• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Path Planning of UAV by Combing Improved Ant Colony System and Dynamic Window Algorithm

    2023-12-28 08:49:50XUHaiqin徐海芹XINGHaoxiang邢浩翔LIUYang
    關(guān)鍵詞:徐海

    XU Haiqin(徐海芹), XING Haoxiang(邢浩翔), LIU Yang(劉 洋)

    College of Information Sciences and Technology, Donghua University, Shanghai 201620, China

    Abstract:A fusion algorithm is proposed to enhance the search speed of an ant colony system (ACS) for the global path planning and overcome the challenges of the local path planning in an unmanned aerial vehicle (UAV). The ACS search efficiency is enhanced by adopting a 16-direction 24-neighborhood search way, a safety grid search way, and an elite hybrid strategy to accelerate global convergence. Quadratic planning is performed using the moving average (MA) method. The fusion algorithm incorporates a dynamic window approach (DWA) to deal with the local path planning, sets a retracement mechanism, and adjusts the evaluation function accordingly. Experimental results in two environments demonstrate that the improved ant colony system (IACS) achieves superior planning efficiency. Additionally, the optimized dynamic window approach (ODWA) demonstrates its ability to handle multiple dynamic situations. Overall, the fusion optimization algorithm can accomplish the mixed path planning effectively.

    Key words:ant colony system(ACS); dynamic window approach (DWA); path planning; dynamic obstacle

    0 Introduction

    An unmanned aerial vehicle (UAV)[1]is a type of aerobat that can be controlled through telecommunication systems or artificial intelligence and is widely used in aerial images[2], electric patrol[3], and other fields[4]. Path planning[5]is an important research field of the UAV, and consists of the global path planning and the local path planning. Global path planning involves finding the optimal path in a static environment to reach the destination from the starting point. Guletal.[6]modified grey wolf optimization based on frequency to speed up the global search safely. Zhouetal.[7]dynamically adjusted the pheromone heuristic and heuristic function factors in the ant colony system (ACS) algorithm to avoid falling into local optimization.

    Local path planning[8]involves planning paths in real time to avoid dynamic obstacles in a local environment. Various algorithms are commonly used, including the D*algorithm[9], the dynamic window approach (DWA)[10], and others. Shietal.[11]improved a simulated annealing algorithm by introducing initial path selection and deletion operation for dynamic path planning. Hanetal.[12]achieved dynamic path planning of unmanned surface vehicles by carrying out global path planning based on non-uniform Theta*and dynamically selected DWA local target points. While these algorithms have been improved, they still have performance limitations in the mixed path planning which includes both global and local path planning. This paper proposes the fusion algorithm based on the improved ant colony system (IACS) and the optimized dynamic window approach (ODWA) to achieve the mixed path planning[13].

    The following sections are structured as follows. Section 1 provides an introduction to ACS, DWA, and the moving average (MA) method. Section 2 addresses the limitations of ACS and optimizes DWA to handle dynamic obstacles. Section 3 outlines the environment settings and algorithm flow. Section 4 showcases the evaluation metrics, experiments, and analyses. Finally, conclusions are given in section 5.

    1 Basic Algorithm

    1.1 ACS

    The concept of ACS[14]is inspired by the foraging behavior of ants and is applied in practical problem-solving research. Ants use a pseudo-random state transition strategy to select the next grid point:

    (1)

    (2)

    whereJdenotes a random value selected;qandq0refer to the probability and pre-defined probability threshold, respectively, andq0∈ [0,1];τijandηijindicate the amount of pheromone concentration and heuristic information from gridito gridj, withdijrepresenting the distance from gridito gridj, andηij= 1/dij;sis a grid not visited by ants;Cdenotes the set of possible next grid point sets that can be selected;αandβdenote the pheromone heuristic and heuristic function factor, respectively;pijdenotes the transition probability between two points whenqis greater thanq0.

    Updates the local pheromones ofτijwhen ants transition from gridito gridj:

    τij(t+1)=(1-ρL)τij(t)+ρLτ0.

    (3)

    Once all the ants have finished path exploration, the pheromone for the contemporary is updated:

    τij(t+1)=(1-ρG)τij(t)+ρGΔτij,

    (4)

    (5)

    whereτ0denotes the initial pheromone value ofτij;Qdenotes the pheromone enhancement coefficient;ρLandρGdenote the local and global pheromone volatilization rates;Lmsignifies the total length of the best path globally from the beginning of the run.

    1.2 DWA

    The central concept of DWA involves optimizing the speed within the dynamic window to find the best solution for the feasible region. This is achieved by assuming an extremely short interval Δt, where adjacent Δtmoves at a consistent speed, and defining the motion trajectory:

    (6)

    wherevxandvyrespectively represent the UAV horizontal and vertical velocities in a two-dimensional(2D) environment;ωis the angular velocity;θtdenotes the heading angle; DWA samples these parameters to determine the velocity space at the next moment. The constraints are categorized into three specific categories.

    Speed limit:

    vs={(v,w)|v∈[vmin,vmax],ω∈[ωmin,ωmax]},

    (7)

    wherevsis the speed limit range;vminandvmaxdenote the minimum and the maximum linear speeds, respectively;ωminandωmaxdenote the minimum and the maximum angular accelerations, respectively.

    Acceleration limit:

    (8)

    wherevddenotes the achievable speed range;avminandavmaxdenote the minimum and the maximum linear accelerations, respectively;aωminandaωmaxdenote the minimum and the maximum angular accelerations, respectively.

    Obstacle constraint:

    (9)

    wheredrepresents the distance between the robot and the nearest obstacle;avandaωare the accelerations for breakage, respectively;vais the set of velocities which allow the UAV to stop without colliding with an obstacle.

    vr=vs∩vd∩va.

    (10)

    Dynamic windows refer to sets of speedsvrthat meet the three constraints above. Any speed within the window can be selected.

    1.3 MA method

    The MA[15]method is used to smooth out the track. It involves replacing the original value with the average ofmadjacent data points for a sequence calledyk:

    (11)

    wherem= 2n+1;Nis the number of sequence points.

    2 Improved Algorithm

    This section discusses how ACS and DWA algorithms can be improved. The ACS algorithm involves adjusting the search and utilizing the elite hybrid strategy to update pheromones. Meanwhile, the DWA algorithm can be enhanced by implementing a retracement mechanism and adding a distance guidance subfunction into the evaluation function.

    2.1 IACS

    2.1.1Adjustsearchway

    Instead of exploration step-by-step, ants use the 16-direction 24-neighborhood search way[16]illustrated in Fig.1 to directly access any grid within the current red grid 24-neighborhood.

    Fig.1 Diagram of 16-direction 24-neighborhood search way

    In order to enhance search security, a rule has been established where four adjacent grids of one grid can be considered valid passing and subgoal points for ant colony exploration if they do not have any obstacles. These grids are marked as safety grids and are depicted as white in Fig.2. However, the four neighboring regions of the gray grid have obstacles and can only be used as valid passing points for path exploration.

    Fig.2 Safety grids

    Fig.3 Grid environment

    2.1.2Elitehybridstrategy

    During initialization of the pheromone, the grid map is contacted to decrease blind searching in the early stages.ρdenotes the pheromone volatilization factor that is dynamically adjusted, which reduces confused pheromone accumulation in the early stages:

    (12)

    whereGdenotes the current iteration number;Gmdenotes the maximum number of iterations.

    The ACS local update strategy has been abandoned to update only the optimal path of each generation globally.Lcis the contemporary optimal path.Lcis compared withLm(from section 1.1) to enhance the pheromones guidance to improve the algorithm’s search quality. This is called the elite hybrid strategies in pheromone operation:

    τij(t+1)=(1-ρ)τij(t)+Δτij+τe,

    (13)

    (14)

    where Δτijis the pheromone of the optimal historical path;τedenotes the elite mixed pheromone;η1andη2are the weighting factors.

    2.2 ODWA

    2.2.1Modifyevaluationfunction

    When DWA performs speed sampling, in order to solve the issue that returns to global path planning after finishing local planning, we have introduced a guide sub-functionL(v,ω) to improve position guidance and to calculate the distance between the current location and the local target point. The speed combination for the robot’s next positionG(v,ω) is defined by

    G(v,ω)=αH(v,ω)+βD(v,ω)+γV(v,ω)+ηL(v,ω),

    (15)

    H(v,ω)=180-θ,

    (16)

    (17)

    (18)

    whereH(v,ω),D(v,ω) andV(v,ω) are the subfunctions for the heading angle, distance from the nearest obstacle and velocity, respectively;α,β,γandηare the subfunction’s weights;θis the angle between the target and predicted position;dis the calculated length;dminanddmaxare the set length thresholds;sgandscdenote the current location and the local target point, respectively.

    2.2.2Addretracementmechanism

    The UAV activates the retracement mechanism when it encounters dynamic obstacles in an adjacent grid. The mechanism makes the UAV return to its previous position and resumes the local path planning while maintaining a safety margin.

    3 Algorithm Fusion

    3.1 Environment model

    Figure 3 displays the environment established through the grid method[17]. The white grid allows free movement, while the black and the red grids represent static and dynamic obstacles. The relationship between theith grid in the grid map and its corresponding 2D coordinates is

    (19)

    whereadenotes the grid length;Ndenotes the grid level;mod(·) is the complementary function;ceil(·) is the top integral function.

    3.2 Algorithm flow

    It is worth noting that ACS has certain limitations. It can only identify the best path in static environments, and handling dynamic obstacles is difficult. Fortunately, these limitations can be addressed through the use of DWA. The combination of IACS and ODWA enables the algorithm to respond autonomously to environment changes, efficiently avoiding static and dynamic obstacles. The fusion algorithm uses global path planning data to attain the local target point for ODWA. This results in a more effective mixed path planning approach towards the intended destination. A visual representation of the algorithm flow is shown in Fig.4.

    Fig.4 Algorithm flow chart

    Fig.5 Path planning of 40×40 grid map

    Fig.6 Convergence curve of 40×40 grid map

    Fig.7 Path planning of 100×100 grid map

    Fig.8 Convergence curve of 100×100 grid map

    4 Experiments and Numerical Analysis

    The simulation configuration used in this work was the following, Windows 10 64-bit, processor, Intel (R) Core (TM) i7-7700HQ, clocked 2.8 GHz, on-board RAM 8.00 GB, and simulation software Matlab R2021b.

    Experimental data are uniformly reserved to 2 digits after the decimal point. ACS algorithm parameters in the experiment are shown in Table 1, and kinematic parameters of DWA are shown in Table 2.

    Table 1 ACS algorithm parameters

    Table 2 Kinematic parameters of DWA

    (Table 2 continued)

    4.1 Performance analysis of IACS

    In 40×40 and 100×100 grid maps, IACS proposed in this paper, ACS, and the improved algorithm called MACA in Ref. [18] are compared and analyzed.

    4.1.1Experimentalsimulationin40×40gridmap

    The experimental results shown in Table 3 verify that IACS has better performance in terms of the convergence iteration (3 <5), path length (55.36 <57.50), and runtime (0.51 s< 1.10 s). It is shown in Figs.5 and 6 that the path of IACS is smoother and converges earlier.

    Table 3 Simulation data of 40×40 grid map

    4.1.2Experimentalsimulationin100×100gridmap

    From the experimental results shown in Table 4, it can be found that the proposed IACS has the highest efficiency. IACS generates the least path length (142.76 <150.55 <171.42), the smallest convergence iterations (8 <10 <25), and the shortest runtime (3.70 s <7.26 s <8.70 s). Path planning in a 100×100 grid map still converges swiftly, as shown in Figs.7 and 8.

    Table 4 Simulation data of 100×100 grid map

    IACS can obtain a safe and smooth optimization path in two different environments, better than ACS in terms of the convergence speed and the global search ability, achieving the expected goal of IACS.

    4.2 Performance analysis of ODWA

    ODWA uses a retracement mechanism to prevent issues in terms of potential deadlock situations. The specific process of the retracement mechanism is shown in Fig.9(b). The sign of grid colors in the map is shown in Table 5.

    PointAand pointCare the starting point and the dynamic obstacle for the local path planning, respectively. PointBis the waypoint for the local path planning.

    UAV starts local path planning from pointA, and when runs to pointB, and the fusion algorithm has detected a risk of collision at pointC. Currently, the fusion algorithm calls the retracement mechanism to make UAV withdraw from pointBto pointAand continue the local path planning.

    4.3 Dynamic obstacle avoidance analysis of the fusion algorithm

    The fusion algorithm’s global path planning and local path planning abilities for the mixed path planning are tested, and various dynamic obstacles are placed within a 20×20 grid map.

    The path planning task is accomplished by the fusion algorithm in a global path planning as shown in Fig.10. When faced with dynamic obstacles, the algorithm depends on IACS to gather navigation information and determine the start and the goal points for local planning. This results in a mixed path-planning approach as illustrated in Fig.11.

    Fig.10 Grid environment without dynamic obstacles

    Fig.11 Grid environment with two dynamic obstacles

    In Fig.12, the mixed path planning concrete process is displayed. The first stage involves global path planning carried out by IACS as shown in Fig.12(a). ODWA of the fusion algorithm is called, and responsible for the local path planning as shown in Figs. 12(b) and 12(c), which involves dodging dynamic obstacles and exploring the path. Once the local path planning is completed as shown in Fig.12(d), IACS is called upon to complete the global path planning for the second segment in the third stage, after which the task is finished.

    Fig.12 Mixed path planning process with three dynamic obstacles: (a) end of the first global path planning; (b) local path planning; (c) end of local path planning; (d) the second global path planning

    The fusion algorithm’s performance was tested 100 times under dynamic obstacle scenarios. The results of these operations are shown in Table 6.

    Based on Table 6, the fusion algorithm of IACS and ODWA, as proposed in this paper, can complete the mixed path planning in a mixed environment. However, the results also reveal that the success rate of the fusion algorithm decreases as the number of dynamic obstacles increases. This is due to the complexity of the environment where multiple dynamic obstacles move randomly simultaneously. The algorithm may cause errors in the judgment of multiple adjacent dynamic obstacles, sometimes resulting in algorithm planning failures.

    5 Conclusions

    This study presents the fusion algorithm that combines IACS and ODWA to address the inefficiency and difficulty of planning in a mixed environment. The algorithm includes a 16-direction 24-neighborhood search way and a safety grid to enhance the path search speed. Additionally, an elite hybrid strategy is introduced to boost global optimum. DWA is incorporated to tackle the inability of IACS in the local path planning. Two different environment experiments are conducted and the effectiveness of IACS is validated. Further, ODWA is tested in various dynamic obstacles. The experimental results confirm the effectiveness of the fusion algorithm in the mixed path planning.

    The fusion algorithm should be further improved, as its success rate in completing the mixed path planning needs to be 100%. When faced with complex dynamic environments, the algorithm may sometimes encounter a deadlock that cannot calculate the next safe position with the adjacent grid having multiple dynamic obstacles. It requires further investigation in future research to improve the fusion algorithm program for handling dynamic obstacles. Furthermore, expanding into three-dimensional space is an essential aspect of the fusion algorithm’s scope.

    猜你喜歡
    徐海
    Effects of plasma radiation on the nonlinear evolution of neo-classical tearing modes in tokamak plasmas
    鎮(zhèn)原啊 我的母親
    徐海根(徐海)藝術(shù)作品欣賞
    中美小學(xué)數(shù)學(xué)教材研究
    Asymmetric Features for Two Types of ENSO
    A Brief Study Of The Interactive-oriented Language Teaching
    A Brief Study Of The Interactiveoriented Language Teaching
    徐海:課堂內(nèi)外“柯南迷”
    徐海星:毫不費(fèi)勁減十斤
    優(yōu)雅(2014年8期)2014-08-12 07:37:18
    FDTD Simulations on Plasmonic Properties of End-to-End and Side-by-Side Assembled Au Nanorods*
    久久精品成人免费网站| 亚洲三区欧美一区| 两个人免费观看高清视频| 欧美日韩亚洲综合一区二区三区_| 后天国语完整版免费观看| 亚洲第一电影网av| 激情在线观看视频在线高清| 久久精品aⅴ一区二区三区四区| 久久人妻福利社区极品人妻图片| 亚洲成国产人片在线观看| 精品高清国产在线一区| 午夜福利在线在线| 黄片大片在线免费观看| 成人18禁在线播放| 精品福利观看| 国产91精品成人一区二区三区| 啪啪无遮挡十八禁网站| 亚洲一区高清亚洲精品| 色婷婷久久久亚洲欧美| 一区二区日韩欧美中文字幕| 久久精品成人免费网站| 精品久久久久久久久久免费视频| 黄色 视频免费看| 免费在线观看完整版高清| 中亚洲国语对白在线视频| 欧美一级毛片孕妇| 亚洲色图av天堂| 精华霜和精华液先用哪个| 淫秽高清视频在线观看| 午夜老司机福利片| 无限看片的www在线观看| 亚洲精品在线观看二区| 极品教师在线免费播放| 亚洲免费av在线视频| 亚洲午夜理论影院| 亚洲自拍偷在线| 久久久精品欧美日韩精品| 免费在线观看黄色视频的| 午夜免费鲁丝| 男人舔奶头视频| 午夜福利免费观看在线| 欧美黄色淫秽网站| 手机成人av网站| 中文字幕人成人乱码亚洲影| 欧美成人一区二区免费高清观看 | 午夜老司机福利片| 欧美 亚洲 国产 日韩一| 国产男靠女视频免费网站| 亚洲人成77777在线视频| 最近在线观看免费完整版| 黄片播放在线免费| 18禁观看日本| 久久中文字幕人妻熟女| 亚洲欧美精品综合久久99| 99国产精品一区二区三区| 亚洲美女黄片视频| cao死你这个sao货| 精品第一国产精品| 成人av一区二区三区在线看| 嫩草影院精品99| 免费在线观看亚洲国产| 亚洲国产欧美网| 波多野结衣高清无吗| or卡值多少钱| 精品日产1卡2卡| 亚洲最大成人中文| 久久精品国产清高在天天线| 欧美乱妇无乱码| 日本一本二区三区精品| 成人av一区二区三区在线看| 亚洲片人在线观看| 色精品久久人妻99蜜桃| av片东京热男人的天堂| 91大片在线观看| 精品少妇一区二区三区视频日本电影| 日本精品一区二区三区蜜桃| 欧美人与性动交α欧美精品济南到| 欧美一级a爱片免费观看看 | 香蕉丝袜av| 久久久久国产一级毛片高清牌| 欧美国产精品va在线观看不卡| 精华霜和精华液先用哪个| 国产成人精品久久二区二区91| 国产精品久久电影中文字幕| 999久久久精品免费观看国产| 亚洲成av片中文字幕在线观看| 成年人黄色毛片网站| 精品国产乱子伦一区二区三区| 国产爱豆传媒在线观看 | 美女 人体艺术 gogo| 亚洲中文日韩欧美视频| 美女午夜性视频免费| 免费搜索国产男女视频| 精品久久久久久久久久免费视频| 免费看a级黄色片| 精品免费久久久久久久清纯| 亚洲天堂国产精品一区在线| 18禁观看日本| 国产成人精品久久二区二区91| 国内久久婷婷六月综合欲色啪| 精品少妇一区二区三区视频日本电影| 琪琪午夜伦伦电影理论片6080| x7x7x7水蜜桃| 757午夜福利合集在线观看| 在线观看一区二区三区| 91国产中文字幕| 中文字幕av电影在线播放| 亚洲av成人不卡在线观看播放网| 少妇裸体淫交视频免费看高清 | 黄色a级毛片大全视频| 老司机靠b影院| 久久久久久大精品| 成人亚洲精品av一区二区| 国产精品98久久久久久宅男小说| 99在线人妻在线中文字幕| 国产国语露脸激情在线看| 欧美乱码精品一区二区三区| www日本黄色视频网| a级毛片在线看网站| 91大片在线观看| 黄色 视频免费看| 国产精品爽爽va在线观看网站 | 日韩精品青青久久久久久| 久久人妻福利社区极品人妻图片| 中文在线观看免费www的网站 | 啦啦啦 在线观看视频| 国产成人一区二区三区免费视频网站| 婷婷精品国产亚洲av| 久久天堂一区二区三区四区| 精品熟女少妇八av免费久了| 又黄又粗又硬又大视频| 美女高潮喷水抽搐中文字幕| 免费在线观看亚洲国产| 日本成人三级电影网站| 88av欧美| 首页视频小说图片口味搜索| 久久香蕉精品热| 亚洲熟妇熟女久久| 色av中文字幕| 悠悠久久av| 亚洲性夜色夜夜综合| 首页视频小说图片口味搜索| 国产午夜福利久久久久久| 国产精品爽爽va在线观看网站 | 国产av在哪里看| 亚洲欧美一区二区三区黑人| 久久 成人 亚洲| 2021天堂中文幕一二区在线观 | 一区二区三区高清视频在线| 男女之事视频高清在线观看| 看免费av毛片| www日本黄色视频网| 午夜免费激情av| 国产激情偷乱视频一区二区| avwww免费| 亚洲五月婷婷丁香| 熟妇人妻久久中文字幕3abv| 美女高潮喷水抽搐中文字幕| 久久久久国产一级毛片高清牌| 国产视频一区二区在线看| 亚洲av日韩精品久久久久久密| 99久久综合精品五月天人人| 在线观看免费视频日本深夜| 99在线人妻在线中文字幕| 国产成人欧美在线观看| 色哟哟哟哟哟哟| 亚洲狠狠婷婷综合久久图片| 最近最新中文字幕大全电影3 | 欧美乱妇无乱码| 欧美日本视频| 丁香欧美五月| 操出白浆在线播放| 老司机深夜福利视频在线观看| 一区二区日韩欧美中文字幕| 国产视频内射| 日韩中文字幕欧美一区二区| 久久人妻福利社区极品人妻图片| 精品国内亚洲2022精品成人| 亚洲片人在线观看| 亚洲欧美激情综合另类| 亚洲精品在线美女| 啪啪无遮挡十八禁网站| 韩国av一区二区三区四区| 久久婷婷人人爽人人干人人爱| 99在线视频只有这里精品首页| 香蕉久久夜色| 亚洲精品美女久久久久99蜜臀| 很黄的视频免费| 手机成人av网站| 哪里可以看免费的av片| 色尼玛亚洲综合影院| 18禁观看日本| 国产精华一区二区三区| 国产伦一二天堂av在线观看| 十八禁网站免费在线| 成年女人毛片免费观看观看9| 日本黄色视频三级网站网址| 日日干狠狠操夜夜爽| 欧美久久黑人一区二区| 国产精品香港三级国产av潘金莲| 美女 人体艺术 gogo| 一级a爱视频在线免费观看| 女生性感内裤真人,穿戴方法视频| 中出人妻视频一区二区| 久久欧美精品欧美久久欧美| 久久午夜亚洲精品久久| 老司机在亚洲福利影院| 一个人免费在线观看的高清视频| 人人澡人人妻人| 91成人精品电影| 丝袜人妻中文字幕| 欧美国产精品va在线观看不卡| 国产精品,欧美在线| av片东京热男人的天堂| 久久久久久人人人人人| 搡老妇女老女人老熟妇| 怎么达到女性高潮| 午夜免费观看网址| 欧美黄色淫秽网站| 国内少妇人妻偷人精品xxx网站 | 欧美zozozo另类| 99精品在免费线老司机午夜| 色综合亚洲欧美另类图片| 久久这里只有精品19| 国产精品1区2区在线观看.| 色综合站精品国产| 夜夜躁狠狠躁天天躁| 国产又爽黄色视频| 久99久视频精品免费| 成人国产综合亚洲| videosex国产| 脱女人内裤的视频| 香蕉av资源在线| 日本撒尿小便嘘嘘汇集6| 在线观看免费视频日本深夜| 69av精品久久久久久| 麻豆一二三区av精品| 两个人免费观看高清视频| 日韩一卡2卡3卡4卡2021年| 变态另类成人亚洲欧美熟女| 大型av网站在线播放| 丁香六月欧美| 日本精品一区二区三区蜜桃| 天堂影院成人在线观看| 午夜a级毛片| 一进一出抽搐动态| 不卡一级毛片| 这个男人来自地球电影免费观看| 手机成人av网站| or卡值多少钱| 看片在线看免费视频| 久热这里只有精品99| 国产视频内射| 12—13女人毛片做爰片一| 1024视频免费在线观看| 好看av亚洲va欧美ⅴa在| 亚洲av成人av| 欧美大码av| 18禁黄网站禁片免费观看直播| 麻豆成人午夜福利视频| 久久精品91蜜桃| 亚洲aⅴ乱码一区二区在线播放 | 精品人妻1区二区| 日韩av在线大香蕉| 国产免费男女视频| 老汉色av国产亚洲站长工具| 制服人妻中文乱码| 亚洲国产看品久久| 性欧美人与动物交配| 亚洲国产欧美日韩在线播放| 成人手机av| 午夜激情av网站| 制服丝袜大香蕉在线| 精品国内亚洲2022精品成人| 亚洲久久久国产精品| 国产激情久久老熟女| 此物有八面人人有两片| 操出白浆在线播放| 一区二区三区高清视频在线| 1024手机看黄色片| 亚洲 欧美 日韩 在线 免费| 国产成人影院久久av| 欧美日本视频| 亚洲狠狠婷婷综合久久图片| 亚洲中文日韩欧美视频| 中文字幕人妻丝袜一区二区| xxx96com| 男女做爰动态图高潮gif福利片| 欧美黄色淫秽网站| 久久人人精品亚洲av| 国产精品美女特级片免费视频播放器 | 桃红色精品国产亚洲av| 在线观看免费视频日本深夜| 免费看十八禁软件| 一级黄色大片毛片| 1024视频免费在线观看| 变态另类成人亚洲欧美熟女| 久久精品91无色码中文字幕| 白带黄色成豆腐渣| cao死你这个sao货| 老司机深夜福利视频在线观看| 久久久久久大精品| 在线国产一区二区在线| 琪琪午夜伦伦电影理论片6080| 国产在线精品亚洲第一网站| 亚洲第一青青草原| 久久午夜综合久久蜜桃| 午夜免费观看网址| 成人18禁高潮啪啪吃奶动态图| 巨乳人妻的诱惑在线观看| 成人国语在线视频| 女人高潮潮喷娇喘18禁视频| xxxwww97欧美| 亚洲美女黄片视频| 亚洲成国产人片在线观看| 日韩欧美国产一区二区入口| 精品一区二区三区四区五区乱码| 精品电影一区二区在线| 可以在线观看的亚洲视频| 欧美三级亚洲精品| 亚洲成av人片免费观看| 色哟哟哟哟哟哟| 一区二区三区精品91| 一二三四在线观看免费中文在| 亚洲欧美一区二区三区黑人| 亚洲一区二区三区不卡视频| 免费女性裸体啪啪无遮挡网站| 亚洲午夜理论影院| 丝袜美腿诱惑在线| 一本大道久久a久久精品| 亚洲狠狠婷婷综合久久图片| 91九色精品人成在线观看| 91成年电影在线观看| 国产精品野战在线观看| 久久久久久大精品| 国产亚洲精品av在线| videosex国产| 精品高清国产在线一区| 成在线人永久免费视频| 黑人操中国人逼视频| 国产精品日韩av在线免费观看| 两个人看的免费小视频| www.999成人在线观看| 午夜久久久久精精品| 少妇被粗大的猛进出69影院| 国产又黄又爽又无遮挡在线| 在线永久观看黄色视频| 久久热在线av| 亚洲,欧美精品.| 国产又黄又爽又无遮挡在线| 免费av毛片视频| 国产精品永久免费网站| 丰满的人妻完整版| 观看免费一级毛片| 亚洲精品美女久久久久99蜜臀| 精品久久久久久久久久免费视频| 亚洲精品美女久久av网站| 精品国产乱子伦一区二区三区| 国产精品二区激情视频| 成人欧美大片| 久久久久久大精品| 国产精品亚洲美女久久久| 国产精品av久久久久免费| 在线观看舔阴道视频| 亚洲狠狠婷婷综合久久图片| 国产免费男女视频| 色播亚洲综合网| 国产乱人伦免费视频| 一个人观看的视频www高清免费观看 | 高清毛片免费观看视频网站| 国产亚洲精品久久久久久毛片| 在线观看午夜福利视频| 动漫黄色视频在线观看| 在线观看日韩欧美| 午夜免费成人在线视频| 亚洲一区高清亚洲精品| 国产又色又爽无遮挡免费看| 欧洲精品卡2卡3卡4卡5卡区| 他把我摸到了高潮在线观看| 亚洲在线自拍视频| 久久久水蜜桃国产精品网| 亚洲 欧美一区二区三区| 久久久久久久久久黄片| 国产在线精品亚洲第一网站| 啦啦啦 在线观看视频| 久久 成人 亚洲| 亚洲无线在线观看| 免费在线观看视频国产中文字幕亚洲| 夜夜爽天天搞| 一边摸一边做爽爽视频免费| 国产熟女午夜一区二区三区| 91字幕亚洲| 国内精品久久久久久久电影| 久久国产乱子伦精品免费另类| 欧美丝袜亚洲另类 | 一区二区三区高清视频在线| 午夜激情福利司机影院| 欧美日本亚洲视频在线播放| 91麻豆av在线| 一区福利在线观看| 久久热在线av| 久久久久久国产a免费观看| 一级毛片高清免费大全| av在线天堂中文字幕| 搞女人的毛片| 国产精品久久视频播放| 成人特级黄色片久久久久久久| 在线观看免费日韩欧美大片| 国内少妇人妻偷人精品xxx网站 | 在线观看日韩欧美| 女人高潮潮喷娇喘18禁视频| 欧美日韩亚洲国产一区二区在线观看| 久久精品国产清高在天天线| 欧美最黄视频在线播放免费| 一个人免费在线观看的高清视频| 国产精品乱码一区二三区的特点| 母亲3免费完整高清在线观看| 麻豆成人av在线观看| 久久性视频一级片| 亚洲全国av大片| 很黄的视频免费| 天天躁狠狠躁夜夜躁狠狠躁| 日本在线视频免费播放| 亚洲熟妇中文字幕五十中出| 真人做人爱边吃奶动态| 亚洲九九香蕉| 亚洲色图av天堂| 俺也久久电影网| 丝袜在线中文字幕| 免费在线观看成人毛片| 99re在线观看精品视频| 国产人伦9x9x在线观看| 欧美激情极品国产一区二区三区| 在线观看舔阴道视频| 亚洲精品中文字幕一二三四区| 美女国产高潮福利片在线看| 高清毛片免费观看视频网站| 男人舔女人的私密视频| 首页视频小说图片口味搜索| 在线永久观看黄色视频| 国产激情欧美一区二区| 免费看美女性在线毛片视频| 手机成人av网站| 久久久久九九精品影院| 亚洲全国av大片| 性欧美人与动物交配| 欧美黑人精品巨大| 啦啦啦观看免费观看视频高清| 90打野战视频偷拍视频| 不卡av一区二区三区| 欧美日韩精品网址| 中亚洲国语对白在线视频| 亚洲中文字幕一区二区三区有码在线看 | 19禁男女啪啪无遮挡网站| 欧美乱码精品一区二区三区| 欧美zozozo另类| 日韩中文字幕欧美一区二区| 精品一区二区三区四区五区乱码| 国产又色又爽无遮挡免费看| 精品一区二区三区av网在线观看| 久久久国产精品麻豆| 亚洲va日本ⅴa欧美va伊人久久| 麻豆av在线久日| 亚洲精品中文字幕在线视频| 国产区一区二久久| 国产精品久久久人人做人人爽| 啦啦啦观看免费观看视频高清| 听说在线观看完整版免费高清| 曰老女人黄片| 久久性视频一级片| 国产av在哪里看| 国产成人啪精品午夜网站| 日韩欧美三级三区| 精品高清国产在线一区| 免费人成视频x8x8入口观看| 国产99白浆流出| 在线看三级毛片| av欧美777| 欧美一级a爱片免费观看看 | 色综合欧美亚洲国产小说| 1024香蕉在线观看| 色综合婷婷激情| 亚洲国产精品成人综合色| 国产一级毛片七仙女欲春2 | 国产欧美日韩一区二区三| 啦啦啦观看免费观看视频高清| 黄色视频,在线免费观看| 国产黄片美女视频| 国产精品美女特级片免费视频播放器 | 日韩国内少妇激情av| 亚洲精华国产精华精| 欧美一区二区精品小视频在线| 免费看日本二区| 久久天堂一区二区三区四区| 色播在线永久视频| 中亚洲国语对白在线视频| 国产爱豆传媒在线观看 | 老熟妇乱子伦视频在线观看| 亚洲激情在线av| 丁香六月欧美| 免费人成视频x8x8入口观看| 一区二区三区高清视频在线| 人妻久久中文字幕网| 国产精品二区激情视频| 无限看片的www在线观看| 高清毛片免费观看视频网站| 国产男靠女视频免费网站| 在线播放国产精品三级| 淫秽高清视频在线观看| 欧美性长视频在线观看| 精品欧美国产一区二区三| 日韩成人在线观看一区二区三区| 美女扒开内裤让男人捅视频| 久久精品影院6| 欧美国产精品va在线观看不卡| 色精品久久人妻99蜜桃| 久久久久久人人人人人| 一卡2卡三卡四卡精品乱码亚洲| 国产精品二区激情视频| 超碰成人久久| 久9热在线精品视频| 在线视频色国产色| 久久久久久久久免费视频了| 免费女性裸体啪啪无遮挡网站| 成人特级黄色片久久久久久久| x7x7x7水蜜桃| 18禁国产床啪视频网站| 美国免费a级毛片| 中国美女看黄片| 人人妻,人人澡人人爽秒播| www.熟女人妻精品国产| 日韩视频一区二区在线观看| 精品不卡国产一区二区三区| 97超级碰碰碰精品色视频在线观看| 精品国产美女av久久久久小说| 精品久久久久久久人妻蜜臀av| 欧美zozozo另类| 欧美一区二区精品小视频在线| 欧美另类亚洲清纯唯美| av有码第一页| 一级黄色大片毛片| 桃色一区二区三区在线观看| 美女高潮喷水抽搐中文字幕| 日本熟妇午夜| 久久九九热精品免费| 免费看a级黄色片| 欧美久久黑人一区二区| 日本a在线网址| 悠悠久久av| 欧美另类亚洲清纯唯美| 久久久国产精品麻豆| 国产乱人伦免费视频| 操出白浆在线播放| 亚洲片人在线观看| 久久 成人 亚洲| 色精品久久人妻99蜜桃| 女人高潮潮喷娇喘18禁视频| 国产精品一区二区免费欧美| 亚洲七黄色美女视频| 国产精品综合久久久久久久免费| 欧美中文综合在线视频| 波多野结衣高清作品| 欧美精品啪啪一区二区三区| 久99久视频精品免费| 国产免费av片在线观看野外av| 热re99久久国产66热| 国产成人影院久久av| 精品久久久久久,| 精品久久久久久久久久免费视频| 欧美成人性av电影在线观看| 欧美日韩黄片免| 欧美色欧美亚洲另类二区| 99热只有精品国产| 岛国在线观看网站| 日韩有码中文字幕| 久热这里只有精品99| 在线国产一区二区在线| 午夜福利视频1000在线观看| 一级a爱片免费观看的视频| 啦啦啦观看免费观看视频高清| 人成视频在线观看免费观看| 男人舔女人的私密视频| 国产aⅴ精品一区二区三区波| 精品免费久久久久久久清纯| 国产爱豆传媒在线观看 | 亚洲人成网站在线播放欧美日韩| 少妇的丰满在线观看| 久久精品影院6| 国语自产精品视频在线第100页| 久久久精品国产亚洲av高清涩受| 精品国产美女av久久久久小说| 无限看片的www在线观看| 久9热在线精品视频| 嫩草影视91久久| xxx96com| 国产高清有码在线观看视频 | 国产成人系列免费观看| 一级毛片精品| 俺也久久电影网| 中文字幕人成人乱码亚洲影| 午夜日韩欧美国产| 一本一本综合久久| 男女做爰动态图高潮gif福利片| 久久久久免费精品人妻一区二区 | 午夜两性在线视频| 国产精品亚洲av一区麻豆| 一二三四社区在线视频社区8| av免费在线观看网站| 亚洲成a人片在线一区二区| АⅤ资源中文在线天堂| 欧美精品亚洲一区二区| 性欧美人与动物交配| 女性生殖器流出的白浆| 一区二区三区激情视频| 国产激情久久老熟女|