【摘要】 抑郁癥作為全球第二大疾病,其病因及發(fā)病機(jī)制尚未完全明確,現(xiàn)多采用藥物治療、心理治療和物理治療等方法,但因藥物治療不良反應(yīng)大、易復(fù)發(fā),心理治療存在對(duì)臨床醫(yī)生專(zhuān)業(yè)水平要求較高和物理治療設(shè)備昂貴、定向障礙等缺陷,致使其治療面臨瓶頸。經(jīng)顱低水平激光在科研實(shí)驗(yàn)及臨床抗抑郁治療中均被證明具有療效。盡管該治療方法分子及細(xì)胞機(jī)制尚未確切,但其以非侵入性方式通過(guò)顱骨,不對(duì)生物體產(chǎn)生損傷,具有光生物學(xué)調(diào)節(jié)效應(yīng),對(duì)神經(jīng)元具有保護(hù)作用,可以作為一種創(chuàng)新的非藥物療法,為抗抑郁治療提供新方向。
【關(guān)鍵詞】 抑郁癥;低強(qiáng)度光療法;低水平激光;線粒體;神經(jīng)遞質(zhì);神經(jīng)可塑性;神經(jīng)炎癥;綜述;治療
【中圖分類(lèi)號(hào)】 R 749.41 R 454.21 【文獻(xiàn)標(biāo)識(shí)碼】 A DOI:10.12114/j.issn.1007-9572.2022.0688
【引用本文】 梁雪梅,王睿,趙玉環(huán),等. 經(jīng)顱低水平激光:一種治療抑郁癥的新方法[J]. 中國(guó)全科醫(yī)學(xué),2023,26(27):3335-3341. DOI:10.12114/j.issn.1007-9572.2022.0688. [www.chinagp.net]
【Abstract】 As the second most serious disease worldwide,the etiology and pathogenesis of depression have not been clearly defined. Depression treatment faces a bottleneck,due to limitations of common therapies,such as side effects associated with drug therapy and high risk of recurrence after drug therapy,high requirements for clinicians to perform psychotherapy,and high cost of modalities and disorientation in physical therapy. Transcranial low-level laser,a new therapy has recently proven to be effective in scientific research and clinical antidepressant treatment,utilizes low-level laser non-invasively passing through the skull without causing damage to regulate biological tissues and protect neurons. Even though the molecular and cellular mechanisms underlying the therapy for depression are not yet clear,this non-drug therapy could be highly promising for depression treatment.
【Key words】 Depressive disorder;Low-level light therapy;Low-level laser;Mitochondrial;Neurotransmitter;Neuronal plasticity;Neruroinflammation;Review;Therapy
抑郁癥是心境障礙的一種類(lèi)型,其影響情緒、獎(jiǎng)賞和認(rèn)知等高級(jí)腦功能。全球約3億人患有抑郁癥[1]。中國(guó)精神衛(wèi)生調(diào)查(CMHS)項(xiàng)目顯示,抑郁癥終身患病率女性為8.0%,男性為5.7%[2]。應(yīng)激致腦海馬損傷為抑郁癥首發(fā)病因,但詳細(xì)機(jī)制尚未完全明確[3]。抑郁癥誘因多,發(fā)病機(jī)制復(fù)雜(主要有生物性因素、心理因素和社會(huì)環(huán)境因素等),具有高患病率、高復(fù)發(fā)率、高致殘率和患者自殺率高的特點(diǎn),一直是精神醫(yī)學(xué)界難題,嚴(yán)重影響人類(lèi)生活質(zhì)量及社會(huì)穩(wěn)定[4]。
對(duì)于抑郁癥治療,現(xiàn)行標(biāo)準(zhǔn)多采用藥物治療、心理治療和物理治療等方法。藥物治療是應(yīng)對(duì)抑郁癥的首選方法?,F(xiàn)行抗抑郁癥藥物多基于“單胺假說(shuō)”,主要通過(guò)影響神經(jīng)突觸間隙單胺類(lèi)神經(jīng)遞質(zhì)〔5-羥色胺(5-HT)、去甲腎上腺素(NE)、多巴胺(DA)〕起作用,如單胺氧化酶抑制劑、三環(huán)及四環(huán)類(lèi)抗抑郁藥和選擇性5-HT及NE再攝取抑制劑等[5]。其中,選擇性5-HT再攝取抑制劑(SSRIs)如氟西汀、帕羅西汀、舍曲林、氟伏沙明和西酞普蘭,被稱(chēng)為抗抑郁藥物“五朵金花”。多數(shù)抗抑郁藥物能緩解抑郁癥患者軀體癥狀,總有效率約為41%[6]。然而,部分藥物具有不良反應(yīng)大、臨床起效緩慢(多用藥2~4周后起效)及成癮性等缺點(diǎn);另一方面,部分患者總有效率低于30%,且停藥后臨床癥狀易復(fù)發(fā)[7]。心理治療作為抗抑郁癥輔助療法,對(duì)輕度抑郁、慢性抑郁及抑郁癥緩解患者有效,但對(duì)重度抑郁癥(MDD)患者需采取“抗抑郁藥物+”〔即心理輔助、電休克(ECT)、重復(fù)經(jīng)顱磁刺激(rTMS)、經(jīng)顱直流電刺激(tDCS)等〕方法進(jìn)行治療,且開(kāi)展輔助療法要求臨床醫(yī)生需具備較高的專(zhuān)業(yè)技術(shù)水平和昂貴的醫(yī)療設(shè)備。物理治療主要包括ECT、rTMS和tDCS等方法。ETC、rTMS主要用于耐藥患者的難治性抑郁癥(TRD)治療,但采用ETC治療的部分抑郁癥患者會(huì)出現(xiàn)意識(shí)喪失、定向障礙和記憶障礙等,而tDCS可能會(huì)出現(xiàn)中度疲勞、輕度頭痛、惡心、皮膚紅腫、發(fā)熱及瘙癢等不良反應(yīng)[8]。因此,尋求靶點(diǎn)明確的治療方法或抑郁癥藥物具有重要的現(xiàn)實(shí)意義。低水平激光(LLL)作為一種非藥物性、非侵入性新型物理治療手段,其將紅光到近紅外光(NIR)通過(guò)顱骨以刺激神經(jīng)細(xì)胞的功能活動(dòng),多年來(lái)在神經(jīng)精神系統(tǒng)疾病的科研實(shí)驗(yàn)和臨床前研究中備受關(guān)注。
本文檢索策略:以“低水平激光、抑郁癥、線粒體、神經(jīng)遞質(zhì)、神經(jīng)可塑性、神經(jīng)炎癥”等為中文關(guān)鍵詞,以“Low-level laser、Depression、Mitochondria、Neurotransmitter、Neuroplasticity、Neruroinflammation”等為英文關(guān)鍵詞,檢索中國(guó)知網(wǎng)、PubMed、Web of Science等數(shù)據(jù)庫(kù)。檢索時(shí)間為2012年1月—2022年7月。納入標(biāo)準(zhǔn):涉及抑郁癥致病危險(xiǎn)因素、發(fā)病機(jī)制、治療等方向的綜述、動(dòng)物實(shí)驗(yàn)研究、臨床試驗(yàn)研究、系統(tǒng)評(píng)價(jià)和Meta分析等論文。排除標(biāo)準(zhǔn):與主題無(wú)關(guān)及質(zhì)量較差的論文。
1 LLL概述
自1960年梅曼(Theodore Maiman)以來(lái),美國(guó)即開(kāi)始關(guān)注激光生物學(xué)研究。近年來(lái),激光以高單色性、高方向性、高相干性、高能量性特點(diǎn)及其生物學(xué)效應(yīng),在臨床醫(yī)學(xué)領(lǐng)域廣泛應(yīng)用[9]。激光生物學(xué)效應(yīng)主要包括熱效應(yīng)、壓強(qiáng)效應(yīng)、光化學(xué)效應(yīng)、電磁場(chǎng)效應(yīng)及光生物調(diào)節(jié)作用(PBM)。PBM是LLL獨(dú)有的生物學(xué)效應(yīng),包含生物刺激作用和生物抑制作用[10]。LLL作為PBM常見(jiàn)光源,主要包括紅光(波長(zhǎng)為600~1 600 nm、輸出功率為1~500 mW)或NIR(波長(zhǎng)為760~1 440 nm、輸出功率為50~500 mW)。LLL主要來(lái)源有氦氖激光、紅寶石激光,發(fā)光二極管(LED)等,其中氦氖激光為常用激光類(lèi)型。
LLL可穿透皮膚深入組織,無(wú)致癌性,具有無(wú)創(chuàng)、安全、經(jīng)濟(jì)、無(wú)副作用的特點(diǎn),不對(duì)生物體產(chǎn)生損傷[11]。動(dòng)物頭骨810 nm波長(zhǎng)激光的光吸收率主要與頭骨內(nèi)水及蛋白水平不同相關(guān)[12],808 nm波長(zhǎng)NIR對(duì)人類(lèi)腦組織滲透能力優(yōu)于940 nm波長(zhǎng)NIR及660 nm紅光。LLL波長(zhǎng)在1 064~1 072 nm時(shí),因光散射作用,更容易穿透周?chē)M織[13]。PBM的作用機(jī)制為光線通過(guò)影響細(xì)胞色素C氧化酶(COX)活性,激發(fā)細(xì)胞信號(hào)傳導(dǎo)并引發(fā)組織細(xì)胞代謝改變[14]。LLL特定波長(zhǎng)(810 nm)光子作用于組織內(nèi)光受體引發(fā)多種生物反應(yīng),包括改善生物能量學(xué)、增加區(qū)域血流量、刺激生長(zhǎng)因子、減少細(xì)胞凋亡、氧化應(yīng)激和組織炎癥,臨床多用于抗炎、促進(jìn)傷口愈合、促進(jìn)組織修復(fù)與再生和減輕神經(jīng)源性疼痛等[15-17]。經(jīng)顱LLL對(duì)顱腦損傷、腦卒中、神經(jīng)退行性疾病、精神分裂癥和心境障礙性疾病等神經(jīng)精神系統(tǒng)疾病具有潛在治療作用[11,18-20]。
2 LLL與抑郁癥
2.1 LLL可改善抑郁癥狀 動(dòng)物行為學(xué)變化是評(píng)價(jià)抑郁癥動(dòng)物模型制備是否成功的標(biāo)志,也是衡量抗抑郁藥物及療法是否有效的標(biāo)準(zhǔn)。抑郁癥動(dòng)物模型制備主要有以下6類(lèi),即成年應(yīng)激模型〔主要包括大鼠獲得性無(wú)助模型、大小鼠強(qiáng)迫游泳模型、小鼠懸尾模型及慢性不可預(yù)知性溫和應(yīng)激(CUMS)或慢性束縛應(yīng)激模型(CRS)等〕、早年(出生前)應(yīng)激模型(母子隔離法)、神經(jīng)損傷模型(大小鼠雙側(cè)嗅球切除法)、操作行為模型(大鼠低速率差式強(qiáng)化程序法)、藥物相互作用模型(利血平抑郁、苯丙胺增強(qiáng)等)和基因模型(Fawn-Hooden嗜酒大鼠、Wister Kyoto大鼠等)。評(píng)價(jià)抑郁癥動(dòng)物模型是否成功的主要實(shí)驗(yàn)有曠場(chǎng)實(shí)驗(yàn)(評(píng)價(jià)動(dòng)物“自主活動(dòng)及探索行為”)、懸尾實(shí)驗(yàn)(TST)或強(qiáng)迫游泳實(shí)驗(yàn)(FST)(評(píng)價(jià)動(dòng)物“行為絕望”程度)、糖水消耗實(shí)驗(yàn)(評(píng)價(jià)動(dòng)物“快感缺失”程度)及體質(zhì)量測(cè)試等。
研究顯示,經(jīng)顱LLL可改善CUMS抑郁模型大鼠的抑郁樣行為,調(diào)節(jié)生物活動(dòng)進(jìn)程[21]。經(jīng)顱LLL(波長(zhǎng)810 nm,頻率10 Hz,能量密度1.2 J/cm2)可顯著減少CUMS抑郁模型大鼠FST不動(dòng)時(shí)間,改善抑郁樣行為,與西酞普蘭療效相當(dāng)[22]。經(jīng)顱LLL(波長(zhǎng)810 nm,頻率10 Hz,能量密度33.3 J/cm2)聯(lián)合輔酶Q10(CoQ10)可減少CUMS抑郁模型小鼠抑郁樣行為[23]。經(jīng)顱LLL(波長(zhǎng)804 nm,功率80 mW,功率密度0.64 W/cm2)可顯著降低FST誘導(dǎo)抑郁模型大鼠、利血平誘導(dǎo)抑郁模型大鼠FST不動(dòng)時(shí)間,增加游泳及攀爬時(shí)間,而高劑量LLL(波長(zhǎng)804 nm,功率400 mW,功率密度3.18 W/cm2)則效果相反[24]。經(jīng)顱LLL(波長(zhǎng)808 nm,功率30 mW,功率密度23 mW/cm2)連續(xù)4周照射可顯著減少限制空間抑郁模型小鼠、Ahi1基因敲除小鼠TST及FST不動(dòng)時(shí)間,改善抑郁樣行為[25]。經(jīng)顱LLL(波長(zhǎng)810 nm,頻率10 Hz,能量密度8 J/cm2)可顯著改善CUMS抑郁模型小鼠抑郁及焦慮行為,其療效顯著優(yōu)于低劑量(波長(zhǎng)810 nm,頻率10 Hz,能量密度4 J/cm2)和高劑量(波長(zhǎng)810 nm,頻率10 Hz,能量密度16 J/cm2)[26]。臨床研究證實(shí),經(jīng)顱LLL(波長(zhǎng)780 nm,功率70 mW,能量密度105 J/cm2)可改善顳下頜關(guān)節(jié)紊亂老年人的焦慮及抑郁癥狀,可改善持續(xù)注意力、短期記憶和執(zhí)行功能[27]。經(jīng)顱LLL(波長(zhǎng)1 064 nm,功率密度250 mW/cm2,能量密度60 J/cm2)可使受試者前額葉規(guī)則學(xué)習(xí)功能得到顯著改善[28]。經(jīng)顱LLL(波長(zhǎng)810 nm,頻率10 Hz,功率密度4.75 W/cm2)照射焦慮及抑郁患者,可使患者額葉皮質(zhì)血流增加及抑郁評(píng)分降低[29]。經(jīng)顱NIR(波長(zhǎng)808 nm,功率700 mW,能量密度84 J/cm2)或經(jīng)顱LLL(波長(zhǎng)810 nm,功率密度250 mW/cm2,能量密度60 J/cm2)可減輕MDD患者抑郁狀態(tài)[30]。激光生物刺激聯(lián)合低熱量飲食干預(yù)組絕經(jīng)后肥胖婦女較單純低熱量飲食組BMI、炎性標(biāo)志物水平顯著降低,抑郁癥狀顯著減輕[31]。經(jīng)顱LED(波長(zhǎng)945 nm,能量密度9.35 J/cm2)PBM可改善受試者大腦活動(dòng),減少焦慮和抑郁癥狀[32]。經(jīng)顱LLL(波長(zhǎng)850 nm)可以改善年輕健康成年人(17~35歲)、腦損傷及阿爾茨海默癥(AD)受試患者的認(rèn)知功能,腦電生理特征和注意功能[33]。
2.2 LLL改善抑郁癥狀的神經(jīng)生物學(xué)機(jī)制 研究證實(shí),生物性因素(遺傳、神經(jīng)生化、神經(jīng)內(nèi)分泌及神經(jīng)可塑性)、心理因素和社會(huì)環(huán)境因素等因素相互影響,共同參與抑郁癥發(fā)病過(guò)程。抑郁癥生物性因素目前熱點(diǎn)學(xué)說(shuō)主要有腦能量代謝消耗學(xué)說(shuō)、單胺類(lèi)神經(jīng)遞質(zhì)及其受體學(xué)說(shuō)、神經(jīng)內(nèi)分泌功能失調(diào)學(xué)說(shuō)、免疫系統(tǒng)功能異常學(xué)說(shuō)及海馬神經(jīng)可塑性障礙學(xué)說(shuō)等[4]。LLL改善抑郁癥的神經(jīng)生物學(xué)機(jī)制主要包括以下方面。
2.2.1 改善腦組織能量代謝 腦神經(jīng)元活動(dòng)功能與能量消耗成正比。腦神經(jīng)組織含有豐富的線粒體,其功能與能量代謝、信號(hào)轉(zhuǎn)導(dǎo)、神經(jīng)元生成和神經(jīng)元可塑性等生理活動(dòng)密切相關(guān)。神經(jīng)影像學(xué)顯示,不同腦區(qū)域如基底神經(jīng)節(jié)、前額葉皮質(zhì)和額葉的生物能量代謝受損和腦血流障礙可能是抑郁癥情緒紊亂原因之一[4]。大腦前額葉皮質(zhì)、海馬等區(qū)域線粒體功能紊亂與抑郁癥、焦慮癥等情緒障礙密切相關(guān)[34]。腦發(fā)揮PBM主要部位在線粒體,線粒體是生成腺嘌呤核苷三磷酸(ATP)的主要細(xì)胞器,而ATP水平是影響抑郁癥發(fā)生、發(fā)展的重要因素。線粒體功能紊亂,ATP生物合成減少,鈣穩(wěn)態(tài)失衡,自由基增加,引起抑郁癥發(fā)生[35]。線粒體呼吸鏈上的細(xì)胞色素a、細(xì)胞色素b等蛋白能選擇性地吸收紅光和NIR,使得電子傳遞鏈耦合加強(qiáng),加速電子傳遞,促進(jìn)ATP合成,增強(qiáng)細(xì)胞膜離子泵活動(dòng),增加細(xì)胞內(nèi)環(huán)磷酸腺苷(cAMP)水平,引起一系列生物學(xué)效應(yīng)[35]。線粒體呼吸鏈復(fù)合物Ⅳ即COX,作為線粒體呼吸鏈終端酶,為細(xì)胞內(nèi)主要光受體,可以將呼吸底物電子經(jīng)細(xì)胞色素系統(tǒng)傳遞給分子態(tài)氧原子,增加線粒體質(zhì)子梯度和線粒體膜電位。COX在神經(jīng)元發(fā)揮神經(jīng)生物學(xué)效應(yīng)中具有重要作用,是能量代謝及細(xì)胞信號(hào)通路之間的節(jié)點(diǎn),是神經(jīng)活動(dòng)內(nèi)源性代謝標(biāo)志物,對(duì)紅光和NIR(波長(zhǎng)812~846 nm)具有較強(qiáng)吸收性,并促進(jìn)線粒體能量代謝[36]。LLL能夠以非侵入方式將能量傳遞給COX,進(jìn)而激活線粒體電子呼吸傳遞鏈,加速ATP合成,調(diào)節(jié)氧化應(yīng)激[37]。
研究顯示,抑郁癥模型小鼠海馬及前額葉皮質(zhì)中ATP水平較低,給予ATP治療后,小鼠抑郁樣行為得到改善[38]。經(jīng)顱LLL(波長(zhǎng)810 nm,頻率10 Hz,能量密度8 J/cm2)能夠激活COX,調(diào)節(jié)線粒體功能,增加ATP生成,改善D半乳糖誘導(dǎo)衰老小鼠腦線粒體功能和認(rèn)知障礙[39]。二甲雙胍通過(guò)改善葡萄糖代謝和線粒體功能緩解老年載脂蛋白E4基因敲除小鼠抑郁樣行為,同時(shí)可減輕皮質(zhì)酮誘導(dǎo)抑郁模型大鼠代謝紊亂和抑郁樣行為,并介導(dǎo)糖代謝途徑[40-41]。經(jīng)顱LLL(波長(zhǎng)808 nm,功率密度23 mW/cm2,照射時(shí)間30 min)連續(xù)28 d可有效增加CRS抑郁模型小鼠、Ahil基因敲除小鼠前額葉皮質(zhì)線粒體呼吸鏈復(fù)合物Ⅳ表達(dá)和ATP生物合成,進(jìn)而改善抑郁樣行為,而對(duì)海馬及下丘腦卻無(wú)影響[25]。臨床研究證實(shí),經(jīng)顱LLL(波長(zhǎng)1 064 nm,功率密度162 mW/cm2,能量密度107 J/cm2)刺激可顯著上調(diào)受試者大腦細(xì)胞色素C(cyto-C)水平,改善血氧供應(yīng),進(jìn)而增強(qiáng)大腦氧合指數(shù)和能量代謝[42]。抑郁癥患者前扣帶回、海馬、前額葉皮質(zhì)等區(qū)域葡萄糖代謝功能異常,給予抗抑郁藥物治療后好轉(zhuǎn)[43]。大腦皮質(zhì)接收LLL(波長(zhǎng)808 nm,功率密度250 mW/cm2,能量密度60 J/cm2)可使MDD及焦慮癥患者額葉皮質(zhì)血流量增加并改善患者抑郁焦慮癥狀[44]。經(jīng)顱LLL可能通過(guò)增加線粒體功能活動(dòng),提高神經(jīng)元代謝能力,增加ATP生成、一氧化氮(NO)釋放,調(diào)節(jié)活性氧(ROS)和增加細(xì)胞內(nèi)鈣的水平等,進(jìn)而改善抑郁癥模型動(dòng)物的抑郁樣行為與抑郁癥患者的抑郁癥狀[45]。
2.2.2 增加單胺類(lèi)神經(jīng)遞質(zhì)水平 中樞神經(jīng)系統(tǒng)突觸間隙單胺類(lèi)神經(jīng)遞質(zhì)缺乏學(xué)說(shuō)對(duì)抑郁癥發(fā)病機(jī)制的研究具有里程碑意義。單胺類(lèi)遞質(zhì)主要包括兒茶酚胺類(lèi)如NE、DA及吲哚類(lèi)如5-HT。單胺類(lèi)神經(jīng)遞質(zhì)可以通過(guò)調(diào)節(jié)相應(yīng)受體表達(dá),影響神經(jīng)可塑性,對(duì)情緒具有調(diào)節(jié)作用。研究證實(shí),經(jīng)顱LLL(波長(zhǎng)808 nm,功率密度23 mW/cm2,能量密度42 J/cm2)可顯著增加CRS抑郁模型小鼠及Ahil基因敲除小鼠海馬組織5-HT、DA神經(jīng)遞質(zhì)水平[46]。經(jīng)顱LLL(波長(zhǎng)810 nm,功率200 mW,
能量密度8 J/cm2)可顯著改善CRS抑郁模型小鼠抑郁及焦慮行為,其機(jī)制與減少前額葉皮質(zhì)、海馬5-HT、DA水平及增加NO水平有關(guān)[26]。經(jīng)顱電刺激聯(lián)合5-HT激光電泳可緩解受試者抑郁癥狀,其機(jī)制可能與調(diào)控5-HT和DA系統(tǒng)有關(guān)[47]。經(jīng)顱LLL(波長(zhǎng)830 nm,功率密度127.4 mW/cm2,能量密度15.28 J/cm2)可改善利血平誘導(dǎo)抑郁模型大鼠的抑郁樣行為,其機(jī)制與增加海馬組織、前額葉皮質(zhì)5-HT、NE、DA水平,減少氧化應(yīng)激損傷有關(guān)[11]。
2.2.3 改善下丘腦-垂體-腎上腺軸功能 抑郁癥神經(jīng)內(nèi)分泌學(xué)說(shuō)認(rèn)為,下丘腦-垂體-甲狀腺軸、下丘腦-垂體-性腺軸功能減退與下丘腦-垂體-腎上腺軸(HPAA)功能亢進(jìn)有關(guān)。HPAA是介導(dǎo)應(yīng)激反應(yīng)的主要神經(jīng)內(nèi)分泌系統(tǒng),應(yīng)激作用于大腦皮質(zhì),引起HPAA功能亢進(jìn),下丘腦釋放促腎上腺皮質(zhì)激素釋放激素,促使腺垂體釋放促腎上腺皮質(zhì)激素,進(jìn)而引起血清或血漿糖皮質(zhì)激素(GC)及皮質(zhì)酮水平升高。GC作用于富含GC受體的海馬,引起海馬神經(jīng)元損傷與凋亡,從而誘發(fā)抑郁、焦慮和創(chuàng)傷后應(yīng)激等負(fù)面情緒。甲狀腺功能減退患者M(jìn)DD發(fā)病率明顯高于正常人群,血漿三碘甲腺原氨酸、甲狀腺素降低易誘發(fā)抑郁癥[48]。性激素替代療法可改善老年AD患者抑郁情緒[48]。抑郁癥發(fā)病具有性別差異和年齡聚集現(xiàn)象[2]。經(jīng)顱NIR(波長(zhǎng)810 nm,頻率10 Hz,能量密度1.2 J/cm2)可顯著降低CUMS抑郁模型大鼠血清皮質(zhì)醇水平,其效果優(yōu)于紅激光(波長(zhǎng)
630 nm,頻率10 Hz,能量密度1.2 J/cm2)[49]。經(jīng)顱NIR(波長(zhǎng)810 nm,頻率10 Hz,能量密度 1.2 J/cm2)聯(lián)合CoQ10緩解CRS抑郁模型小鼠抑郁樣行為與血清皮質(zhì)酮及GC水平降低有關(guān)[50]。
2.2.4 調(diào)控海馬神經(jīng)可塑性 抑郁癥與海馬神經(jīng)可塑性失調(diào)密切相關(guān)。神經(jīng)可塑性主要包括神經(jīng)再生及突觸可塑性調(diào)節(jié)。海馬神經(jīng)再生主要分布在齒狀回顆粒下區(qū)和側(cè)腦室室下區(qū)。抑郁癥自殺患者海馬體積縮?。?8]。MDD患者海馬明顯萎縮[48]。抑郁癥動(dòng)物模型腦組織結(jié)構(gòu)及功能受損與海馬神經(jīng)元萎縮、丟失、凋亡、再生減少、樹(shù)突數(shù)量減少及長(zhǎng)度改變等形態(tài)學(xué)變化相關(guān)。抗抑郁藥物可抑制海馬神經(jīng)元損傷、凋亡,刺激神經(jīng)再生從而調(diào)控神經(jīng)可塑性。cAMP反應(yīng)元件結(jié)合蛋白(CREB)-腦源性神經(jīng)營(yíng)養(yǎng)因子(BDNF)-酪氨酸激酶B信號(hào)通路主要蛋白水平變化可影響神經(jīng)再生、突觸可塑性及長(zhǎng)時(shí)程記憶等生理活動(dòng),該信號(hào)通路在闡明抑郁癥神經(jīng)可塑性機(jī)制、抗抑郁藥物療效、神經(jīng)退行性疾病和藥物成癮形成中至關(guān)重要。BDNF是CREB調(diào)控主要靶基因,參與多種類(lèi)型神經(jīng)元分化、增殖、營(yíng)養(yǎng)和成熟的調(diào)控,與多巴胺能神經(jīng)元、膽堿能神經(jīng)元及5-HT能神經(jīng)元可塑性調(diào)節(jié)密切相關(guān);CREB是細(xì)胞核內(nèi)第三信使之一,為各種信號(hào)蛋白轉(zhuǎn)導(dǎo)交匯點(diǎn)。神經(jīng)元凋亡影響神經(jīng)可塑性并受多基因調(diào)控。其中,Bcl-2蛋白家族為控制細(xì)胞凋亡程序基因,主要包括促凋亡基因(如Bax、Bid、Bak等)及抑制凋亡基因(如Bcl-2、Bcl-xl、Mcl-1等);Bcl-2與Bax通過(guò)蛋白之間的結(jié)合與解聚來(lái)調(diào)控細(xì)胞凋亡。線粒體膜通透性及膜電位改變是凋亡過(guò)程一個(gè)重要環(huán)節(jié),由此導(dǎo)致cyto-C釋放,進(jìn)一步激活半胱氨酸蛋白酶(Caspase)級(jí)聯(lián)反應(yīng)而啟動(dòng)凋亡。
經(jīng)顱LLL可通過(guò)調(diào)節(jié)海馬神經(jīng)可塑性發(fā)揮抗抑郁作用。研究顯示,PBM刺激神經(jīng)再生,保護(hù)細(xì)胞免受死亡。NIR(波長(zhǎng)670 nm)對(duì)細(xì)胞氧化應(yīng)激損傷具有保護(hù)作用,也可使神經(jīng)細(xì)胞免受氰化物損傷[30]。經(jīng)顱LLL(波長(zhǎng)810 nm)可促進(jìn)創(chuàng)傷性腦損傷小鼠神經(jīng)元再生、突觸發(fā)生,并通過(guò)調(diào)控腺苷酸環(huán)化酶(AC)-cAMP-cAMP依賴(lài)性蛋白激酶A(PKA)-CREB信號(hào)通路上調(diào)巨噬細(xì)胞分泌神經(jīng)營(yíng)養(yǎng)因子,促進(jìn)神經(jīng)元分化、軸突再生;且可減少體外原代培養(yǎng)神經(jīng)細(xì)胞元氧化應(yīng)激損傷[51-52]。經(jīng)顱LLL(波長(zhǎng)810 nm,功率密度25 mW/cm2,能量密度18 J/cm2)可改善創(chuàng)傷性腦損傷小鼠記憶、學(xué)習(xí)能力,增加BDNF表達(dá)進(jìn)而改善神經(jīng)前體細(xì)胞增殖及突觸發(fā)生[53]。經(jīng)顱LLL可通過(guò)細(xì)胞外信號(hào)調(diào)節(jié)激酶(ERK)/CREB信號(hào)通路上調(diào)BDNF表達(dá)改善AD小鼠神經(jīng)元丟失和樹(shù)突萎縮[54]。低水平氦氖激光(波長(zhǎng)632.8 nm,功率密度10 mW/cm2或12.74 mW/cm2,能量密度0.5 J/cm2、1.0 J/cm2、1.9 J/cm2、3.8 J/cm2)可通過(guò)激活三磷酸肌醇受體信號(hào)通路,增加細(xì)胞內(nèi)Ca2+水平,激活Ca2+-ERK-CREB信號(hào)通路,使體外培養(yǎng)脊髓背根神經(jīng)節(jié)神經(jīng)元BDNF、磷酸化CREB蛋白及mRNA表達(dá)升高,進(jìn)而有效調(diào)控神經(jīng)系統(tǒng)BDNF蛋白表達(dá),使用ERK信號(hào)通路抑制劑PD98059封閉該通路進(jìn)而降低BDNF、磷酸化CREB蛋白及mRNA表達(dá)[55]。經(jīng)顱LLL可通過(guò)減少神經(jīng)元凋亡改善模型動(dòng)物神經(jīng)可塑性。經(jīng)顱LLL照射可增強(qiáng)Bcl-2表達(dá),減少Bax、Caspase-3蛋白表達(dá),進(jìn)而抑制神經(jīng)元凋亡調(diào)控海馬神經(jīng)可塑性[56-57]。經(jīng)顱LLL(波長(zhǎng)670 nm,功率密度50 mW/cm2,能量密度15 J/cm2)可改善創(chuàng)傷性腦損傷SD大鼠的行為學(xué)變化和腦組織Bcl-2、Bax表達(dá)[53]。LLL(波長(zhǎng)640 nm,功率密度0.09 mW/cm2,60 min)可減輕β淀粉樣蛋白25-35(Aβ25-35)誘導(dǎo)的PC12細(xì)胞凋亡和DNA片段化[57]。LLL(波長(zhǎng)632.8 nm,功率密度12.74 mW/cm2,能量密度2 J/cm2)可通過(guò)調(diào)控絲氨酸/蘇氨酸蛋白激酶(AKT)/糖原合成酶激酶3b(GSK3b)/β-連環(huán)蛋白信號(hào)通路減少Aβ25-35誘導(dǎo)的SH-SY5Y、PC12和HEK293T細(xì)胞凋亡[58]。
2.2.5 調(diào)控抗炎反應(yīng) 抑郁癥細(xì)胞因子學(xué)說(shuō)認(rèn)為抑郁癥可能與免疫系統(tǒng)異常、細(xì)胞因子過(guò)度分泌有關(guān)。細(xì)胞因子是激活免疫細(xì)胞分泌的生物活性蛋白,根據(jù)其作用不同可分為促炎因子〔白介素(IL)-1α、IL-1β、IL-6、干擾素(IFN)-α、IFN-γ、腫瘤壞死因子(TNF)-α等〕及抑炎因子(IL-4、IL-10等)。應(yīng)激可引起免疫系統(tǒng)激活和促炎因子釋放,炎性反應(yīng)可能是應(yīng)激調(diào)控抑郁進(jìn)程的作用機(jī)制之一,外周或中樞炎性反應(yīng)可影響免疫系統(tǒng)功能而導(dǎo)致抑郁癥。抑郁癥自殺患者前額葉皮質(zhì)促炎癥因子及凋亡增加[59]。抗抑郁治療前受試者IL-1α、IL-1β、IL-6、IL-8升高[59]。MDD患者腦脊液中IL-6顯著高于健康人群,且腦脊液中IL-6顯著高于血清[59]。抗抑郁藥物可抑制小膠質(zhì)細(xì)胞活化和促炎細(xì)胞因子產(chǎn)生。炎癥和應(yīng)激環(huán)境共同促使小膠質(zhì)細(xì)胞活化,小膠質(zhì)細(xì)胞激活引起海馬神經(jīng)可塑性障礙,誘導(dǎo)抑郁癥發(fā)生。許多抑郁癥患者體內(nèi)炎性標(biāo)志物明顯升高,抗炎藥物具有抗抑郁的作用。經(jīng)顱NIR可改善創(chuàng)傷性顱腦損傷小鼠認(rèn)知功能障礙,可能與神經(jīng)炎癥減輕有關(guān)[30]。紅光和NIR可顯著降低類(lèi)風(fēng)濕性關(guān)節(jié)炎模型大鼠IL-6、IL-1β、IL-8水平[30]。LLL(波長(zhǎng)810 nm,功率密度100 mW/cm2,能量密度 30 J/cm2)改變體外培養(yǎng)脂多糖誘導(dǎo)小鼠骨髓源性樹(shù)突細(xì)胞形態(tài)、增加其活力的機(jī)制可能與減少促炎因子TNF-α、IL-6、IL-1β、IL-8水平有關(guān)[45]。經(jīng)顱LLL(波長(zhǎng)808 nm,功率密度25 mW/cm2,能量密度3 J/cm2)治療可減輕TgF344-AD大鼠焦慮抑郁樣行為,其機(jī)制與減輕神經(jīng)元損傷、變性、細(xì)胞凋亡和抑制神經(jīng)炎癥和氧化應(yīng)激有關(guān)[60]。因此,LLL可作為因神經(jīng)炎癥引發(fā)抑郁癥的一種潛在療法。
3 小結(jié)與展望
綜上所述,神經(jīng)元中COX水平豐富,經(jīng)顱LLL的PBM可提高神經(jīng)元代謝能力,并刺激抗炎、抗凋亡、抗氧化應(yīng)激反應(yīng)以及神經(jīng)發(fā)生與突觸發(fā)生[30]。在細(xì)胞水平上,PBM可以減少細(xì)胞凋亡,增加抗氧化劑超氧化物歧化酶、神經(jīng)營(yíng)養(yǎng)因子的合成,刺激神經(jīng)前體細(xì)胞生成;在組織水平上,PBM可以增加腦組織血流量、減輕炎性反應(yīng)、促進(jìn)神經(jīng)元形成新的連接。經(jīng)顱LLL治療焦慮、抑郁和認(rèn)知功能障礙已被證實(shí),但是LLL的最佳劑量及作用機(jī)制尚不十分明確[61-62]。LLL具有較高的安全性和可耐受性,可以作為抑郁癥、焦慮癥等神經(jīng)和精神疾病潛在替代療法[11,63]。然而,有學(xué)者亦證明經(jīng)顱激光治療并不能改善重復(fù)低水平爆炸傷大鼠的認(rèn)知能力和創(chuàng)傷后應(yīng)激障礙相關(guān)行為特征[64]。此外LLL提取光源、波長(zhǎng)、流量或總量、輸出功率、重復(fù)次數(shù)、照射面積、持續(xù)時(shí)間、操作方式(連續(xù)或脈沖)及組織中光線穿透指數(shù)衰減等因素均會(huì)影響其對(duì)神經(jīng)精神疾病治療效果[65]。因此,需根據(jù)不同病癥探索經(jīng)顱內(nèi)或鼻內(nèi)激光治療最佳劑量以達(dá)到最佳刺激強(qiáng)度,仍需大量動(dòng)物實(shí)驗(yàn)和臨床試驗(yàn)用以確定其安全性、有效性,更需大量臨床前研究工作探討經(jīng)顱LLL發(fā)揮抗抑郁作用的神經(jīng)生物學(xué)機(jī)制,為顱腦損傷、抑郁癥、焦慮癥等神經(jīng)精神疾病的物理治療提供理論基礎(chǔ)。
作者貢獻(xiàn):梁雪梅負(fù)責(zé)提出概念、文章框架構(gòu)思與撰寫(xiě);王睿負(fù)責(zé)文章質(zhì)量控制與審校,對(duì)文章負(fù)責(zé);趙玉環(huán)負(fù)責(zé)技術(shù)與材料支持;徐天嬌負(fù)責(zé)資料收集與整理;王偉、孫偉東負(fù)責(zé)文章修訂。
本文無(wú)利益沖突。
參考文獻(xiàn)
HERRMAN H,KIELING C,MCGORRY P,et al. Reducing the global burden of depression:a Lancet-World Psychiatric Association Commission[J]. Lancet,2019,393(10189):e42-43. DOI:10.1016/S0140-6736(18)32408-5.
GBD2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories,1990-2019:a systematic analysis for the Global Burden of Disease Study 2019[J]. Lancet,2020,396(10258):1204-1222. DOI:10.1016/S0140-6736(20)30925-9.
MILLER L,CAMPO J V. Depression in adolescents[J]. N Engl J Med,2021,385(5):445-449. DOI:10.1056/NEJMra2033475.
MCCARRON R M,SHAPIRO B,RAWLES J,et al. Depression[J]. Ann Intern Med,2021,174(5):ITC65-ITC80. DOI:10.7326/AITC202105180.
LU J,XU X F,HUANG Y Q,et al. Prevalence of depressive disorders and treatment in China:a cross-sectional epidemiological study[J]. Lancet Psychiatry,2021,8(11):981-990. DOI:10.1016/S2215-0366(21)00251-0.
GONDA X,DOME P,NEILL J C,et al. Novel antidepressant drugs:beyond monoamine targets[J]. CNS Spectr,2021:1-10. DOI:10.1017/S1092852921000791.
KOSTYUNINA A,ABDULLAEV B,NARKULOVA K. Antidepressants efficiency in patients with depression and depression related to Parkinson's disease[J]. Park Relat Disord,2018,46:e49. DOI:10.1016/j.parkreldis.2017.11.167.
楊瀟,董再全,王瑜,等. 抑郁癥病因?qū)W和治療學(xué)的研究進(jìn)展[J]. 中國(guó)科學(xué)(生命科學(xué)),2022,52(11):1678-1691.
DE BARROS D D,DOS SANTOS BARROS CAT?O J S,F(xiàn)ERREIRA A C D,et al. Correction to:low?level laser therapy is effective in controlling postoperative pain in lower third molar extractions:a systematic review and meta?analysis[J]. Lasers Med Sci,2022,37(5):2379. DOI:10.1007/s10103-022-03591-3.
MUSSTTAF R A,JENKINS D F L,JHA A N. Assessing the impact of low level laser therapy(LLLT) on biological systems:a review[J]. Int J Radiat Biol,2019,95(2):120-143. DOI:10.1080/09553002.2019.1524944.
MOHAMMED H S,KHADRAWY Y A. Antidepressant and antioxidant effects of transcranial irradiation with 830-nm low-power laser in an animal model of depression[J]. Lasers Med Sci,2022,37(3):1615-1623. DOI:10.1007/s10103-021-03410-1.
SALEHPOUR F,CASSANO P,ROUHI N,et al. Penetration profiles of visible and near-infrared lasers and light-emitting diode light through the head tissues in animal and human species:a review of literature[J]. Photobiomodul Photomed Laser Surg,2019,37(10):581-595. DOI:10.1089/photob.2019.4676.
PENBERTHY W T,VORWALLER C E. Utilization of the 1064 nm wavelength in photobiomodulation:a systematic review and meta-analysis[J]. J Lasers Med Sci,2021,12(1):e86. DOI:10.34172/jlms.2021.86.
HAMBLIN M R. Mechanisms and mitochondrial redox signaling in photobiomodulation[J]. Photochem Photobiol,2018,94(2):199-212. DOI:10.1111/php.12864.
SALEHPOUR F,BERMAN M H,SADIGH-ETEGHAD S. Photobiomodulation as a brain-boosting strategy in aging[M]//Assessments,Treatments and Modeling in Aging and Neurological Disease. Amsterdam:Elsevier,2021:389-402.
HENNESSY M,HAMBLIN M R. Photobiomodulation and the brain:a new paradigm[J]. J Opt,2017,19(1):013003. DOI:10.1088/2040-8986/19/1/013003.
ROJAS J C,GONZALEZ-LIMA F. Neurological and psychological applications of transcranial lasers and LEDs[J]. Biochem Pharmacol,2013,86(4):447-457. DOI:10.1016/j.bcp.2013.06.012.
HAMBLIN M R. Photobiomodulation for traumatic brain injury and stroke[J]. J Neurosci Res,2018,96(4):731-743. DOI:10.1002/jnr.24190.
PURUSHOTHUMAN S,JOHNSTONE D M,NANDASENA C,et al."Photobiomodulation with near infrared light mitigates Alzheimer's disease-related pathology in cerebral cortex - evidence from two transgenic mouse models[J]. Alzheimers Res Ther,2014,6(1):2. DOI:10.1186/alzrt232.
O'DONNELL C M,BARRETT D W,F(xiàn)INK L H,et al. Transcranial infrared laser stimulation improves cognition in older bipolar patients:proof of concept study[J]. J Geriatr Psychiatry Neurol,2022,35(3):321-332. DOI:10.1177/0891988720988906.
SALEHPOUR F,MAHMOUDI J,KAMARI F,et al. Brain photobiomodulation therapy:a narrative review[J]. Mol Neurobiol,2018,55(8):6601-6636. DOI:10.1007/s12035-017-0852-4.
SALEHPOUR F,RASTA S H,MOHADDES G,et al. Therapeutic effects of 10-HzPulsed wave lasers in rat depression model:a comparison between near-infrared and red wavelengths[J]. Lasers Surg Med,2016,48(7):695-705. DOI:10.1002/lsm.22542.
SALEHPOUR F,F(xiàn)ARAJDOKHT F,CASSANO P,et al. Near-infrared photobiomodulation combined with coenzyme Q10 for depression in a mouse model of restraint stress:reduction in oxidative stress,neuroinflammation,and apoptosis[J]. Brain Res Bull,2019,144:213-222. DOI:10.1016/j.brainresbull.2018.10.010.
MOHAMMED H S. Transcranial low-level infrared laser irradiation ameliorates depression induced by reserpine in rats[J]. Lasers Med Sci,2016,31(8):1651-1656. DOI:10.1007/s10103-016-2033-5.
XU Z Q,GUO X B,YANG Y,et al. Low-level laser irradiation improves depression-like behaviors in mice[J]. Mol Neurobiol,2017,54(6):4551-4559. DOI:10.1007/s12035-016-9983-2.
ESHAGHI E,SADIGH-ETEGHAD S,MOHADDES G,et al. Transcranial photobiomodulation prevents anxiety and depression via changing serotonin and nitric oxide levels in brain of depression model mice:a study of three different doses of 810 nm laser[J]. Lasers Surg Med,2019,51(7):634-642. DOI:10.1002/lsm.23082.
RODRIGUES J H,MARQUES M M,BIASOTTO-GONZALEZ D A,et al. Evaluation of pain,jaw movements,and psychosocial factors in elderly individuals with temporomandibular disorder under laser phototherapy[J]. Lasers Med Sci,2015,30(3):953-959. DOI:10.1007/s10103-013-1514-z.
BLANCO N J,SAUCEDO C L,GONZALEZ-LIMA F. Transcranial infrared laser stimulation improves rule-based,but not information-integration,category learning in humans[J]. Neurobiol Learn Mem,2017,139:69-75. DOI:10.1016/j.nlm.2016.12.016.
ESHAGHI E,SADIGH-ETEGHAD S,MOHADDES G,et al. Transcranial photobiomodulation prevents anxiety and depression via changing serotonin and nitric oxide levels in brain of depression model mice:a study of three different doses of 810 nm laser[J]. Lasers Surg Med,2019,51(7):634-642. DOI:10.1002/lsm.23082.
CASSANO P,PETRIE S R,HAMBLIN M R,et al. Review of transcranial photobiomodulation for major depressive disorder:targeting brain metabolism,inflammation,oxidative stress,and neurogenesis[J]. Neurophotonics,2016,3(3):031404. DOI:10.1117/1.NPh.3.3.031404.
ELSAYED M M,RAKHA M,ELSHEIMY H A,et al. Effect of laser biostimulation and a low-calorie diet vs. a low-calorie diet alone on insulin resistance,inflammatory biomarkers,and depression among obese postmenopausal women:a randomized controlled trial[J]. Eur Rev Med Pharmacol Sci,2022,26(9):3269-3277. DOI:10.26355/eurrev_202205_28745.
KERPPERS F K,DOS SANTOS K M M G,CORDEIRO M E R,et al. Study of transcranial photobiomodulation at 945-nm wavelength:anxiety and depression[J]. Lasers Med Sci,2020,35(9):1945-1954. DOI:10.1007/s10103-020-02983-7.
SALEHPOUR F,MAJDI A,PAZHUHI M,et al. Transcranial photobiomodulation improves cognitive performance in young healthy adults:a systematic review and meta-analysis[J]. Photobiomodul Photomed Laser Surg,2019,37(10):635-643. DOI:10.1089/photob.2019.4673.
ZORZO C,ARIAS J L,MéNDEZ M. Hippocampus and cortex are involved in the retrieval of a spatial memory under full and partial cue availability[J]. Behav Brain Res,2021,405:113204. DOI:10.1016/j.bbr.2021.113204.
BANSAL Y,KUHAD A. Mitochondrial dysfunction in depression[J]. Curr Neuropharmacol,2016,14(6):610-618. DOI:10.2174/1570159x14666160229114755.
KARABATSIAKIS A,B?CK C,SALINAS-MANRIQUE J,et al. Mitochondrial respiration in peripheral blood mononuclear cells correlates with depressive subsymptoms and severity of major depression[J]. Transl Psychiatry,2014,4:e397. DOI:10.1038/tp.2014.44.
DE FREITAS L F,HAMBLIN M R. Proposed mechanisms of photobiomodulation or low-level light therapy[J]. IEEE J Sel Top Quantum Electron,2016,22(3):7000417. DOI:10.1109/JSTQE.2016.2561201.
KOLAR D,KLETECKOVA L,BROZKA H,et al. Mini-review:brain energy metabolism and its role in animal models of depression,bipolar disorder,schizophrenia and autism[J]. Neurosci Lett,2021,760:136003. DOI:10.1016/j.neulet.2021.136003.
SALEHPOUR F,AHMADIAN N,RASTA S H,et al. Transcranial low-level laser therapy improves brain mitochondrial function and cognitive impairment in D-galactose-induced aging mice[J]. Neurobiol Aging,2017,58:140-150. DOI:10.1016/j.neurobiolaging.2017.06.025.
LIN Y B,DAI X M,ZHANG J,et al. Metformin alleviates the depression-like behaviors of elderly apoE4 mice via improving glucose metabolism and mitochondrial biogenesis[J]. Behav Brain Res,2022,423:113772. DOI:10.1016/j.bbr.2022.113772.
HAO Y,TONG Y P,GUO Y H,et al. Metformin attenuates the metabolic disturbance and depression-like behaviors induced by corticosterone and mediates the glucose metabolism pathway[J]. Pharmacopsychiatry,2021,54(3):131-141. DOI:10.1055/a-1351-0566.
WANG X L,DMOCHOWSKI J P,ZENG L,et al. Transcranial photobiomodulation with 1064-nm laser modulates brain electroencephalogram rhythms[J]. Neurophotonics,2019,6(2):025013. DOI:10.1117/1.NPh.6.2.025013.
LEE E S,YOUN H,HYUNG W S W,et al. The effects of cerebral amyloidopathy on regional glucose metabolism in older adults with depression and mild cognitive impairment while performing memory tasks[J]. Eur J Neurosci,2021,54(7):6663-6672. DOI:10.1111/ejn.15461.
MINTZOPOULOS D,GILLIS T E,TEDFORD C E,et al. Effects of near-infrared light on cerebral bioenergetics measured with phosphorus magnetic resonance spectroscopy[J]. Photomed Laser Surg,2017,35(8):395-400. DOI:10.1089/pho.2016.4238.
SALEHPOUR F,RASTA S H. The potential of transcranial photobiomodulation therapy for treatment of major depressive disorder[J]. Rev Neurosci,2017,28(4):441-453. DOI:10.1515/revneuro-2016-0087.
郭曉波. 低強(qiáng)度激光治療改善小鼠抑郁樣行為的研究[D]. 蘇州:蘇州大學(xué),2015.
FUDIN N A,KHADARTSEV A A,MOSKVIN S V. Transcranial electrostimulation and serotonin laser phoresis in the Athletes experiencing a combined effect of fatigue and psycho-emotional stress[J]. Vopr Kurortol Fizioter Lech Fiz Kult,2019,96(1):37-42. DOI:10.17116/kurort20199601137.
MALHI G S,MANN J J. Depression[J]. Lancet,2018,392(10161):2299-2312. DOI:10.1016/S0140-6736(18)31948-2.
MEYNAGHIZADEH-ZARGAR R,SADIGH-ETEGHAD S,MOHADDES G,et al. Effects of transcranial photobiomodulation and methylene blue on biochemical and behavioral profiles in mice stress model[J]. Lasers Med Sci,2020,35(3):573-584. DOI:10.1007/s10103-019-02851-z.
VAN RENSBURG D J,LINDEQUE Z,HARVEY B H,et al."Reviewing the mitochondrial dysfunction paradigm in rodent models as platforms for neuropsychiatric disease research[J]. Mitochondrion,2022,64:82-102. DOI:10.1016/j.mito.2022.03.002.
ZHANG J W,SUN J K,ZHENG Q,et al. Low-level laser therapy 810-nm up-regulates macrophage secretion of neurotrophic factors via PKA-CREB and promotes neuronal axon regeneration in vitro[J]. J Cell Mol Med,2020,24(1):476-487. DOI:10.1111/jcmm.14756.
HUANG Y Y,NAGATA K,TEDFORD C E,et al. Low-level laser therapy (LLLT) reduces oxidative stress in primary cortical neurons in vitro[J]. J Biophotonics,2013,6(10):829-838. DOI:10.1002/jbio.201200157.
XUAN W J,HUANG L Y,VATANSEVER F,et al. Transcranial low-level laser therapy increases memory,learning,neuroprogenitor cells,BDNF and synaptogenesis in mice with traumatic brain injury[C]//SPIE BiOS. Proc SPIE 9309,Mechanisms for Low-Light Therapy X,San Francisco,California,USA. 2015,9309:92-101.
YAN X D,LIU J F,ZHANG Z P,et al. Low-level laser irradiation modulates brain-derived neurotrophic factor mRNA transcription through calcium-dependent activation of the ERK/CREB pathway[J]. Lasers Med Sci,2017,32(1):169-180. DOI:10.1007/s10103-016-2099-0.
YIN K,ZHU R J,WANG S H,et al. Low-level laser effect on proliferation,migration,and antiapoptosis of mesenchymal stem cells[J]. Stem Cells Dev,2017,26(10):762-775. DOI:10.1089/scd.2016.0332.
YANG L D,TUCKER D,DONG Y,et al. Photobiomodulation therapy promotes neurogenesis by improving post-stroke local microenvironment and stimulating neuroprogenitor cells[J]. Exp Neurol,2018,299(Pt A):86-96. DOI:10.1016/j.expneurol.2017.10.013.
CALDIERARO M A,LAUFER-SILVA T,CASSANO P. Dosimetry and clinical efficacy of transcranial photobiomodulation for major depression disorder:could they guide dosimetry for Alzheimer's disease? [J]. J Alzheimers Dis,2021,83(4):1453-1469. DOI:10.3233/JAD-210586.
LIANG J G,LIU L,XING D. Photobiomodulation by low-power laser irradiation attenuates Aβ-induced cell apoptosis through the Akt/GSK3β/β-catenin pathway[J]. Free Radic Biol Med,2012,53(7):1459-1467. DOI:10.1016/j.freeradbiomed.2012.08.003.
GAL'ECKI P,TALAROWSKA M. Inflammatory theory of depression[J]. Psychiatr Pol,2018,52(3):437-447. DOI:10.12740/PP/76863.
YANG L D,WU C Y,TUCKER L,et al. Photobiomodulation therapy attenuates anxious-depressive-like behavior in the TgF344 rat model[J]. J Alzheimers Dis,2021,83(4):1415-1429. DOI:10.3233/JAD-201616.
RAMEZANI F,NESHASTEH-RIZ A,GHADAKSAZ A,et al. Mechanistic aspects of photobiomodulation therapy in the nervous system[J]. Lasers Med Sci,2022,37(1):11-18. DOI:10.1007/s10103-021-03277-2.
HAMBLIN M R. Mechanisms and applications of the anti-inflammatory effects of photobiomodulation[J]. AIMS Biophys,2017,4(3):337-361. DOI:10.3934/biophy.2017.3.337.
SALEHPOUR F,GHOLIPOUR-KHALILI S,F(xiàn)ARAJDOKHT F,et al. Therapeutic potential of intranasal photobiomodulation therapy for neurological and neuropsychiatric disorders:a narrative review[J]. Rev Neurosci,2020,31(3):269-286. DOI:10.1515/revneuro-2019-0063.
PEREZ GARCIA G,PEREZ G M,OTERO-PAGAN A,et al. Transcranial laser therapy does not improve cognitive and post-traumatic stress disorder-related behavioral traits in rats exposed to repetitive low-level blast injury[J]. Neurotrauma Rep,2021,2(1):548-563. DOI:10.1089/neur.2021.0005.
SALEHPOUR F,KHADEMI M,HAMBLIN M R. Photobiomodulation therapy for dementia:a systematic review of pre-clinical and clinical studies[J]. J Alzheimers Dis,2021,83(4):1431-1452. DOI:10.3233/JAD-210029.
(收稿日期:2022-08-24;修回日期:2022-11-06)
(本文編輯:鄒琳)