問題:
ut-uxx+u3-u=0,(x,t)∈(0,1)×(0,T),u(0,t)=u(1,t)=0,t∈(0,T),
u(x,0)=u0(x),x∈(0,1).(1)
記I=[0,1], Du=ux, 則問題(1)的變分形式是: 求u=u(·,t)∈H10(I)(0≤t≤T) , 滿足
(ut,v)+(Du,Dv)+(u3-u,v)=0,v∈H10(I),u(x,0)=u0(x),x∈I.(2)
整數(shù)節(jié)點的二次B樣條函數(shù)表達式為
B2(x)=12x2,x∈[0,1],-x2+3x-32,x∈[1,2],
12(x-3)2,x∈[2,3],0,其他.
取均勻剖分0=x0lt;x1lt;…lt;xL=1, 在左右端點外分別引入虛擬節(jié)點x-2,x-1和xL+1,xL+2. 令φi(x)=B2x-xih
, 得到以{xi}為節(jié)點的B樣條. 為處理零邊值條件, 用線性變換修正基函數(shù)得到{2φ-2(x),φ-1(x)-φ-2(x),φ0(x),…,φ
L-3(x),φL-2(x)-φL-1(x),2φL-1(x)}, 修正后的函數(shù)為有限元空間Uh的基函數(shù), 仍記為{φi(x)}. 問題(1)的近似解uh(x,t)∈Uh表示為
uh(x,t)=∑L-2i=-1μi(t)φi(x),
其中μi(t)是時間變量的函數(shù). uh∈C(1)且uh(0,t)=uh(1,t)=0, 所以UhH10(I).
問題(2)的B樣條有限元半離散格式是: 求uh=uh(·,t)∈Uh(0lt;t≤T), 滿足
(uh,t,vh)+(Duh,Dvh)+(u3h-uh,vh)=0,vh∈Uh,
(uh(x,0),vh)=(u0h(x),vh),vh∈Uh.(3)
引入雙線性投影算子Rh: H10→Uh, 滿足
a(u-Rh u,vh)=(D(u-Rh u),Dvh)=0," vh∈Uh,(4)
則式(4)的解Rhu唯一確定. 假設弱形式(2)的解u∈H3(I), 則有如下估計[9]:
‖u-Rhu‖+h‖u-Rhu‖1≤Ch3‖u‖3.(5)
本文分別用‖·‖,‖·‖1,‖·‖3,‖·‖L4表示L2,H1,H3,L4范數(shù).
定理1 對于u0h∈H10(I)∩L4(I), 半離散問題(3)存在唯一解uh∈Uh, 滿足
‖uh‖1≤C‖u0h‖1," 0≤t≤T,(6)
其中正常數(shù)C與T有關(guān), 與空間步長h無關(guān).
證明: 在半離散問題(3)中, 取vh=uh得
12ddt‖uh‖2+‖Duh‖2+‖uh‖4L4≤‖uh‖2.(7)
顯然, ddt‖uh‖2≤2‖uh‖2, 求解后有ddt(e-2t‖uh‖2)≤0,
說明e-2t‖uh‖2單調(diào)遞減, 因此有‖uh‖2≤e2t‖u0h‖2≤e2T‖u0h‖2(0≤t≤T), 即在L2模下半離散問題的解有界:
‖uh‖2≤C‖u0h‖2," 0≤t≤T.(8)
對式(7)關(guān)于時間變量t積分得
‖uh‖2-‖u0h‖2+2∫t0‖Duh‖2dt≤2∫t0‖uh‖2dt.
又由式(8)知
∫t0‖Duh‖2dt≤C‖u0h‖2.(9)
在式(3)中, 令vh=uh,t, 則
‖uh,t‖2+12ddt‖Duh‖2+(u3h-uh,uh,t)=0.(10)
定義能量函數(shù)
Eh(t)=12‖Duh‖2+14((1-uh2)2,1).(11)
對Eh(t)關(guān)于時間變量t求導, 得
ddtEh(t)=(Duh,Duh,t)+(u3h-uh,uh,t).
由式(10)可推出ddtEh(t)=-‖uh,t‖2. 可見, Eh(t)單調(diào)遞減, 即Eh(t)≤Eh(0). 由定義式(11)知
12‖Duh‖2+14‖uh‖4L4-12‖u
h‖2≤12‖Du0h‖2+14‖u0h‖4L4-12‖u0h‖2.
再由式(8)可得
12‖Duh‖2+14‖uh‖4L4+12‖u0h‖2
≤12‖Du0h‖2+14‖u0h‖4L4+C2‖u0h‖2,
整理后得
‖Duh‖2 ≤‖Du0h‖2+12‖u0h‖4L4+C‖u0h‖2.
從而得到了近似解的H1半模有界性:
‖Duh‖2≤C‖Du0h‖2," 0≤t≤T,(12)
這里正常數(shù)C與空間步長無關(guān). 由式(8)和式(12)知式(6)成立. 證畢.
定理2 設u和uh分別是弱形式(2)和半離散問題(3)的解, 并且有u0∈H3(I), u,ut∈L2(0,T;H3(I)),
則當0≤t≤T時, 數(shù)值解的L2模有如下誤差估計:
‖u-uh‖≤‖u0-u0h‖+Ch3‖u0‖23+∫t0(‖u‖23+‖ut‖23)dτ1/2,(13)
其中正常數(shù)C與步長h無關(guān).
證明: 記θ(t)=Rhu-uh, ρ(t)=u-Rhu, 則u-uh=θ(t)+ρ(t), 只估計‖θ(t)‖. 由式(2)~(4)得
(θt,vh)+(Dθ,Dvh)=-(u3-u3h,vh)+(u-uh,vh)-(ρt,vh).(14)
在式(14)中, 取vh=θ, 則
12ddt‖θ‖2+‖Dθ‖2≤-(u3-u3h,θ)+(θ+ρ,θ)+(ρt,θ).
由Sobolev空間嵌入定理知, H1(I)L∞(I), 則u∞≤C‖u‖1, uh∞≤C‖uh‖1. 由ε-不等式知
-(u3-u3h,θ)=-((u2+uuh+uh2)θ,θ+ρ)≤u2+uuh+uh2∞·‖θ‖·‖θ+ρ‖≤C‖θ‖(‖θ+ρ‖)≤C(‖θ‖2+‖ρ‖2).(15)
此外, 易得
(θ+ρ,θ)≤C(‖θ‖2+‖ρ‖2)," (ρt,θ)≤C(‖ρt‖2+‖θ‖2).(16)
由式(15),(16)可知
12ddt‖θ‖2+‖Dθ‖2≤C(‖θ‖2+‖ρ‖2+‖ρt‖2).
根據(jù)連續(xù)的Gronwall定理知
‖θ‖2≤C‖θ(0)‖2+∫t0(‖ρ‖2+‖ρt‖2)dτ.(17)
由三角不等式得
‖θ(0)‖=‖u0-u0h+Rhu0-u0‖≤‖u0-u0h‖+‖ρ(0)‖,(18)
所以當0≤t≤T時, 聯(lián)立式(5),(17),(18)知式(13)成立. 證畢.
定理3 設u是變分形式(2)的解, uh是半離散問題(3)的解, u0∈H3(I), u,ut∈L2(0,T;H3(I)), 則近似解的誤差估計如下:
u-uh1≤u0-u0h1+Ch2‖u0
‖23+h2∫t0(‖u‖23+‖ut‖23)dτ1/2,(19)
這里正常數(shù)C與步長h無關(guān).
證明: 在式(14)中, 選取vh=θt, 則
‖θt‖2+(Dθ,Dθt)=-(u3-u3h,θt)+(u-uh,θt)-(ρt,θt).
結(jié)合導數(shù)運算性質(zhì)和Cauchy不等式, 可得
‖θt‖2+12ddt‖Dθ‖2≤
2‖u3-u3h‖2+2‖u-uh‖2+2‖ρt‖2+38‖θt‖2.
由Sobolev空間嵌入定理知
‖u3-u3h‖=‖(u2+uuh+u2h)(u-uh)‖≤(u2∞+u∞uh∞+uh2∞)‖u-uh‖≤C(‖θ‖+‖ρ‖),
進而得
‖θt‖2+12ddt‖Dθ‖2≤C(‖θ‖2+‖ρ‖2+‖ρt‖2)+38‖θt‖2.(20)
對式(20)積分后有
‖Dθ‖2≤‖Dθ(0)‖2+C∫t0(‖θ‖2+‖ρ‖2+‖ρt‖2)dτ.(21)
再由三角不等式可得
‖Dθ(0)‖≤‖Du0-Du0h‖+‖DRhu0-Du0‖.(22)
聯(lián)立式(21)和式(22), 得到近似解的誤差估計式(19). 證畢.
2 全離散格式
問題(2)的Crank-Nicolson全離散格式為: 求unh=uh(x,tn)∈Uh (n=1,2,…,N), 滿足
(tunh,vh)+Dunh+Dun-1h2,Dvh+H(unh)-H(un-1h)
unh-un-1h,vh=0,(23)
其中N為時間剖分數(shù), Δt=T/N, tn=nΔt," tunh=(unh-un-1h)/Δt,
H(unh)=14(1-unh2)2.(24)
定理4 設u0h∈H10(I)∩L4(I), 則全離散問題(23)存在唯一解unh, 且滿足
‖unh‖1≤C‖u0h‖1," 0≤t≤T,(25)
其中C是依賴于T的正常數(shù).
證明: 由式(24)可得非線性項的等價變形
H(unh)-H(un-1h)unh-un-1h=" 14(unh+un-1h)(unh2+un-1h2)-12(unh+un-1h)=" 14((unh)3+unh2un-1h
+unhun-1h2+(un-1h)3)-12(unh+un-1h).(26)
先在式(23)中, 取vh=unh+un-1h, 有
1Δt(‖unh‖2-‖un-1h‖2)+" 12‖Dunh+Dun-1h‖2
+14((unh+un-1h)2,unh2+un-
1h2)=" 12‖unh+un-1h‖2,
進一步有
1Δt(‖unh‖2-‖un-1h‖2)≤12‖unh+un-1h‖2≤‖unh‖2+‖un-1h‖2.
整理后得遞推關(guān)系式:
‖unh‖2≤1+Δt1-Δt‖un-1h‖2
≤…≤1+Δt1-Δtn‖u0h‖2.
如果Δt足夠小且nΔt≤T, 則全離散問題的解在L2模下有界:
‖unh‖2≤exp2T1-Δt‖u0h‖2≤C‖u0h‖2.(27)
在式(23)中, 令vh=tunh, 可得
‖tunh‖2+12Δt((Dunh2-Dun-1h2),1)+1Δt(H(unh)-H(un-1h),1)=0.
易見
12Dunh2+H(unh),1≤12Dun-1h2+H(un-1h),1.(28)
聯(lián)合式(24),(27),(28)知
‖Dunh‖≤C‖Du0h‖.(29)
從而由式(27)和式(29)可得全離散問題解的穩(wěn)定性式(25). 證畢.
定理5 設un是問題(2)的解, unh是全離散問題(23)的解, u(0)∈H3(I), ut∈L2(0,T;L4(I))∩L2(0,T;H3(I)),
uttt∈L2(0,T;L2(I)), 則全離散問題解的誤差估計如下:
‖un-unh‖≤" C(‖u0-u0h‖+h3‖u0‖3+((Δt)2+h
3)×" ∫tn0(‖ut‖4+‖ut‖23+‖uttt‖2)1/2dt),(30)
其中C與時間步長Δt和空間步長h無關(guān).
證明: 在問題(2)中, 分別取t=tn-1和t=tn可得
unt+un-1t2,vh+Dun+Dun-12,Dvh
+(un)3+(un-1)3-un-un-12,vh=0.(31)
為方便, 引入記號
F(un,un-1,unh,un-1h)=(un)3+(un-1)3-un-un-12-H(unh)-
H(un-1h)unh-un-1h.(32)
聯(lián)立式(31),(32),(23)得
unt+un-1t2-tunh,vh+Dun+Dun-1-Dunh-Dun-1h2,Dvh+(F(un,un-1,unh,un-1h),vh)=0.
記ρn=un-Rhun, θn=Rhun-unh, 則‖un-unh‖≤‖ρn‖+‖θn‖. 利用式(4)可得
(tθn,vh)+12(Dθn+Dθn-1,Dvh)=(rn,vh)-(F(un,un-1,unh,un-1h),vh),(33)
其中rn=tRhu(tn)-tun+t un-unt+un-1t2. 在式(33)中取vh=θn+θn-1, 由ε-不等式可知
1Δt(‖θn‖2-‖θn-1‖2)+12‖Dθn+Dθn-1‖2
≤" 12‖θn+θn-1‖2+‖rn‖2+" ‖F(xiàn)(un,un-1,unh,un-1h)‖2.(34)
首先, 估計‖F(xiàn)(un,un-1,unh,un-1h)‖2. 直接計算得
‖F(xiàn)(un,un-1,unh,un-1h)‖=" 12((un)3+(un-1)3)-14(un+un-1)(un2+un-12)+" 14(un+un-1)(un2+u
n-12)-14(unh+un-1h)(unh2+un-1h2)
-" 12(un+un-1)+12(unh+un-1h).
利用微積分基本公式和Hlder不等式可知
‖un-un-1‖2=∫tntn-1ut(t)dt2≤Δt∫tntn-1‖ut(t)‖2dt.(35)
由Sobolev空間嵌入定理和式(35)得
12((un)3+(un-1)3)-14(un+un-1)(un2+un-12)
="""" 14‖(un)3-un2un-1-unun-12+(un-1)3‖
=14‖(un+un-1)(un-un-1)2‖≤"""" 14(un∞+un-1
∞)‖(un-un-1)2‖≤CΔt∫tntn-1‖ut(t)‖2dt.(36)
此外, 還可得
‖(un+un-1)(un2+un-12)-(unh+un-1h)(unh2+un-1h2)‖
=‖(un+un-1)(un2+un-12)-(unh+un-1h)(un2+un-12)
+(unh+un-1h)(un2+un-12)-(unh+un-1h)(unh2+un-1h
2)‖≤(un2∞+un-12∞)‖(un+un-1)-(unh+un-1h)‖
+(unh∞+un-1h∞)‖(un+unh)(un-unh)+(un-1+un-1h)(un-1-un-1h)‖
≤(un2∞+un-12∞)(‖θn+θn-1‖+‖ρn+ρn-1‖)
+(unh∞+un-1h∞)(un∞+unh∞+un-1
∞+un-1h∞)×(‖θn+θn-1‖+‖ρn+ρn-1‖)≤C(‖θn+θn-1‖+‖ρn+ρn-1‖).(37)
根據(jù)三角不等式又有
‖(un+un-1)-(unh+un-1h)‖=‖θn+ρn+θn-1+ρn-1‖≤‖θn+θn-1‖+‖ρn+ρn-1‖.(38)
結(jié)合式(36)~(38)以及三角不等式可得
‖F(xiàn)(un,un-1,unh,un-1h)‖2≤C‖θn+θn-1‖2+‖ρn+ρn-1‖2+Δ
t∫tntn-1‖ut(t)‖2dt2≤C‖θn‖2+‖θn-1‖2+h6+(Δt)3∫
tntn-1‖ut(t)‖4dt.(39)
其次, 估計‖rn‖2. 記rn=rn1+rn2, 其中
rj1=tRhuj-tuj=1Δt∫tjtj-1(Rh-I)utdt," rj2=tuj-ujt+uj-1t2.
由投影算子Rh的性質(zhì)知
‖rj1‖≤1ΔtCh3∫tjtj-1‖ut‖3dt
≤C(Δt)-1/2h3∫tjtj-1‖ut‖23dt1/2.
利用Taylor定理可推出
‖rj2‖≤CΔt∫tjtj-1‖uttt‖dt≤C(Δt)3/2∫tjtj-1‖uttt‖2dt1/2.
進而
∑nj=1‖rj‖2≤C(Δt)-1((Δt)4+h6)∫tn0(‖ut‖23+‖uttt‖2)dt.(40)
結(jié)合式(34),(39),(40), 可得
(‖θn‖2-‖θn-1‖2)+Δt2‖Dθn+Dθn-1‖2≤" C(Δt(‖θn‖+‖θn-1‖2+h6)
+((Δt)4+h6)×" ∫tntn-1(‖ut‖4+‖ut‖23+‖uttt‖2)dt).(41)
當nΔt=tn≤T時, 關(guān)于正整數(shù)n求和得
‖θn‖2-‖θ0‖2+Δt2∑ni=1‖Dθi+Dθi-1‖2≤""" CΔt∑ni=1
(‖θi‖2+‖θi-1‖2)+Th6+((Δt)4+h6)∫tn0(‖ut‖4+‖ut‖23+‖uttt‖2)dt.
當Δt足夠小, 且CΔtlt;1-δ0(0lt;δ0lt;1)時, 有
‖θn‖2≤" 1+CΔt1-CΔt‖θ0‖2+C1-CΔt×
Δt∑n-1i=1‖θi‖2+((Δt)4+h6)∫tn0(‖ut‖4+‖ut‖23+‖uttt‖2)dt.
利用離散的Gronwall定理可知
‖θn‖≤C‖θ0‖+((Δt)2+h3)∫tn0(‖ut‖4+‖ut‖23+‖uttt‖2)1/2dt.
又由式(5)得到式(30). 證畢.
定理6 設un是問題(2)的解, unh是全離散問題(23)的解, u0∈H3(I), ut∈L2(0,T;L4(I))∩L2(0,T;H3(I)),
uttt∈L2(0,T;L2(I)), 則全離散問題的解有如下誤差估計:
un-unh1≤" C(u0-u0h1+h2‖u0‖3+((Δt)2+h3
)×" ∫tn0(‖ut‖4+‖ut‖23+‖uttt‖2)1/2dt),(42)
其中C與時間步長Δt和空間步長h無關(guān).
證明: 在式(34)中取vh=tθn, 由ε-不等式可知
‖tθn‖2+" 12Δt(‖Dθn‖2-‖Dθn-1‖2)
≤" ‖rn‖2+‖F(xiàn)(Dun,Dun-1,Dunh,Dun-1h)‖2+12‖tθn‖2,
整理得
‖Dθn‖2-‖Dθn-1‖2≤2Δt(‖rn‖2+‖F(xiàn)(Dun,Dun-1,Dunh,Dun-1h)‖2).
當nΔt=tn≤T時, 關(guān)于正整數(shù)n求和得
‖Dθn‖2-‖Dθ0‖2≤2Δt∑ni=1(‖rn‖2+‖F(xiàn)(Dun,Dun-1,Dunh,Dun-1h)‖2).(43)
由式(39)知
∑ni=1‖F(xiàn)(un,un-1,unh,un-1h)‖2≤C∑ni=0
‖θi‖2+nh6+(Δt)3∫tnt0‖ut(t)‖4dt.(44)
結(jié)合式(40),(43),(44), 可得
‖Dθn‖2-‖Dθ0‖2≤CΔt∑ni=0‖θi‖2+Th6
+((Δt)4+h6)∫tn0(‖ut‖4+‖ut‖23+‖uttt‖2)dt.
再利用離散的Gronwall定理得
‖Dθn‖≤C‖Dθ0‖+((Δt)2+h3)∫tn0(‖ut‖4+‖ut‖23+‖uttt‖2)1/2dt.
又由式(5)得到式(42). 證畢.
3 數(shù)值算例
為方便分析誤差與收斂階, 考慮如下非齊次微分方程的初邊值問題:
ut-uxx+u3-u=g(x,t),(x,t)∈[0,1]×(0,1),u(0,t)=u(1,t)=0,t∈(0,1),
u(x,0)=u0(x),x∈[0,1].(45)
取u(x,t)=t2[1-cos(2πx)]為解析解. 表1列出了t=1時不同空間步長h對應的誤差和收斂階. 由表1可見, 當時間步長固定時, 近似解的L2模和H1模收斂精度分別是三階和二
階. 表2列出了t=1時不同時間步長Δt對應的誤差和收斂階. 由表2可見, 空間步長取定時, 近似解在L2和H1模下達到二階收斂.
表1 t=1時不同空間步長h對應的誤差和收斂階
Table 1 Error and convergence order corresponding to different spatial step sizes h when t=1
(Δt,h)‖u-uh‖收斂階‖u-uh‖1收斂階
(1/100 000,1/8)3.249 2×10-31.533 3×10-1
(1/100 000,1/16)3.631 7×10-43.161 43.672 1×10-22.062 0
(1/100 000,1/32)4.400 3×10-53.044 99.067 4×10-32.017 8
(1/100 000,1/64)5.456 2×10-63.011 62.259 4×10-32.004 7
表2 t=1時不同時間步長Δt對應的誤差和收斂階
Table 2 Error and convergence order corresponding to different time step sizes Δt when t=1
(Δt,h)‖u-uh‖收斂階‖u-uh‖1收斂階
(1/20,1/1 000)1.196 8×10-33.844 8×10-3
(1/40,1/1 000)2.995 8×10-41.998 29.623 8×10-41.998 2
(1/80,1/1 000)7.491 8×10-51.999 62.408 3×10-41.998 6
(1/160,1/1 000)1.873 1×10-51.999 96.087 5×10-51.984 1
綜上所述, B樣條有限元法是求解FK方程的有效方法, 二次B樣條Crank-Nicolson全離散格式達到最優(yōu)階收斂精度O((Δt)2+h3). 應用MATLAB編程計算數(shù)值
算例, 采用Picard迭代處理非線性項, 數(shù)值實驗結(jié)果表明, Picard迭代次數(shù)為6~10次可以保證格式的收斂精度, 極大提高了計算效率.
參考文獻
[1] MAGOME N, MORITA N, KANEKO S, et al. Higher-Continuity s-Version of Fini
te Element Method with B-Spline Functions [J]. J Comput Phys, 2024, 497: 112593-1-112593-18.
[2] JENA S R, SENAPATI A. One-Dimensional Heat and Advection-Diffusion Eq
uation Based on Improvised Cubic B-Spline Collocation, Finite Element Method and Crank-Nicolson Technique [J]. Int Commun Heat Mass Tran, 2023, 147: 106958-1-106958-24.
[3] HEPSON O E. A Quartic Trigonometric Tension B-Spline Finite Element Method for
Solving Gardner Equation [J]. Numer Methods Partial Differential Equations, 2022, 38(4): 1055-1067.
[4] QIN D D, TAN J W, LIU B, et al. A B-Spline Finite Element Method for Solving a Class of Nonlinear Parabolic Equations Modeling
Epitaxial Thin-Film Growth with Variable Coefficient [J/OL]. Adv Difference Equ, (2020-04-22)\. https://doi.org/10.1186/s13662-020-02629-6.
[5] DANUMJAYA P. Finite Element Methods for One Dimensional Fourth Order Semilinea
r Partial Differential Equation [J]. Int J Appl Comput Math, 2016, 2(3): 395-410.
[6] FISHER R A. The Wave of Advance of Advantageous Genes [J]. Ann Eugen, 1937, 7: 355-369.
[7] DEE G T, VAN SAARLOOS W. Bistable Systems with Propagating Fronts Leading to Pattern Formation [J]. Phys Rev Lett, 1988, 60(25): 2641-2644.
[8] COULLET P, ELPHICK C, REPAUX D. Nature of Spatial Chaos [J]. Phys Rev Lett, 1987, 58(5): 431-434.
[9] CIARLET P G. The Finite Element Method for Ellipitic Problems [M].
Studies in Mathematics and Its Applicaitons, Vol.4. Amsterdam: North-Hollard Publishing Co, 1978: 559.
(責任編輯: 趙立芹)