• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of plasma radiation on the nonlinear evolution of neo-classical tearing modes in tokamak plasmas

    2022-06-01 07:55:44ShuaiJIANG姜帥WeikangTANG湯煒康LaiWEI魏來(lái)TongLIU劉桐HaiwenXU徐海文andZhengxiongWANG王正洶
    Plasma Science and Technology 2022年5期
    關(guān)鍵詞:王正徐海

    Shuai JIANG (姜帥), Weikang TANG (湯煒康)Lai WEI (魏來(lái)),Tong LIU (劉桐), Haiwen XU (徐海文) and Zhengxiong WANG (王正洶)

    Key Laboratory of Materials Modification by Beams of the Ministry of Education, School of Physics,Dalian University of Technology, Dalian 116024, People’s Republic of China

    Abstract The effects of plasma radiation on the nonlinear evolution of neo-classical tearing modes are investigated based on a set of reduced magnetohydrodynamic equations.It is found that the radiation can reduce the pressure near the rational surface.During the nonlinear evolution, the magnitude of perturbed bootstrap current is drastically enhanced in the presence of the radiation.Besides, the radiation can increase the growth rate of the magnetic islands by diminishing the pressure,such that the magnetic islands do not saturate compared with that without radiation.On the other hand, with the increase of the ratio of parallel to perpendicular transport coefficientthe reduction of pressure can further increase the growth rate of magnetic islands in the presence of plasma radiation.Finally, the mechanisms of the destabilizing effects driven by the radiation are discussed in detail as well.

    Keywords: neo-classical tearing mode, radiation, MHD instability

    1.Introduction

    The macroscale magnetohydrodynamic (MHD) instabilities have been continually concerned to ensure steady-state operation in tokamak plasmas [1-10].The neoclassical tearing mode(NTM),one kind of MHD instabilities driven by the loss of bootstrap current inside the seeded magnetic islands,can greatly degrade the confinement and even lead to major disruptions [11-20].In the [13], it is indicated that (2, 1)NTM is potentially the most serious one as it always results in severe energy confinement degradation and can lead to disruptions.It is therefore significant to determine the scaling behavior for the(2,1)mode of NTMs in tokamak[4,12,13].On the other hand, the NTM has been observed in many experiment devices such as TFTR [14], ASDEX Upgrade[21] and DIII-D [22].These experiments have demonstrated that the NTM can affect the heat transport and equilibrium of plasma, reducing the confinement time of plasma energy in the nuclear fusion, which is extremely detrimental during the discharge[13,14,21-23].In short,the NTM is greatly prone to being produced and results in deleterious consequences.

    During tokamak discharge,plasma radiation is one of the most crucial mechanisms of plasma energy loss, and plays significant roles in the development of MHD instabilities[24, 25].In general, there are three principal types of radiation, namely the bremsstrahlung radiation, the electron cyclotron radiation and the impurity radiation[26-28].In the experiments, furthermore, the radial and poloidal evolutions of the impurity radiation are observed in JET.Then the mechanism on how the impurity radiation influences the MHD instabilities has been attempted [26].It is worth emphasizing that the heat flux generated by the auxiliary heating from the core plasmas is shielded by the magnetic islands, such that the heat flux of the auxiliary heating only flows outside the magnetic islands along the X-point [27].Consequently, the energy in the magnetic islands primarily depends on the Ohmic heating and the radiation cooling.In particular, some disruptions are the result of the plasma radiation, and hence the explorations on disruptions have been carried out [28, 29].Suttrop et al observed the current contraction phase beginning with the growth of (3,1)islands due to the cooling effect of the carbon impurity radiation at the high-q density limit in ASDEX Upgrade [30].Teng et al studied the thermal perturbations inside and outside magnetic islands and found that the large magnetic islands at the density limit can be induced by the impurity radiation [31, 32].However, it should be mentioned that the electron cyclotron radiation is not taken into account in the work of Teng et al[32].Perkins and Hulse analytically investigated the effect of the ratio of the radiated power to the Ohmic heating[33].The density limit disruptions caused by the impurity radiation are practically coincident with the current decay at the safety factorq=2 in JET[26].A radiation-drivenm=2 magnetic island near the density limit is observed in EAST, and anm=1 sideband mode is also driven in the meanwhile,which brings about an internal crash appearing as a large change of the temperature [34].Them=2 magnetic island grows so that the whole cross section is gradually filled and eventually the disruption event occurs [35].A numerical simulation of the radiation driven tearing modes is conducted by using the 3D toroidal geometry MHD code CLT [24].It is found that the width of the magnetic islands increased over 20% of the minor radius (disruption scale).Generally, the plasma radiation, as one of the most important energy loss mechanisms,can destabilize the MHD instabilities and critically destroy the long pulse discharge of tokamak.Despite that the radiation effects have been extensively investigated,it remains a crucial concern in tokamak to understand the roles of radiation effects on the NTMs.

    In this work, we study the radiation effects during the nonlinear evolution of NTMs with different bootstrap current proportions by using a reduced MHD model.It is clearly demonstrated that with increasing the plasma radiation, the pressure is reduced and then perturbation of pressure near the rational surface is increased.At the same time, the radiation can increase the width of magnetic islands and furthermore greatly destroy the quasi-steady-state of tokamak operation.In section 2, the modeling equations are introduced.The results of numerical simulations are presented and the relevant physical mechanisms are discussed in section 3.1.Furthermore, section 3.2 shows the effects of the ratio of transport coefficientsunder the plasma radiation.Finally, a summary of these relevant conclusions in this paper and the prospect of the next work are presented.

    2.Modeling equations

    The nonlinear evolution of the NTMs with the existence of radiation, is investigated by reduced MHD equations in the cylindrical geometry(r,θ,z) .The normalized three-field equations, including the equation of the vorticity field, the equation of the magnetic flux and the equation of the pressure,are as follows:

    withR0being the major radius of the tokamak.

    In the last term in equation(3)Pradis the radiation power density, including the bremsstrahlung radiationPband the electron cyclotron radiationPc.By using the Born approximation, the bremsstrahlung radiation and the electron cyclotron radiation are expressed as follows [36]

    Figure 1.(a) Initial equilibrium pressure profile, (b) safety factor q profile.

    whereWb,Wc,ni,ne,B,Tare the power loss of the bremsstrahlung radiation and the electron cyclotron radiation,ion densities (including background ions and impurities),electron densities, the normalized magnetic field and the temperature, respectively.In the case of more than one ion species, ionic charge is written asTherefore, the larger the charge number of impurities is, the greater proportion of the bremsstrahlung is.Here, the conversion relationship between the temperature T and the pressure p is p =nkT,wherek is the Boltzmann constant.

    It can be measured that certain kinds of impurities are produced in tokamak edge during the discharge.Impurity radiation is one of the main energy sources of the radiation cooling and mainly originated from the magnetic islands[26].Obviously, the impurity accumulation at O-point of the magnetic islands is the maximal,while it is the minimal at the boundary.Thus, it is assumed that the impurity is Gaussian distribution in the magnetic islands [24]:

    wherenim, nim0andψminare the impurity density, the impurity density at the O-point in magnetic islands and magnetic flux at O-point of magnetic islands,respectively.In this work, the radiation of O-point of the magnetic islands is calculated through equations (6)-(8), and then it is assumed that the radiation in the magnetic islands is Gaussian distribution:

    where Prad0is the radiation at the O-point in magnetic islands.(r0, χ0)is the center of the Gaussian distribution.Δrdis the half deposition width in the radial direction andΔχis the half deposition width in the helical angle direction during this model.In fact,we make two assumptions in the model:one is that the densities of impurities present the Gaussian distribution in the magnetic island, and another is that the radiation distribution in the magnetic island also presents Gaussian distribution.Since the impurity radiation is dominant in all radiation,the distribution of radiation in the whole space is basically Gaussian distribution according to the first assumption, which is the reason for making the second hypothesis.If the radiation distribution is truncated around the magnetic island, numerical instability will appear in the calculation.Therefore,we can only take out the real radiation value of O-point in the magnetic island, and then reverse the approximate Gaussian distribution in the magnetic island through equation (9).

    Equations(1)-(3)can be solved by an initial value code:MDC (MHD @ Dalian Code) [11, 15-19].The two-step predictor-corrector method is applied in the time advancement.To solve these equations(1)-(3),two different methods are used in different directions.In the radial direction, the finite difference method is employed, while the pseudospectral method is used for the poloidal and the toroidal directions.The initial pressure and safety factor q profiles are chosen as

    and the plasma rotation is considered by setting

    Up to now,it has been planned to choose tungsten as the upper and lower divertor materials of EAST [37, 38].In the future tokamak,moreover,tungsten will be selected as the first wall material in ITER [39], and then tungsten impurities must inevitably be produced during the sputtering process.Therefore,tungsten is necessarily studied as the source of the impurity radiation in this work.

    Figure 2.Typical contours of (a) magnetic flux att = 50 τA,(b) radiation att = 50 τA,(c) magnetic flux att = 170 τA,(d) radiation at t =170τ Awith fb =0.3.

    3.Numerical results

    3.1.Effects of radiation

    In this section, the effects of the plasma radiation on the NTMs are discussed.Particularly, tungsten is chosen as the main source of the impurity radiation and we take nim0= 10-4neto calculate the effects of the impurity radiation.As shown in figure 2, the radiation only appears inside the magnetic islands,which is consistent with that mentioned in[27].It is prerequisite that the spatial scale of the radiation region expands correspondingly with the growth of the magnetic islands.Furthermore, the radiation region rotates along with the plasma rotation.Accordingly, MDC can ensure that the radiation is consistent with the change of magnetic islands, as shown in figures 2(b) and (d).

    The typical contour plots of the plasma pressure with and without radiation are shown in figure 3.It can be observed that, in the presence of radiation, the pressure reduces drastically inside the magnetic islands and presents a concave structure,which can be observed obviously at325 τA.Besides,the pressure in the core region significantly decays at325Aτ with the plasma radiation.Obviously, the pressure on the resonant surface with radiation is smaller than that without radiation because the radiation cooling can lead to the energy loss near the rational surface.Moreover, it can also be seen qualitatively from the equation (3) that the presence of the radiation can reduce the pressure, and the transformation of the pressure depends on the spatial scale of the radiation cooling.Consequently, the plasma radiation has a significant effect on the evolution of the pressure,decreasing the pressure nearby the rational surface domain substantially.

    The eigenmode structures of m /n = 2 / 1 for the perturbation of pressure with fb= 0.3at t =245τAare shown in figure 4, where m andn are the poloidal mode number and toroidal mode number, respectively.It is found that in the presence of the radiation,the amplitude of the perturbation of pressure with m /n = 2 /1on the rational surface is larger than that without radiation.Moreover, as shown in figure 5, the magnitude of the bootstrap current perturbation inside the magnetic islands is enhanced due to the radiation, which indicates that the total perturbation of current increases.In other words, the plasma radiation can increase the perturbation of pressure inside the magnetic islands,and thus increase the perturbation of bootstrap current, resulting in the enhancement of instabilities.

    Figure 3.Typical contours of pressure with fb = 0.3att = 325 τA:(a) without radiation, (b) with radiation.

    Figure 4.The eigenmode structures of m /n = 2 /1 for the perturbation of pressure with fb = 0.3att =245τ Awith/without radiation.

    The temporal evolution of the magnetic island width of differentfbvalues with and without radiation is shown in figure 6.For the case without radiation, the raise of the bootstrap current perturbation leads to the increase of the magnetic island growth rate, and the width of saturated magnetic islands also increases.Furthermore, the larger the bootstrap current fraction is, the earlier the magnetic island width reaches saturation.However,with the plasma radiation,the magnetic islands keep growing in the nonlinear phase and do not saturate which indicates that the NTM instability can be further promoted by the plasma radiation.As shown in figure 5, the perturbation of bootstrap current inside the magnetic islands increases, which promotes a gradual increase of the magnetic island width under the action of plasma radiation.Therefore, it is found that the radiation can keep destabilizing the NTMs through increasing the magnetic island width in tokamak plasmas.

    The above numerical simulation results show that the plasma radiation can destabilize the NTMs.In addition, such a result can be further explained by the theoretical analysis.White et al modified the Rutherford equation comprehensively in [40]:

    wherewandrsare the width of the magnetic islands and the position of rational surface in the radial direction, respectively.Δ′(w),andare the classical effects, the current perturbation effects caused by neo-classical or other current perturbation effects, the island asymmetry effect,respectively.Here

    wherewFis the Fitzpatrick’s critical island width.The bracket indicates integrating over the island interior, andδj1is the perturbation of current.As a result, the raise of the perturbation of bootstrap current,leading to the enhancement of the closed integral of current perturbation over the magnetic islands, can increase the growth rate of the magnetic islands and then broaden the width of the magnetic islands.

    3.2.Effects of χ‖ /χ⊥with radiation

    Figure 5.Typical contours of m /n = 2 /1for the perturbation of bootstrap current with fb = 0.3att = 325 τA:(a)without radiation,(b)with radiation.

    Figure 6.Temporal evolution of magnetic island width under fb = 0.1,0.2 and 0.3 with/without radiation.

    Figure 7.Temporal evolution of magnetic island width with= 2 ×10 6,5 × 106and 1 × 107at fb = 0.3with/without radiation.

    Figure 8.The eigenmode structures of m /n = 2 /1 for the perturbation of pressure= 2 ×10 6,5 × 106and 1 × 107at fb = 0.3,t =250τ A with radiation.

    This section presents the influence of the heat transport coefficients on the NTMs with the plasma radiation.There is no doubt that the energy confinement time in tokamak is inversely proportional to the heat transport coefficients, so it is significantly important in the field of magnetic confinement to further understand the physical mechanism of the heat transport coefficients in the presence of the plasma radiation.It can be found that the growth rate of the magnetic islands decreases with the decline of the ratioin figure 7 whether there is radiation or not.For the case without radiation,the raise of the ratiocan lead to the growth of the magnetic islands and eventually the width of magnetic islands tends to saturate.However, the magnetic islands do not saturate due to the existence of the radiation,but keep in a growing state.As shown in figure 8, the magnitude of eigenmode structures for the perturbation of pressure increases with the increase of the ratioby taking= 2 ×106,5 × 106and 1 × 107atfb= 0.3in the presence of the plasma radiation.Furthermore, the influence of the parallel thermal transport termon the NTMs is destabilizing, whereas that of perpendicular termis opposite, as indicated in equation(3).As seen from figures 7 and 8, when the ratio of parallel to perpendicular transport coefficient,is large, the pressure inside the magnetic islands is lower than that outside the magnetic islands,which causes the increase of pressure perturbation and then the incessant growth of the magnetic islands.Accordingly,simulations show that the presence of the radiation can still enhance the destabilizing effects of the increase ofon NTMs.

    4.Summary and discussions

    The numerical results reported in this work reveal the effects of the radiation on the NTMs, based on a set of reduced MHD equations.The main results can be summarized as follows.First of all, the plasma radiation can reduce the pressure near the rational surface,resulting in the increase of the perturbation of pressure inside the magnetic islands, such that the plasma pressure forms a concave structure.Particularly, the effects of radiation can lead to the increase of the perturbation of bootstrap current inside the magnetic islands, so that the magnetic islands do not saturate and keep growing.In addition, the perturbation of pressure can also be enhanced and then the magnetic islands are destabilized by increasing the ratio ofin the presence of the plasma radiation.Consequently, the effects of plasma radiation can greatly destabilize the NTMs.In experiments, the electron cyclotron current drive (ECCD)can compensate the loss of the bootstrap current thus it is usually used to suppress the NTM islands.When the effects of plasma radiation on NTMs are taken into account, the effectiveness of ECCD may be weakened.These effects will be investigated in our future work.

    Acknowledgments

    The authors thank Dr Huishan CAI for stimulating discussions on this work.This work is supported by the National Magnetic Confinement Fusion Energy R&D Program of China (Nos.2019YFE03090300 and 2017YFE0301100), National Natural Science Foundation of China (Nos.11925501 and 12075048),the Fundamental Research Funds for the Central Universities(Nos.DUT21GJ204 and DUT21LK28).

    ORCID iDs

    猜你喜歡
    王正徐海
    Path Planning of UAV by Combing Improved Ant Colony System and Dynamic Window Algorithm
    Effects of plasma radiation on the nonlinear evolution of neo-classical tearing modes in tokamak plasmas with reversed magnetic shear
    Analysis of anomalous transport based on radial fractional diffusion equation
    A brief review: effects of resonant magnetic perturbation on classical and neoclassical tearing modes in tokamaks
    Interaction between energetic-ions and internal kink modes in a weak shear tokamak plasma
    Machine learning of turbulent transport in fusion plasmas with neural network
    金昌浩、王正油畫(huà)作品選
    徐海根(徐海)藝術(shù)作品欣賞
    Asymmetric Features for Two Types of ENSO
    A Brief Study Of The Interactive-oriented Language Teaching
    午夜视频国产福利| 色哟哟·www| 成人国产av品久久久| 国产淫语在线视频| 91久久精品国产一区二区成人| 国产极品粉嫩免费观看在线 | 狠狠婷婷综合久久久久久88av| 丝瓜视频免费看黄片| 99久国产av精品国产电影| 久久人人爽人人爽人人片va| 久久久亚洲精品成人影院| 国产精品一区二区在线观看99| 精品亚洲成国产av| 妹子高潮喷水视频| 午夜福利影视在线免费观看| 免费av中文字幕在线| 制服诱惑二区| 夫妻性生交免费视频一级片| 一个人免费看片子| 春色校园在线视频观看| 桃花免费在线播放| 在线观看免费日韩欧美大片 | 中文精品一卡2卡3卡4更新| 国产精品成人在线| 色94色欧美一区二区| 久久久久精品性色| 天堂8中文在线网| 男人操女人黄网站| 18+在线观看网站| 日韩成人av中文字幕在线观看| 我的女老师完整版在线观看| 美女大奶头黄色视频| 亚洲第一av免费看| 97精品久久久久久久久久精品| 亚洲高清免费不卡视频| 亚洲综合色网址| 蜜臀久久99精品久久宅男| av国产久精品久网站免费入址| 黄片播放在线免费| 亚洲婷婷狠狠爱综合网| 水蜜桃什么品种好| 内地一区二区视频在线| 国产无遮挡羞羞视频在线观看| 99热全是精品| 999精品在线视频| 午夜影院在线不卡| 成人免费观看视频高清| 日韩av不卡免费在线播放| 亚洲色图 男人天堂 中文字幕 | 纵有疾风起免费观看全集完整版| 免费人妻精品一区二区三区视频| 欧美精品一区二区免费开放| 最新中文字幕久久久久| 极品人妻少妇av视频| 亚洲综合色网址| 国产高清有码在线观看视频| 性色avwww在线观看| 亚洲精品国产av成人精品| 亚洲欧美一区二区三区国产| 另类精品久久| 欧美老熟妇乱子伦牲交| 日韩av不卡免费在线播放| 亚洲国产欧美在线一区| av卡一久久| 亚洲精品成人av观看孕妇| av在线app专区| 女性生殖器流出的白浆| 日韩三级伦理在线观看| 久久久久精品性色| 欧美人与善性xxx| 只有这里有精品99| 日日爽夜夜爽网站| 精品亚洲成a人片在线观看| 国产熟女欧美一区二区| 亚洲内射少妇av| 国产精品一区www在线观看| 国产免费又黄又爽又色| 日产精品乱码卡一卡2卡三| 欧美另类一区| 国产精品蜜桃在线观看| 免费大片黄手机在线观看| 少妇被粗大猛烈的视频| 99久久精品国产国产毛片| 一个人免费看片子| 亚洲av国产av综合av卡| 久久人人爽av亚洲精品天堂| 亚洲不卡免费看| .国产精品久久| 日韩精品有码人妻一区| 午夜91福利影院| 久久久国产欧美日韩av| 亚洲精品乱码久久久久久按摩| 久久久精品94久久精品| 丝袜在线中文字幕| 99精国产麻豆久久婷婷| 日日撸夜夜添| 男人爽女人下面视频在线观看| 人妻 亚洲 视频| 性高湖久久久久久久久免费观看| 精品午夜福利在线看| 亚洲国产色片| 国产一区二区三区综合在线观看 | 亚洲,一卡二卡三卡| 中文字幕制服av| 日本黄色日本黄色录像| 免费播放大片免费观看视频在线观看| 精品少妇内射三级| 日韩视频在线欧美| 欧美精品一区二区免费开放| 日韩欧美精品免费久久| 精品久久久噜噜| 日韩人妻高清精品专区| 精品少妇久久久久久888优播| 中文字幕免费在线视频6| 成人亚洲精品一区在线观看| 桃花免费在线播放| 麻豆乱淫一区二区| videosex国产| 国产精品免费大片| 亚洲国产成人一精品久久久| 精品国产露脸久久av麻豆| 自拍欧美九色日韩亚洲蝌蚪91| 精品一区二区三区视频在线| 欧美+日韩+精品| 婷婷色综合大香蕉| 免费日韩欧美在线观看| 人妻一区二区av| 久久精品国产自在天天线| 毛片一级片免费看久久久久| 男人添女人高潮全过程视频| 日本av免费视频播放| 国产成人a∨麻豆精品| 熟妇人妻不卡中文字幕| 国产永久视频网站| 国产精品久久久久久av不卡| 午夜福利视频在线观看免费| 视频在线观看一区二区三区| 热re99久久国产66热| 国产亚洲精品第一综合不卡 | 欧美国产精品一级二级三级| 国产一级毛片在线| 全区人妻精品视频| 9色porny在线观看| 一级爰片在线观看| 只有这里有精品99| 午夜福利视频精品| 男女无遮挡免费网站观看| 18在线观看网站| 日本爱情动作片www.在线观看| 亚洲av在线观看美女高潮| 免费观看在线日韩| 久久精品久久精品一区二区三区| 久久狼人影院| 看非洲黑人一级黄片| 美女cb高潮喷水在线观看| 久久久精品免费免费高清| 日本与韩国留学比较| 国产精品久久久久久av不卡| 另类亚洲欧美激情| 99久久中文字幕三级久久日本| a 毛片基地| 不卡视频在线观看欧美| 我的女老师完整版在线观看| 亚洲人与动物交配视频| 美女脱内裤让男人舔精品视频| 啦啦啦在线观看免费高清www| 少妇 在线观看| 国产伦理片在线播放av一区| 成人国语在线视频| 飞空精品影院首页| 天天躁夜夜躁狠狠久久av| 综合色丁香网| 日韩精品免费视频一区二区三区 | 国产一区二区三区综合在线观看 | 国产精品久久久久成人av| 久热这里只有精品99| 日本av免费视频播放| 午夜老司机福利剧场| 久热这里只有精品99| 五月伊人婷婷丁香| 最近的中文字幕免费完整| 岛国毛片在线播放| 91久久精品国产一区二区三区| 久热久热在线精品观看| 日本-黄色视频高清免费观看| 久久久久人妻精品一区果冻| 午夜影院在线不卡| 成人国产麻豆网| 女性被躁到高潮视频| 午夜福利,免费看| 久久久久久伊人网av| 免费黄色在线免费观看| 国产精品.久久久| 国产成人精品婷婷| 久久久久久久久久久丰满| 人成视频在线观看免费观看| 中文字幕av电影在线播放| 日韩视频在线欧美| 国产成人91sexporn| 免费黄色在线免费观看| 精品熟女少妇av免费看| 综合色丁香网| 又黄又爽又刺激的免费视频.| 汤姆久久久久久久影院中文字幕| 夜夜骑夜夜射夜夜干| 国产不卡av网站在线观看| 国产国语露脸激情在线看| 丝袜脚勾引网站| 欧美激情极品国产一区二区三区 | 久久久久网色| 精品酒店卫生间| 男女边吃奶边做爰视频| 国产色爽女视频免费观看| 国产黄频视频在线观看| 国产 精品1| 国产成人精品福利久久| 欧美性感艳星| 十八禁高潮呻吟视频| 成年美女黄网站色视频大全免费 | 午夜免费男女啪啪视频观看| 人人妻人人爽人人添夜夜欢视频| 国产伦理片在线播放av一区| 99视频精品全部免费 在线| 女性生殖器流出的白浆| 精品酒店卫生间| 永久免费av网站大全| 国产成人精品无人区| 日韩av不卡免费在线播放| 色吧在线观看| 人人妻人人添人人爽欧美一区卜| 国产黄色视频一区二区在线观看| 男人添女人高潮全过程视频| 日本黄大片高清| 女人精品久久久久毛片| 卡戴珊不雅视频在线播放| 蜜桃国产av成人99| 亚洲在久久综合| 如日韩欧美国产精品一区二区三区 | 人人妻人人澡人人看| 久久久久久久精品精品| 99热全是精品| 欧美变态另类bdsm刘玥| 中文欧美无线码| 国产高清有码在线观看视频| 亚洲精品一区蜜桃| 九九在线视频观看精品| av在线播放精品| 赤兔流量卡办理| 我的女老师完整版在线观看| 丝瓜视频免费看黄片| 亚洲精品,欧美精品| 色婷婷久久久亚洲欧美| 黄色配什么色好看| 丰满迷人的少妇在线观看| 伊人久久国产一区二区| 五月伊人婷婷丁香| 超碰97精品在线观看| 国产成人精品无人区| 成人漫画全彩无遮挡| 999精品在线视频| 尾随美女入室| 女性生殖器流出的白浆| 在线看a的网站| 欧美精品一区二区大全| 中文天堂在线官网| 久久99精品国语久久久| 久久99精品国语久久久| 国产精品无大码| 欧美少妇被猛烈插入视频| 一区二区三区乱码不卡18| 精品亚洲成国产av| 3wmmmm亚洲av在线观看| 欧美丝袜亚洲另类| 欧美日韩成人在线一区二区| 久久久久国产精品人妻一区二区| 边亲边吃奶的免费视频| 热99国产精品久久久久久7| 久久久国产精品麻豆| 国产精品一区二区在线不卡| 免费少妇av软件| 日韩不卡一区二区三区视频在线| 女的被弄到高潮叫床怎么办| 亚洲精品日韩av片在线观看| 日本黄色片子视频| 大香蕉久久成人网| 国产乱来视频区| 亚洲av日韩在线播放| 国产免费一区二区三区四区乱码| 亚洲经典国产精华液单| 久久韩国三级中文字幕| 伦理电影大哥的女人| 18禁在线播放成人免费| 欧美激情 高清一区二区三区| 国产国拍精品亚洲av在线观看| 涩涩av久久男人的天堂| 国产成人免费观看mmmm| 极品少妇高潮喷水抽搐| 草草在线视频免费看| 久久精品久久久久久久性| 久久久亚洲精品成人影院| 国产精品熟女久久久久浪| 黑丝袜美女国产一区| 亚洲色图综合在线观看| 国产欧美亚洲国产| 一区二区三区四区激情视频| 99国产精品免费福利视频| 国产国拍精品亚洲av在线观看| 热re99久久精品国产66热6| 久久鲁丝午夜福利片| 又大又黄又爽视频免费| 又大又黄又爽视频免费| 一本—道久久a久久精品蜜桃钙片| 久久久国产一区二区| 亚洲高清免费不卡视频| 午夜激情av网站| 七月丁香在线播放| 美女福利国产在线| 人妻系列 视频| 另类亚洲欧美激情| 亚洲精品久久久久久婷婷小说| 美女xxoo啪啪120秒动态图| 亚洲精品乱码久久久v下载方式| 亚洲av日韩在线播放| 观看美女的网站| 久久久久久久亚洲中文字幕| 这个男人来自地球电影免费观看 | 亚洲av综合色区一区| 大陆偷拍与自拍| 亚洲内射少妇av| 国产精品蜜桃在线观看| 国产成人精品久久久久久| 久久人人爽av亚洲精品天堂| 丁香六月天网| 日本与韩国留学比较| 我要看黄色一级片免费的| 色5月婷婷丁香| 男女边吃奶边做爰视频| 少妇的逼水好多| 色哟哟·www| 国产淫语在线视频| 免费av中文字幕在线| 久久婷婷青草| a级毛片免费高清观看在线播放| 青春草视频在线免费观看| 国产精品国产三级国产av玫瑰| 国产日韩欧美亚洲二区| 免费不卡的大黄色大毛片视频在线观看| 日本黄色片子视频| 全区人妻精品视频| 欧美国产精品一级二级三级| 欧美日韩亚洲高清精品| 午夜免费男女啪啪视频观看| 视频在线观看一区二区三区| 亚洲国产精品专区欧美| 黄色怎么调成土黄色| 曰老女人黄片| 一级爰片在线观看| 亚洲人成77777在线视频| 国产精品成人在线| 亚洲精品av麻豆狂野| 成年av动漫网址| 我的老师免费观看完整版| 精品久久久精品久久久| 黑丝袜美女国产一区| videossex国产| 色94色欧美一区二区| 国产精品久久久久久av不卡| 99国产综合亚洲精品| 99久久综合免费| 色94色欧美一区二区| 丝袜美足系列| 国产熟女欧美一区二区| 色婷婷久久久亚洲欧美| 久久免费观看电影| 韩国高清视频一区二区三区| 婷婷色综合大香蕉| 国产在线一区二区三区精| 菩萨蛮人人尽说江南好唐韦庄| 国产爽快片一区二区三区| 国产国语露脸激情在线看| 欧美成人午夜免费资源| 成人国产av品久久久| 日韩制服骚丝袜av| av在线老鸭窝| 国产精品三级大全| 尾随美女入室| 免费观看无遮挡的男女| 国产av精品麻豆| 精品国产国语对白av| 最近中文字幕2019免费版| 一区二区三区乱码不卡18| 国产有黄有色有爽视频| 国产精品久久久久久精品电影小说| 天天操日日干夜夜撸| 国产精品熟女久久久久浪| 少妇高潮的动态图| 精品久久国产蜜桃| 国产一级毛片在线| 久久久久久久久久久免费av| 欧美精品一区二区免费开放| 欧美少妇被猛烈插入视频| 国产 精品1| 日韩成人伦理影院| 亚洲精品视频女| 97在线视频观看| 最近2019中文字幕mv第一页| 日日摸夜夜添夜夜添av毛片| 亚洲精品日韩av片在线观看| 国内精品宾馆在线| 黄色一级大片看看| 中国国产av一级| 亚洲三级黄色毛片| 一区二区av电影网| 亚洲成人一二三区av| 久久久亚洲精品成人影院| 亚洲综合精品二区| 精品酒店卫生间| 9色porny在线观看| av专区在线播放| 一本色道久久久久久精品综合| 狠狠精品人妻久久久久久综合| 日韩一本色道免费dvd| 大香蕉97超碰在线| 国产免费现黄频在线看| 99九九线精品视频在线观看视频| 国产淫语在线视频| 亚洲精品乱久久久久久| 久久久久久久久久久丰满| 日本色播在线视频| 欧美日韩av久久| 亚洲av中文av极速乱| 性色av一级| 最新中文字幕久久久久| 国产精品麻豆人妻色哟哟久久| 亚洲av福利一区| 考比视频在线观看| 啦啦啦中文免费视频观看日本| 亚洲经典国产精华液单| 在线 av 中文字幕| 在线观看免费日韩欧美大片 | 十分钟在线观看高清视频www| 亚洲三级黄色毛片| 国产精品女同一区二区软件| 亚洲成色77777| 国内精品宾馆在线| 日产精品乱码卡一卡2卡三| 飞空精品影院首页| 一本色道久久久久久精品综合| 国产亚洲av片在线观看秒播厂| 亚洲欧洲国产日韩| 国产精品久久久久久精品古装| 男女免费视频国产| 校园人妻丝袜中文字幕| 蜜桃久久精品国产亚洲av| 日韩av在线免费看完整版不卡| 午夜免费鲁丝| 亚洲av在线观看美女高潮| 天天操日日干夜夜撸| 欧美性感艳星| 狠狠精品人妻久久久久久综合| 在线看a的网站| 丰满少妇做爰视频| 亚洲欧美成人精品一区二区| 久久久久视频综合| 精品亚洲乱码少妇综合久久| 啦啦啦在线观看免费高清www| 亚洲精华国产精华液的使用体验| 久久韩国三级中文字幕| 我的老师免费观看完整版| 精品视频人人做人人爽| 夫妻午夜视频| 黄色配什么色好看| av不卡在线播放| 这个男人来自地球电影免费观看 | 一本大道久久a久久精品| 男的添女的下面高潮视频| 啦啦啦啦在线视频资源| 日日撸夜夜添| 久久久精品免费免费高清| 久久99热这里只频精品6学生| 99国产综合亚洲精品| 欧美精品亚洲一区二区| 最黄视频免费看| 国产一区有黄有色的免费视频| 精品一区在线观看国产| 看免费成人av毛片| 五月天丁香电影| 91aial.com中文字幕在线观看| 亚洲美女搞黄在线观看| 午夜久久久在线观看| 免费看光身美女| 午夜福利影视在线免费观看| 免费高清在线观看视频在线观看| 久久精品国产鲁丝片午夜精品| 免费久久久久久久精品成人欧美视频 | 中文字幕制服av| 国产一区二区在线观看日韩| 国产精品蜜桃在线观看| 日本与韩国留学比较| 99热全是精品| 亚洲激情五月婷婷啪啪| 校园人妻丝袜中文字幕| 亚洲精品一二三| 18禁裸乳无遮挡动漫免费视频| 亚洲成人一二三区av| 在线看a的网站| videossex国产| 亚洲久久久国产精品| 一本色道久久久久久精品综合| 亚洲av综合色区一区| freevideosex欧美| 色婷婷久久久亚洲欧美| 国产免费一级a男人的天堂| 国产 精品1| 国产一区二区在线观看日韩| 男人添女人高潮全过程视频| 久久精品久久精品一区二区三区| 日本黄大片高清| 999精品在线视频| 久久久久视频综合| 99国产精品免费福利视频| 我要看黄色一级片免费的| 在线观看免费日韩欧美大片 | 一本—道久久a久久精品蜜桃钙片| 精品久久久噜噜| 精品久久久久久电影网| 女性被躁到高潮视频| 欧美日韩一区二区视频在线观看视频在线| 丰满迷人的少妇在线观看| 丝袜喷水一区| 亚洲怡红院男人天堂| 老熟女久久久| 一级毛片 在线播放| 国产精品麻豆人妻色哟哟久久| 又粗又硬又长又爽又黄的视频| 免费人成在线观看视频色| 多毛熟女@视频| 熟女av电影| 久久99热这里只频精品6学生| 黄色一级大片看看| 99久久综合免费| 国产av精品麻豆| 大香蕉97超碰在线| 纵有疾风起免费观看全集完整版| 欧美日韩av久久| 最新的欧美精品一区二区| 国产69精品久久久久777片| 五月伊人婷婷丁香| 国产深夜福利视频在线观看| 精品99又大又爽又粗少妇毛片| 一本色道久久久久久精品综合| 高清视频免费观看一区二区| 99久国产av精品国产电影| 久久热精品热| 欧美丝袜亚洲另类| 日韩伦理黄色片| 亚洲图色成人| 成人国产麻豆网| 国产亚洲精品第一综合不卡 | 久久久久久久精品精品| 黑丝袜美女国产一区| 久久午夜福利片| 久久久国产精品麻豆| 久久午夜福利片| 国产有黄有色有爽视频| 亚洲欧美中文字幕日韩二区| 婷婷色麻豆天堂久久| 成人二区视频| 国产精品秋霞免费鲁丝片| 内地一区二区视频在线| 97超视频在线观看视频| 成人午夜精彩视频在线观看| 18禁在线播放成人免费| 久久久久国产网址| 国产成人a∨麻豆精品| 波野结衣二区三区在线| 高清不卡的av网站| 你懂的网址亚洲精品在线观看| 高清欧美精品videossex| 寂寞人妻少妇视频99o| 黄色视频在线播放观看不卡| 91aial.com中文字幕在线观看| 国产精品一二三区在线看| 一区二区三区精品91| 婷婷成人精品国产| 日韩中字成人| 久久久久久久久久久丰满| 极品人妻少妇av视频| 国产日韩欧美亚洲二区| 亚洲国产av新网站| 乱人伦中国视频| 一本—道久久a久久精品蜜桃钙片| 久久久国产欧美日韩av| 欧美精品国产亚洲| 少妇被粗大的猛进出69影院 | av免费在线看不卡| 日韩,欧美,国产一区二区三区| 最近2019中文字幕mv第一页| 成人国产av品久久久| 啦啦啦视频在线资源免费观看| 视频在线观看一区二区三区| av在线老鸭窝| 久久国产亚洲av麻豆专区| 欧美日韩成人在线一区二区| 成人综合一区亚洲| 精品国产国语对白av| 成人黄色视频免费在线看| 考比视频在线观看| 欧美 亚洲 国产 日韩一| 精品久久久久久久久亚洲| 国产午夜精品一二区理论片| 日韩免费高清中文字幕av| 26uuu在线亚洲综合色| 日韩成人伦理影院| 曰老女人黄片|