• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Cleaning of Multi-Source Uncertain Time Series Data Based on PageRank

    2023-12-28 09:12:14GAOJiawei高嘉偉SUNJizhou孫紀舟

    GAO Jiawei(高嘉偉), SUN Jizhou(孫紀舟)

    Faculty of Computer and Software Engineering, Huaiyin Institute of Technology, Huai’an 223003, China

    Abstract:There are errors in multi-source uncertain time series data. Truth discovery methods for time series data are effective in finding more accurate values, but some have limitations in their usability. To tackle this challenge, we propose a new and convenient truth discovery method to handle time series data. A more accurate sample is closer to the truth and, consequently, to other accurate samples. Because the mutual-confirm relationship between sensors is very similar to the mutual-quote relationship between web pages, we evaluate sensor reliability based on PageRank and then estimate the truth by sensor reliability. Therefore, this method does not rely on smoothness assumptions or prior knowledge of the data. Finally, we validate the effectiveness and efficiency of the proposed method on real-world and synthetic data sets, respectively.

    Key words:big data; data cleaning; time series; truth discovery; PageRank

    0 Introduction

    Numerous data types play a vital role as a consequence of the rapid growth of big data and internet technology. The time series data gathered by sensors are also used in many spheres of life, including the measurement of travel data for planes, cars, and other vehicles[1], the real-time monitoring of traffic flow, the real-time monitoring of temperature and humidity in intelligent agriculture,etc. People improve their decision-making through analysis of a large amount of data which are collected in real-time from sensors.

    Due to many issues including accuracy, quality, and human factors, the time series data gathered by multiple sensors cannot be immediately used as the final data for analysis and study. With a vast amount of information, determining whether the data contain the needed truth or which sources provide more precise data is a challenge. Several frameworks have been investigated to address this issue[2-5]. The Mean[6]and the Median[6]methods are the simplest ones. However, they have an apparent flaw: these data sources are viewed as equally trustworthy, which is typically not the case in real life. After examining several different truth discovery methods for time series data, we discover that the online truth discovery (OTD) method[7]and the RelSen method[8]produce better results and can effectively clean time series data. However, they still have stringent requirements for smoothing and prior knowledge of the data.

    In this paper, in order to develop a more comprehensive method that can be applied to a wide range of data, we propose a new multi-source uncertain time series data cleaning method, truth discovery based on PageRank[9](TDBPR). Commonly, the more accurate a sample is, the closer it is to the truth. Therefore, we combine the method with Google Chrome’s PageRank method and calculate the weights by the PageRank method to determine which source has higher reliability. In this way, the reliability and the truth of the source can be learned from the data in an unsupervised manner. Specifically, our contributions are listed as follows.

    1)We propose TDBPR and formalize the truth discovery into a PageRank method which has fewer data prerequisites and is more flexible with various data sets.

    2)The proposed method combines the PageRank method and finds a more accurate estimated truth by constantly calculating the weights to be assigned.

    3)Experiment on real-world and synthetic data sets verifies the effectiveness of the method in truth discovery.

    The remaining part of this paper is organized as follows. In section 1, some related work on truth discovery and time series cleaning is presented. In section 2, the data model is described and the problem is formalized. Then, the method is described in detail in section 3. Section 4 presents the experiments and results. Finally, this paper is concluded in section 5.

    1 Related Work

    Time series data are now crucial data for analysis and strategic decision-making. However, errors are commonly found in time series data. The conclusions or rules are bound to be inaccurate if the information is not corrected. Numerous time series cleaning methods have emerged in the face of difficulties such as large data volumes, high error rates, and complex causes of error generation. In Ref. [10], the existing cleaning methods are divided into four categories: smoothing-based methods which are commonly used to eliminate data noise especially numerical data noise, such as Interpolation[11]and Kalman filter[12]; constraint-based methods; statistical-based methods; time series anomaly detection methods. For different domains, Dingetal.[13]proposed an industrial time series cleaning system with a user-friendly interface to use results and log visualization during each cleaning process. EDCleaner was designed for social networks, and it could detect and clean the data by features of statistical data fields[14]. PACAS was proposed for data cleaning between service providers and customers[15].

    As a part of data cleaning, numerous truth discovery methods[16-19]have been developed with different focuses, such as privacy-preserving truth discovery[20-21]and source selection[22]. Early multi-source truth discovery methods use majority voting, and the data with more occurrence times are the estimated truth. However, this method lacks judgment on the reliability of data sources, so the accuracy is often low. Yinetal.[23]proposed the iterative calculation of the source weight and the estimated truth, and introduced the concept of the source consistency hypothesis which was widely adopted in other truth discovery methods. In 2-Estimates, complementary voting was used by assuming that each object had only one truth[24]. While 3-Estimates augmented 2-Estimates by considering the difficulty of obtaining the truth for each object[24]. For discovering continuous object truth, Yangetal.[25]proposed a semi-supervised truth discovery method. Yaoetal.[7]proposed an online truth discovery(OTD) method that combined time series forecasting and considered facts with smooth evolution and seasonal trends. Fengetal.[8]proposed a method that combined data cleaning and assigned reliability parameters to data sources.

    In cleaning multi-source uncertain time series data methods, the OTD method and the RelSen method are the primary methods. Both methods have a strong theoretical basis, and the experimental results can be calculated very close on some data sets. Nevertheless, they both have strong assumptions, require data sets to be smooth and periodic, or require a large number of manual parameter settings, which limits the usability of the methods. Therefore, this paper proposes a more adaptive multi-source time series cleaning method without parameter settings or data smoothing.

    2 Problem Statement

    Time series data are ordered sequences of real numbers like temperature or humidity,C=[c1,c2, …,cj,…,cn]T(1≤j≤n) wherecjis a random variable that represents the data obtained at thejthtime point, butcj’sground truth is unknown because of the noise in the sequence. The multi-source time series data are collected withmdata sources such as sensors to get the sample data. Theithsource sends the time series data asSi=[si,1,si,2,…,si,j,…,si,n]T(1≤i≤m). Since the source is inaccurate, the claimsi,jis not directly equal to the ground truthxj, and has an error termei,j. The relationship satisfiessi,j=xj+ei,j, meaning that the measured value is equal to the arithmetic sum of the ground truth and the error. It is assumed that the error generated by each sourceSiis a random variableEithat obeys a normal distribution, and the meanμof this normal distribution is 0. This means that there is no systematic error in each source, and the standard deviation is an unknown random variableσi.

    In this way, our unknown data are the ground truth seriesX=[x1,x2, …,xj, …,xn]Tand the standard deviation of each source∑={σ1,σ2,…,σm}. Here we consider that the errors generated by each source are independent of each other, and the source’s errors at different moments are also independent of the others.

    We can now define the problems of interest in this paper.

    InputThe claimed series samplesS={S1,S2, …,Si,…,Sm}(1≤i≤m) contains errors, where eachSirepresentsSi=[si,1,si,2, …,si,j, …,si,n]T(1≤j≤n).

    InferringtruthGiven an input claimed seriesSwith no truth information, we intend to output the estimated truthX*.

    InferringsourcequalityMeanwhile, we also provide the weight which is used to determine how reliable a source is. The higher its weight is, the more reliable it is.

    3 Methodology

    This section provides a detailed introduction to TDBPR, including how it calculates the weight and gets the estimated truth.

    3.1 Theory

    We consider that a more accurate sample is closer to others. It can be understood from Fig.1.

    Fig.1 Sample distribution

    Each point in Fig.1 represents a sample distributed in a two-dimensional plane, and those distributed in the dense center are more precise samples, as can be proved from the Euclidean distancedE:

    (1)

    When calculating the distance expectation between two samples,S1=X+E1andS2=X+E2. Since the error expectation of each data source is 0, the distance expectationdecan be simplified as

    (2)

    whereD(·) is the variance fuction.

    From Eq. (2), it can be seen that the distance of each sample is proportional to the variance of its error term. Thus the more accurate the sample is, the smaller the distance is.

    3.2 PageRank

    In practical applications, there is a great deal of data in graphs, the internet and social networks that can be considered as graphs. PageRank, as a ranking of the importance of web pages, is a representative method for link analysis in graphs[26]. It configures the initial PageRank value of each page as 1/m, wheremis the number of pages. The PageRank value after each iteration determines how influential a page is. The higher the value is, the greater the influence of the page is. The PageRank value is calculated by

    (3)

    The importance of the current page is determined by the latest PageRank value obtained from multiple iterations. This is similar to our proposed idea of calculating the distance between data to determine its reliability, so it is decided to calculate the weight of each source based on PageRank.

    3.3 Weight and truth computation

    Firstly, all data sources should have the same initial weights, and the sum of the initial weights should be one. We set

    (4)

    to denote the weight of sourceSiat the initial moment.

    Then, the iterative process is entered to distribute the weights of each source according to the distance from other sources, or it is understood that each source obtains the weight based on the distance information from other sources. The iterative equation is

    (5)

    (6)

    This iterative process continues until convergence, and the weight vectorw=[w1,w2,…,wm]Tcan be obtained. Based on the weight information, the truth can be estimated by the weighted average:

    (7)

    Fig.2 Truth discovery based on PageRank

    It can be seen that the time complexity of TDBPR isO(nm2+tm2), wherenis the sequence length,mis the number of sources, andtis the number of iterations.

    4 Experiments

    In this section, we experimentally evaluate and compare TDBPR with baseline methods on real-world and synthetic data sets.

    4.1 Evaluation metrics

    In experiments, we use the following two evaluation metrics to evaluate each method.

    The mean absolute error (MAE)EMAis

    (8)

    The root mean square error (RMSE)ERMSis

    (9)

    Both metrics represent the magnitude of the error by two arithmetic means. MAE is more indicative to small errors, while RMSE focuses more on large errors. For both MAE and RMSE, the lower the value is, the closer the estimated truth to the ground truth is, and the better the performance is.

    4.2 Experiments on real-world data

    To verify that TDBPR has validity in various situations, we find 85 internationally published data sets with a variety of domains and some data types that also show smoothness and periodicity. The data sets have a certain authority. Experiments are conducted by adding random noise to the collected real-world data sets.

    We compare TDBPR with several proposed methods. The Mean method takes the mean value of the data sets as the estimated truth. The Median method takes the median of the data sets as the estimated truth. The OTD method contains two components: the seamless integration of truth discovery and time series analysis that enhances each other and infers the estimated truth in a smooth and periodic time series. The RelSen method is the latest truth discovery method for numerical data. Firstly, it assigns a reliability score to each sensor that can be dynamically updated according to the latest measurement error of the sensor in a sliding window. Then the reliability score is used to eliminate the measurement error of the sensor. Finally, it cleans the data and gets the estimated truth.

    The experimental results show that TDBPR has a certain superiority over the other four methods in 85 data sets. Due to the large number of experimental results, only five representative results are listed in Table 1.

    As there are numerous data in each set, the Mean and the Median methods make the mean and the median data as the estimated truth, so they are unstable and have a wide margin of error. The OTD method does not perform better in these large random data sets because it mainly performs well on data that are smooth and periodic. At the same time, due to the large data sets in the experiment, the RelSen method cannot set the parameters in advance for each data set, instead, it sets the same parameters, which makes it impossible to show efficient performance. On the contrary, the TDBPR method only focuses on the distance between sample points. More weight will be assigned if the sample is closer to others, so the degree of sample dispersion and complexity have little influence on TDBPR. Due to the lack of complex prerequisite requirements, TDBPR performs better in the face of more random and featureless data so that it can be applied to a broader range of data with more adaptability.

    4.3 Experiments on synthetic data

    This series of experiments on synthetic data sets aims to demonstrate the performance of TDBPR on various synthetic data set sizes and investigate the relationship between its time cost and sequence length.

    We randomly generate a large amount of data to test whether TDBPR can always present a better performance on data sets at different sequence lengths. The experimental results show that TDBPR consistently outperforms the other four methods in a variety of samples with a multiple of ten in length. Part of the experimental data are shown in Table 2.

    Table 2 Performance of different methods on synthetic data sets

    Even though the error of TDBPR is larger than that in experiments on real-world data sets, it is still better than the other four methods. Experiments show that TDBPR can perform well with both smooth and non-smooth data, which is due to the fact that TDBPR only focuses on the distance between samples to estimate the truth.

    We also investigate how the length of the sample sequence is correlated with its time cost. By recording the time cost under different sequence lengths in Fig.3, we find that as the sequence length increases, the time cost tends to grow steadily. It is because the time complexity of TDBPR isO(nm2+tm2) of which the sequence length has a linear relationship with the time cost, which proves that TDBPR has good scalability.

    Fig.3 Time cost of TDBPR at different sequence lengths

    5 Conclusions

    Time series data generated by multi-source often contain noise points. In order to extract trustworthy information from this data, we propose TDBPR with adaptability and wide applications. The main logic behind TDBPR is fairly straightforward. TDBPR considers that the weight of estimating reliability can be determined according to the distance between sample points and other points. Based on the PageRank method, we set the initial weights and allocation ratio of subsequent weights. TDBPR does not rely on smoothness assumptions or prior knowledge of the data. Through extensive experiments on real-world and synthetic data sets, the effectiveness of TDBPR in truth discovery is demonstrated.

    又黄又爽又免费观看的视频| 亚洲片人在线观看| 超碰97精品在线观看| 亚洲人成网站在线播放欧美日韩| 欧美精品啪啪一区二区三区| 欧美日韩av久久| 色婷婷久久久亚洲欧美| 在线十欧美十亚洲十日本专区| 免费在线观看视频国产中文字幕亚洲| 一区二区三区国产精品乱码| 看免费av毛片| 亚洲精品久久午夜乱码| 成人影院久久| 成人18禁高潮啪啪吃奶动态图| 久久伊人香网站| 伦理电影免费视频| 亚洲免费av在线视频| 69精品国产乱码久久久| 美女 人体艺术 gogo| 99精品久久久久人妻精品| 老鸭窝网址在线观看| 最近最新中文字幕大全免费视频| 日韩欧美免费精品| 色综合站精品国产| 欧美激情极品国产一区二区三区| 丰满的人妻完整版| 80岁老熟妇乱子伦牲交| 精品国产美女av久久久久小说| avwww免费| 亚洲国产毛片av蜜桃av| 他把我摸到了高潮在线观看| 91字幕亚洲| 又黄又爽又免费观看的视频| 色播在线永久视频| 真人做人爱边吃奶动态| 久久 成人 亚洲| 精品一区二区三区av网在线观看| 国产高清国产精品国产三级| 欧美一级毛片孕妇| 自拍欧美九色日韩亚洲蝌蚪91| tocl精华| 欧美精品一区二区免费开放| 这个男人来自地球电影免费观看| 亚洲av第一区精品v没综合| 精品乱码久久久久久99久播| 两个人免费观看高清视频| 国产男靠女视频免费网站| 色哟哟哟哟哟哟| 一边摸一边抽搐一进一出视频| 美女福利国产在线| 天堂影院成人在线观看| 成人亚洲精品av一区二区 | 夫妻午夜视频| 女人被狂操c到高潮| 国产精品秋霞免费鲁丝片| 一级作爱视频免费观看| 久久人妻福利社区极品人妻图片| 90打野战视频偷拍视频| 91麻豆精品激情在线观看国产 | 黄色片一级片一级黄色片| 久久午夜亚洲精品久久| 香蕉国产在线看| 老鸭窝网址在线观看| 亚洲av日韩精品久久久久久密| 日韩人妻精品一区2区三区| 免费在线观看黄色视频的| 欧美乱妇无乱码| 亚洲九九香蕉| 亚洲成人国产一区在线观看| av在线播放免费不卡| 日本欧美视频一区| 亚洲精品一区av在线观看| 丝袜在线中文字幕| 精品国产超薄肉色丝袜足j| 免费在线观看视频国产中文字幕亚洲| 国产精品一区二区免费欧美| 国产高清videossex| 久久精品国产99精品国产亚洲性色 | 国产精品 国内视频| 51午夜福利影视在线观看| 亚洲七黄色美女视频| 午夜免费观看网址| 欧美av亚洲av综合av国产av| 男人舔女人的私密视频| 久久婷婷成人综合色麻豆| 欧美成人午夜精品| 欧美日韩精品网址| 99国产精品一区二区三区| 欧美日韩瑟瑟在线播放| 啦啦啦在线免费观看视频4| 黄色丝袜av网址大全| 国产精品 欧美亚洲| 夫妻午夜视频| 久久草成人影院| 十分钟在线观看高清视频www| aaaaa片日本免费| 在线观看日韩欧美| 啪啪无遮挡十八禁网站| 免费高清在线观看日韩| 久久精品影院6| 国产欧美日韩精品亚洲av| 久久中文看片网| 欧美老熟妇乱子伦牲交| 丰满的人妻完整版| 一进一出好大好爽视频| 国产蜜桃级精品一区二区三区| 久久久国产欧美日韩av| 乱人伦中国视频| av天堂在线播放| 神马国产精品三级电影在线观看 | 精品国产乱子伦一区二区三区| 国产精品亚洲av一区麻豆| 久久午夜亚洲精品久久| 啪啪无遮挡十八禁网站| 亚洲av第一区精品v没综合| 久久中文字幕一级| 精品久久久久久久毛片微露脸| 极品教师在线免费播放| 国产成人精品在线电影| 久久中文字幕人妻熟女| 亚洲国产毛片av蜜桃av| 欧美成人午夜精品| 亚洲在线自拍视频| 人妻久久中文字幕网| 精品欧美一区二区三区在线| 国产亚洲欧美98| 国产精品美女特级片免费视频播放器 | 黄色视频,在线免费观看| 国产一区二区激情短视频| 一进一出好大好爽视频| 国产精品一区二区三区四区久久 | 国产蜜桃级精品一区二区三区| 亚洲国产精品999在线| 成人国产一区最新在线观看| 国产深夜福利视频在线观看| 精品国产乱子伦一区二区三区| 亚洲精品国产一区二区精华液| 精品福利永久在线观看| 天堂√8在线中文| 99re在线观看精品视频| 久久精品国产亚洲av香蕉五月| 久久狼人影院| 在线观看免费视频网站a站| 日韩欧美三级三区| 99热只有精品国产| 岛国视频午夜一区免费看| 久久久久久久午夜电影 | 50天的宝宝边吃奶边哭怎么回事| 国产1区2区3区精品| 成人永久免费在线观看视频| 女性被躁到高潮视频| 亚洲 欧美 日韩 在线 免费| 每晚都被弄得嗷嗷叫到高潮| 自线自在国产av| 巨乳人妻的诱惑在线观看| 99热只有精品国产| 国产精品日韩av在线免费观看 | 久久香蕉国产精品| 精品久久久久久久毛片微露脸| 欧美成人性av电影在线观看| 久久精品成人免费网站| 欧美人与性动交α欧美精品济南到| 国产熟女午夜一区二区三区| 女人被狂操c到高潮| 欧美成人免费av一区二区三区| 精品久久久久久久久久免费视频 | 久久久久国产精品人妻aⅴ院| 亚洲五月色婷婷综合| 亚洲欧美激情在线| 久久久久亚洲av毛片大全| 天天影视国产精品| 男女下面进入的视频免费午夜 | 国产精品爽爽va在线观看网站 | 男人操女人黄网站| 十分钟在线观看高清视频www| 久久久国产成人精品二区 | 亚洲专区中文字幕在线| 免费少妇av软件| 国产精品香港三级国产av潘金莲| 国产欧美日韩一区二区三| 精品乱码久久久久久99久播| 19禁男女啪啪无遮挡网站| 亚洲性夜色夜夜综合| 老鸭窝网址在线观看| 成人黄色视频免费在线看| 一级作爱视频免费观看| 国产单亲对白刺激| 黄片播放在线免费| 国产在线精品亚洲第一网站| 日韩免费高清中文字幕av| 亚洲精品成人av观看孕妇| 日韩免费av在线播放| 神马国产精品三级电影在线观看 | 在线观看www视频免费| 99国产极品粉嫩在线观看| 亚洲国产精品999在线| 久久精品国产亚洲av香蕉五月| 久久久国产精品麻豆| 国产亚洲精品久久久久5区| a在线观看视频网站| 亚洲免费av在线视频| 国产成人啪精品午夜网站| 久久热在线av| 亚洲午夜理论影院| 午夜两性在线视频| 精品电影一区二区在线| 欧美在线黄色| 老汉色av国产亚洲站长工具| 日韩av在线大香蕉| 精品久久久久久电影网| 黄色丝袜av网址大全| 一区二区三区国产精品乱码| 成人永久免费在线观看视频| 色哟哟哟哟哟哟| 精品久久久久久,| 在线天堂中文资源库| 亚洲人成电影观看| 99精品久久久久人妻精品| 日本一区二区免费在线视频| 免费在线观看亚洲国产| 精品久久蜜臀av无| 级片在线观看| 久久精品国产综合久久久| 欧美精品亚洲一区二区| 动漫黄色视频在线观看| 久久久国产欧美日韩av| 欧美老熟妇乱子伦牲交| 国产黄a三级三级三级人| 男女下面插进去视频免费观看| 男人的好看免费观看在线视频 | 99精国产麻豆久久婷婷| 国产av精品麻豆| 久久久久久久久久久久大奶| 亚洲一卡2卡3卡4卡5卡精品中文| 夜夜夜夜夜久久久久| 法律面前人人平等表现在哪些方面| 日韩大尺度精品在线看网址 | svipshipincom国产片| 看黄色毛片网站| 水蜜桃什么品种好| 久久久久久免费高清国产稀缺| 在线视频色国产色| 99精品欧美一区二区三区四区| 黄色视频,在线免费观看| 丝袜人妻中文字幕| 桃色一区二区三区在线观看| xxxhd国产人妻xxx| 一边摸一边抽搐一进一出视频| 天天躁夜夜躁狠狠躁躁| 婷婷六月久久综合丁香| 嫩草影院精品99| 欧美日韩视频精品一区| 色综合欧美亚洲国产小说| 亚洲精品久久午夜乱码| 亚洲精品一卡2卡三卡4卡5卡| 嫩草影视91久久| 久久中文看片网| 国产精品久久久久久人妻精品电影| x7x7x7水蜜桃| 国产aⅴ精品一区二区三区波| 亚洲va日本ⅴa欧美va伊人久久| 日韩免费av在线播放| 丰满的人妻完整版| 成在线人永久免费视频| 男人的好看免费观看在线视频 | 亚洲国产精品一区二区三区在线| 日本vs欧美在线观看视频| 夜夜躁狠狠躁天天躁| 亚洲一区中文字幕在线| 人人妻,人人澡人人爽秒播| 中文字幕人妻丝袜一区二区| 一级片免费观看大全| 亚洲第一欧美日韩一区二区三区| 久久热在线av| 日韩精品中文字幕看吧| 精品人妻1区二区| 国产欧美日韩精品亚洲av| 91av网站免费观看| 18禁黄网站禁片午夜丰满| 丰满迷人的少妇在线观看| 九色亚洲精品在线播放| 村上凉子中文字幕在线| 99在线人妻在线中文字幕| 18禁裸乳无遮挡免费网站照片 | 欧美国产精品va在线观看不卡| 麻豆久久精品国产亚洲av | 老司机午夜福利在线观看视频| 日日摸夜夜添夜夜添小说| 精品国产超薄肉色丝袜足j| 国产精品香港三级国产av潘金莲| 大陆偷拍与自拍| 三级毛片av免费| 国产成人av激情在线播放| 亚洲欧美精品综合一区二区三区| 久久国产乱子伦精品免费另类| 琪琪午夜伦伦电影理论片6080| 99riav亚洲国产免费| 成人三级做爰电影| 一本综合久久免费| 女人被躁到高潮嗷嗷叫费观| 亚洲av美国av| 在线观看午夜福利视频| 亚洲欧美精品综合久久99| 精品国产国语对白av| 999久久久国产精品视频| 老汉色av国产亚洲站长工具| 国产黄色免费在线视频| 亚洲男人的天堂狠狠| 香蕉久久夜色| 纯流量卡能插随身wifi吗| 99国产精品免费福利视频| 久久精品成人免费网站| 很黄的视频免费| 高清黄色对白视频在线免费看| 丝袜在线中文字幕| 国产黄色免费在线视频| 国内毛片毛片毛片毛片毛片| 国产精品偷伦视频观看了| 精品熟女少妇八av免费久了| 中国美女看黄片| 久久久久九九精品影院| 久久久久久亚洲精品国产蜜桃av| 看免费av毛片| 999久久久精品免费观看国产| 亚洲激情在线av| 久久精品91无色码中文字幕| 婷婷丁香在线五月| 久久精品亚洲精品国产色婷小说| 97碰自拍视频| 欧美激情极品国产一区二区三区| 久久九九热精品免费| svipshipincom国产片| 手机成人av网站| 亚洲国产精品999在线| 淫秽高清视频在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| xxx96com| 中文亚洲av片在线观看爽| 亚洲激情在线av| 老鸭窝网址在线观看| 午夜成年电影在线免费观看| 可以在线观看毛片的网站| 99久久久亚洲精品蜜臀av| 亚洲国产欧美一区二区综合| 国产亚洲欧美精品永久| 一本大道久久a久久精品| 人人妻,人人澡人人爽秒播| 露出奶头的视频| 99久久国产精品久久久| 国产精品电影一区二区三区| 999久久久精品免费观看国产| 欧美激情 高清一区二区三区| av超薄肉色丝袜交足视频| 国产av又大| 精品国产乱子伦一区二区三区| 国产伦一二天堂av在线观看| 国产无遮挡羞羞视频在线观看| 人人妻人人爽人人添夜夜欢视频| 亚洲色图 男人天堂 中文字幕| 精品国产乱子伦一区二区三区| 12—13女人毛片做爰片一| 亚洲久久久国产精品| 国产色视频综合| 亚洲欧美日韩高清在线视频| 身体一侧抽搐| 午夜福利免费观看在线| 无人区码免费观看不卡| 真人做人爱边吃奶动态| 新久久久久国产一级毛片| 日韩欧美免费精品| 99久久综合精品五月天人人| 757午夜福利合集在线观看| 久久精品国产亚洲av香蕉五月| 午夜福利在线观看吧| 欧美久久黑人一区二区| 中文亚洲av片在线观看爽| 99国产精品免费福利视频| 精品熟女少妇八av免费久了| 在线国产一区二区在线| 午夜影院日韩av| 久久99一区二区三区| 亚洲欧洲精品一区二区精品久久久| 又紧又爽又黄一区二区| 亚洲,欧美精品.| 亚洲色图 男人天堂 中文字幕| 国产1区2区3区精品| 久久久久亚洲av毛片大全| 欧美激情高清一区二区三区| 婷婷丁香在线五月| 岛国在线观看网站| 日韩欧美一区视频在线观看| 老鸭窝网址在线观看| 免费观看精品视频网站| 国产深夜福利视频在线观看| 国产精品av久久久久免费| 老司机午夜福利在线观看视频| 欧美精品亚洲一区二区| 男女床上黄色一级片免费看| 99香蕉大伊视频| 成人永久免费在线观看视频| 免费少妇av软件| 视频在线观看一区二区三区| xxx96com| 国产精品影院久久| 99国产精品一区二区蜜桃av| 国产高清videossex| 精品一区二区三区视频在线观看免费 | 乱人伦中国视频| 少妇裸体淫交视频免费看高清 | 欧美日韩视频精品一区| 色播在线永久视频| 在线观看一区二区三区激情| 亚洲精华国产精华精| 黄片播放在线免费| 自线自在国产av| 极品教师在线免费播放| √禁漫天堂资源中文www| 国产亚洲精品久久久久久毛片| 黄色视频不卡| 久久草成人影院| 亚洲欧美激情在线| 十八禁网站免费在线| 热99re8久久精品国产| 美女国产高潮福利片在线看| 99精品欧美一区二区三区四区| 国产麻豆69| 老司机在亚洲福利影院| 亚洲 欧美 日韩 在线 免费| 99精品在免费线老司机午夜| 两个人免费观看高清视频| 99热国产这里只有精品6| 在线观看免费视频日本深夜| 亚洲第一青青草原| 国产成人一区二区三区免费视频网站| 欧美激情久久久久久爽电影 | 亚洲成人精品中文字幕电影 | 久久精品国产99精品国产亚洲性色 | 国产成人精品在线电影| 中出人妻视频一区二区| 亚洲中文字幕日韩| 久久久久久大精品| 欧洲精品卡2卡3卡4卡5卡区| 免费在线观看影片大全网站| 日韩欧美免费精品| av天堂久久9| 亚洲成人久久性| 51午夜福利影视在线观看| 50天的宝宝边吃奶边哭怎么回事| 12—13女人毛片做爰片一| 国产亚洲精品久久久久5区| 国产日韩一区二区三区精品不卡| 97碰自拍视频| 中亚洲国语对白在线视频| 久久 成人 亚洲| 国产主播在线观看一区二区| 这个男人来自地球电影免费观看| 色综合婷婷激情| 看黄色毛片网站| 国产真人三级小视频在线观看| 久久久久九九精品影院| 国产成人精品久久二区二区免费| 亚洲国产看品久久| 午夜精品久久久久久毛片777| 9191精品国产免费久久| 一区福利在线观看| 亚洲七黄色美女视频| 欧美成人免费av一区二区三区| 变态另类成人亚洲欧美熟女 | 久久欧美精品欧美久久欧美| 国产成人精品久久二区二区91| 高潮久久久久久久久久久不卡| 国产又爽黄色视频| 男人操女人黄网站| 两性午夜刺激爽爽歪歪视频在线观看 | 咕卡用的链子| 日韩 欧美 亚洲 中文字幕| 久久香蕉激情| 成年版毛片免费区| 午夜福利免费观看在线| 丰满人妻熟妇乱又伦精品不卡| 国产男靠女视频免费网站| 成人黄色视频免费在线看| 欧美精品亚洲一区二区| 嫩草影院精品99| 黄色a级毛片大全视频| 在线视频色国产色| 99香蕉大伊视频| 777久久人妻少妇嫩草av网站| 国产免费现黄频在线看| 午夜成年电影在线免费观看| 亚洲av成人不卡在线观看播放网| 桃红色精品国产亚洲av| 在线十欧美十亚洲十日本专区| 久久久水蜜桃国产精品网| 日本三级黄在线观看| 国产男靠女视频免费网站| 久久精品亚洲av国产电影网| 免费在线观看视频国产中文字幕亚洲| 欧美黑人欧美精品刺激| 亚洲avbb在线观看| 国产精品影院久久| 香蕉国产在线看| 国产精品1区2区在线观看.| 久久中文字幕一级| 亚洲精品久久午夜乱码| 免费av毛片视频| 欧美丝袜亚洲另类 | 国产亚洲精品久久久久久毛片| 午夜福利在线免费观看网站| 国产成人av激情在线播放| 亚洲片人在线观看| e午夜精品久久久久久久| 欧美日韩亚洲高清精品| 国产精品 国内视频| 国产成+人综合+亚洲专区| 在线免费观看的www视频| 免费av中文字幕在线| 新久久久久国产一级毛片| 波多野结衣一区麻豆| 一二三四在线观看免费中文在| 黄频高清免费视频| 男男h啪啪无遮挡| 99国产精品免费福利视频| www.精华液| 91成人精品电影| 热99re8久久精品国产| 丝袜在线中文字幕| 国产精华一区二区三区| 777久久人妻少妇嫩草av网站| 叶爱在线成人免费视频播放| 91精品国产国语对白视频| 一二三四社区在线视频社区8| 男女高潮啪啪啪动态图| 天天躁狠狠躁夜夜躁狠狠躁| 黄色片一级片一级黄色片| 国产一区二区三区视频了| 国产精品久久视频播放| a级毛片黄视频| 99精国产麻豆久久婷婷| 窝窝影院91人妻| 日本精品一区二区三区蜜桃| 国产片内射在线| 亚洲国产看品久久| 性欧美人与动物交配| 午夜免费成人在线视频| 久9热在线精品视频| 亚洲精品成人av观看孕妇| 99国产精品一区二区蜜桃av| 老司机深夜福利视频在线观看| 午夜福利免费观看在线| 一级毛片精品| 国产精品一区二区三区四区久久 | 亚洲欧美精品综合一区二区三区| 欧美日韩乱码在线| 精品卡一卡二卡四卡免费| 女生性感内裤真人,穿戴方法视频| 91老司机精品| 宅男免费午夜| 亚洲国产中文字幕在线视频| 无遮挡黄片免费观看| 黄色片一级片一级黄色片| 国产精品综合久久久久久久免费 | 一a级毛片在线观看| www国产在线视频色| 日韩成人在线观看一区二区三区| 色婷婷av一区二区三区视频| 国产深夜福利视频在线观看| 免费在线观看黄色视频的| 麻豆久久精品国产亚洲av | 水蜜桃什么品种好| 国产成人精品无人区| 热99国产精品久久久久久7| 男女下面插进去视频免费观看| 国产精品免费视频内射| 又大又爽又粗| 成人特级黄色片久久久久久久| 黄片大片在线免费观看| 黄色成人免费大全| 免费看十八禁软件| 女同久久另类99精品国产91| 日韩高清综合在线| 亚洲成人免费电影在线观看| 免费看十八禁软件| 一边摸一边做爽爽视频免费| 99riav亚洲国产免费| 黄网站色视频无遮挡免费观看| 十八禁人妻一区二区| 午夜两性在线视频| 中文欧美无线码| 亚洲国产欧美日韩在线播放| 别揉我奶头~嗯~啊~动态视频| 国产欧美日韩一区二区三区在线| 午夜精品在线福利| 欧美日韩亚洲高清精品| 久99久视频精品免费| 欧美+亚洲+日韩+国产| 精品久久久久久电影网| 亚洲成人免费av在线播放| 亚洲第一欧美日韩一区二区三区| 国产xxxxx性猛交| 国产激情久久老熟女| 80岁老熟妇乱子伦牲交| 成人18禁高潮啪啪吃奶动态图| 日韩欧美三级三区| 日韩大尺度精品在线看网址 | 亚洲第一青青草原| 黑人欧美特级aaaaaa片| 亚洲熟妇中文字幕五十中出 | 88av欧美| 日日夜夜操网爽| 一个人免费在线观看的高清视频| 欧美乱码精品一区二区三区| 久久人妻熟女aⅴ| 曰老女人黄片| 首页视频小说图片口味搜索|