• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Visualizing and witnessing first-order coherence,Bell nonlocality and purity by using a quantum steering ellipsoid in the non-inertial frame

    2023-11-02 08:12:30HuanYang楊歡LingLingXing邢玲玲MingMingDu杜明明MinKong孔敏GangZhang張剛andLiuYe葉柳
    Chinese Physics B 2023年10期
    關(guān)鍵詞:張剛

    Huan Yang(楊歡), Ling-Ling Xing(邢玲玲), Ming-Ming Du(杜明明),Min Kong(孔敏), Gang Zhang(張剛),?, and Liu Ye(葉柳)

    1School of Electrical and Photoelectronic Engineering,West Anhui University,Lu’an 237012,China

    2College of Electronic and Optical Engineering,Nanjing University of Posts and Telecommunications,Nanjing 210003,China

    3School of Physics and Optoelectronic Engineering,Anhui University,Hefei 230039,China

    Keywords: quantum steering ellipsoid,first-order coherence,Bell-nonlocality,purity

    1.Introduction

    As a basic concept in the physical world, coherence arises from quantum superposition and is essential for the quantum information sciences, including quantum interference and multipartite entanglement.[1,2]It also plays a vital part in the fields of quantum metrology,[3]low-temperature thermodynamics,[4-6]solid-state physics[7]and so on.Meanwhile,coherence can also be used to depict the interference capability of interacting fields in quantum optics research.[8-12]Beyond this, there have been various efforts to ascertain the interrelations between coherence and correlations,[13-20]and these relations are essential for predicting the coherent transfer in researched quantum systems.Various coherence measures have been established to quantify coherence.Examples include first-order coherence(FOC)[13](which is a basisindependent measure)and thel1norm of coherence(which is a basis-dependent measure).[21]It should be emphasized that there is a relationship between FOC and thel1norm of coherence.For a single-qubit state, the FOC of a state is equal to thel1norm of coherence quantified on the optimal basis.In principle, quantum correlations include various forms, such as quantum entanglement, Einstein-Podolsky-Rosen (EPR)steering and Bell nonlocality(BN).Among these, BN(quantum entanglement) is the strongest (weakest) quantum correlation.Coherence is one of the important bases for generating quantum correlations; even conceptually, coherence is more fundamental than quantum correlations, including BN.One can detect the BN of a system by violating some Bell-type inequalities,[22-32]especially the Clauser-Horne-Shimony-Holt (CHSH) inequality.[30-34]It deserves to be emphasized that not all entangled states can possess BN.[35]Horodeckiet al.have derived the sufficient and necessary conditions for BN for arbitrary bipartite states.[36]

    In the field of quantum information science, the construction of three-dimensional pictures of different quantum states is an important avenue for investigating quantum correlations.[37]A Bloch vector provides a simple and intuitive representation of any single-qubit state.[37]However,for a two-qubit state, 15 parameters of the state need to be described,introducing amazing complexity and difficulty for the geometric description of a two-qubit state.Fortunately,Jevticet al.[38]proposed a scheme in which a quantum steering ellipsoid (QSE) is used to visualize any two-qubit state.To clarify, there is a remarkable phenomenon in which measuring the subsystem of an entangled state can remotely steer the state of the other subsystem.This phenomenon is called EPR steering.[39,40]If one performs all possible local operations on one qubit,all Bloch vectors of the other qubit’s steered states form a QSE in the Bloch sphere.[38]Any bipartite state can correspond to a QSE.In particular, not all QSEs can faithfully express a two-qubit state.The sufficient and necessary condition for a QSE to denote a bipartite state was derived by Milneet al.[41]It is worth mentioning that the QSE provides an intuitive depiction and indication for quantum correlations.Examples include steered coherence,[42-44]discord,[38,45-47]entanglement[38,41,48]and EPR steering.[49-54]Zhanget al.[55]experimentally verified the QSE of two-qubit states and also demonstrated volume monogamy relations of the QSE.[56]Recently,Duet al.[57]investigated quantum phase transitions in theXXZmodel through a QSE.However,these efforts are limited to inertial systems.[42-45,57]

    The non-inertial frame provides nontrivial tools for understanding relativistic quantum information and black holes,and is a rapidly developing field.[58]Relevant explorations in the non-inertial frame have been widely carried out.[59-74]There has been a lot of effort made to investigate nonlocality under non-inertial frames.[75-78]Friiset al.[75]explored entanglement of accelerated fermions.Smithet al.[76]analyzed tripartite nonlocality of non-inertial observers.Subsequently,Tianet al.[77,78]investigated nonlocality, entanglement and measurement-induced nonlocality under the Unruh effect.Of particular note is that each actual system is inevitably coupled with the surrounding environment.This coupling can accelerate the degeneration of quantum nonlocalities and set obstacles for achieving various quantum information tasks.For this reason, explorations of quantum nonlocalities in non-inertial frames suffering from different noise channels have been extensively performed.[79-86]Nevertheless, use of a QSE to visualize nonlocality under non-inertial frames is still lacking,especially when considering the collective influences of noninertial frames and noise channels in the QSE formalism.Such an investigation may provide a more visual tool to ascertain the influences of relativistic motion and external noise on different quantum correlations.

    Encouraged by this,we visualize the FOC,BN and purity in a non-inertial frame by utilizing a QSE, and also explore them when the particle suffers from a depolarizing channel or a non-coherence-generating channel(NCGC).Our results reveal that FOC, BN and purity can be visualized and detected by the parameters of the QSE.Particle acceleration induces shrinking and movement of the QSE.These peculiarities are responsible for the results that the BN and purity are reduced with increase in the acceleration.Note that FOC can be revived by higher acceleration due to the trait that the QSE can puncture the center of the Bloch sphere under a higher acceleration.The condition of FOC disappearance(or recovery)can be attained through the QSE.The depolarizing channel results in monotonic shrinking of the QSE,and it finally degenerates into a point at the center of the Bloch sphere.The results imply that the coherence,BN and purity monotonously decrease as noise strength increases.Under the influence of the NCGC,the periodic oscillation of the QSE visualizes the periodic oscillations of the BN and purity with growing noise parametersθandφ.The FOC is invariant with different values ofθsince the center of the QSE cannot move with the change ofθ.Moreover, the BN is more fragile after considering the additional effects of a depolarizing channel and NCGC because the depolarizing channel and the NCGC can reduce the size of the QSE.Under the additional influences of a depolarizing channel and NCGC,the conditions for FOC disappearance are invariant because the condition for the QSE to achieve the center of the Bloch sphere cannot be influenced by the depolarizing channel and the NCGC.

    Section 2 of this paper briefly describes QSE theory.In Subsection 3.1,we characterize and capture the FOC,BN and purity of a system in the QSE formalism.The collective influences of the depolarizing channel and the NCGC on the FOC,BN and purity are explored in Subsections 3.2 and 3.3,respectively.Finally,conclusions are drawn.

    2.The QSE

    Alice and Bob collectively possess bipartite statesρ,

    whereIis the identity operator,σ=(σ1,σ2,σ3) denotes the vector of the Pauli matrix.Mnm= Tr(ρσn ?σm) (m,n=1,2,3),a= Tr(ρσ ?I),b= Tr(ρ·I ?σ).According to Ref.[38], if we perform all possible local measurements on Bob,the QSE of Alice(i.e.,?A)can be constructed by all the vectors of Alice’s steered states.One can use center?Aand ellipsoid matrix ?Ato characterize ?A:

    The orientations and lengths of the semiaxes of ?Aare reflected by the eigenvectors of ?Aand the arithmetic square root of eigenvalues of ?A, respectively.One can also obtain the QSE of Bob(?B),namely,

    3.Visualizing and detecting the FOC, BN and purity via the QSE

    3.1.Under the influence of a non-inertial frame

    Of particular note is that the ellipsoid ?Bcannot puncture the Bloch sphere.The maximally obese statescorrespond to the state with the largest ellipsoid volume at the centerc=(0,0,Ξ).can be expressed by

    Its matrix form is

    The maximally obese state is very useful and can bind many quantum nonlocalities for two-qubit states,such as the entanglement and BN.[48]The largest volume ellipsoid of Bob for the centerc=(0,0,Ξ)can be represented as

    Now, let us consider that Alice and Bob (as two observers) collectively possessin Minkowski space-time.Alice remains stationary and Bob moves with uniform acceleration.As a consequence,the Unruh effect will appear.Meanwhile,we assume that Alice possesses a detector which is sensitive only to mode|n〉A(chǔ)(the mode of Minkowski space-time that corresponds to Alice)and Bob possesses another detector which is sensitive only to mode|n〉B(the mode of Minkowski space-time that corresponds to Bob).We then let Alice remain stationary while Bob moves with a uniform acceleration.Considering a fermionic field system, from the accelerated perspective of Bob the Minkowski vacuum state is found to be a two-mode squeezed state[87]

    with acceleration parameterγ=(e-2πωc'/a+1)-1/2.Here,ais the acceleration of Bob,ωis the frequency of the Dirac particle andc'is the speed of light in a vacuum.0<γ <π/4 corresponding to 0<a <∞.{|0〉I}and{|0〉II}indicate Rindler modes in regions I and II,respectively.The only excited state is given by[87]

    Using Eqs.(10) and (11), the state of Eq.(8) is transformed into

    Due to the fact that Bob is causally disconnected from region II, the physically accessible information is encoded in mode A(described by Alice)and mode I(described by Bob).Tracing over the mode in region II,we obtain

    We calculate the QSE of Bob in the form

    The central coordinate of the QSE on thez-axis is

    Thex,yandzsemiaxis lengths of the QSE are ?1,?2and ?3,respectively.Namely,

    The FOC for the bipartite systemρABis

    This result implies that the FOC of the whole bipartite system can be directly visualized by the distance from the center of the QSE ?Bto the center of the Bloch sphere.D2ABdisappears only if ?Breaches the center of the Bloch sphere,which provides an avenue to witness the FOC.We also visualize the maximal CHSH violation[30-33]ofρABthrough ?B,i.e.,

    The BN ofρABisBN(ρAB)=max{0,β(ρAB)-2}.It is revealed that the BN ofρABcan be intuitively characterized and detected by ?1or ?2.Using ?B,one can visualize the purity ofρAB,namely,

    which establishes the connection between purity and the QSE.It is straightforward that the purity can reach 0.25 only if the QSE degenerates into a point at the center of the Bloch sphere.Equation(20)can also be rewritten as

    The results obtained above provide visual tools to investigate and detect the FOC,BN and purity under a non-inertial frame.For clarity, we herein use Fig.1 to depict the geometric parameters of the QSE,FOC,BN and purity with respect to the acceleration parameterγ.Under the Unruh effect, lengths of?1, ?2and ?3degenerate with increasingγ, as shown in Fig.1(a).According to the result of Eq.(19), one can reveal that the shrinkage of ?Bvisually reflects the reduction in BN in Fig.1(b).The BN cannot be detected if the semiaxis of ?BsatisfiesThe critical case corresponds to.In the critical case,the shape of ?BwithΞ=0.4 is plotted in Fig.2(green ellipsoid).

    Fig.1.(a) The dependence of semiaxis length and ΞB on γ.(b) The dependence of the FOC,BN and purity on γ. Ξ =0.4.

    Fig.2.The shape of ?B: (a) stereoscopic view, (b) front perspective.The yellow ellipsoid represents the initial ?B with γ =0.The green QSE and blue QSE are ?B with γ =0.4205 (corresponding to the case when the BN suddenly disappears in Fig.1(b))and γ =0.5639(corresponding to the case when the FOC suddenly disappears in Fig.1(b)),respectively.The red ellipsoid represents the final ?B with γ =π/4. Ξ =0.4.

    As seen in Figs.1(a)and 2,the Unruh effect induces the result that the ?Band its center move along the negative orientation of thez-axis asγincreases.Note that the FOC is only associated with the centerΞBof ?B.Therefore, the movement of the center of the QSE is responsible for the detection of the FOC.Namely,FOC first degenerates and suddenly disappears; subsequently, it revives under the strong Unruh effect.The revival of the FOC in Fig.1(b) due to the center of the ?B,ΞB, can puncture the center of the Bloch sphere in Fig.1(a).The phenomenon is different from the peculiarity of the BN.Using the QSE parameters in Eq.(14), one can see and easily obtain that FOC will suddenly disappear ifγ=arccos[(1-Ξ)/(1+Ξ)]/2 and will revive in the interval of arccos[(1-Ξ)/(1+Ξ)]/2<γ ≤π/4.The blue ellipsoid in Fig.2 is the shape of ?Bcorresponding to the case of FOC disappearance.We also provide the final ?B(corresponding toγ=π/4,as red ellipsoid plotted)under the non-inertial frames in Fig.2.These results indicate that the QSE cannot degenerate into a point under the non-inertial frame as the acceleration parameterγincreases, meaning that the purity ofρABdecays with decreasing ?Band cannot reach 0.25 in Fig.1(b).

    3.2.The collective effects of the non-inertial frames and depolarizing channel

    Exotic environments unavoidably influence the quantum systems in a realistic scenario.Herein,we consider Bob in the state of Eq.(13)coupled to a depolarizing channel,which can be described by the Kraus operators

    andp=1-e-γ0t.Hence,the non-zero matrix elements of the output state ?ρAB-Dread as

    The QSE of Bob has the form

    For each subsystem,FOC is visualized by

    The FOC for bipartite systems is

    Similarly, the maximal CHSH violation and the purity of ?ρAB-Dare visualized by ??B-D,i.e.,

    The BN is BN(?ρAB-D)=max{0,β(?ρAB-D)-2}.Hence,the FOC, BN and purity under a depolarizing channel can be visualized and captured by ??B-D.Equation (30) can also be rewritten as

    Fig.4.The ??B-D corresponding to the case when the BN suddenly disappears under the depolarizing channel: (a)stereoscopic view,(b)front perspective. Ξ =0.4,γ =0.2.

    To visualize and capture the FOC,BN and purity under a depolarizing channel we plot the dependence of the QSE parameters,FOC,BN and purity on the depolarizing channel parameterpin Fig.3.Figure 3(a)shows that the semiaxis lengths linearly degrade with increasingp.This characteristic leads to a linear decrease of the BN in Fig.3(b).The semiaxis length?1-Drapidly shrinks to■which causes a sudden disappearance of the BN in this case,and one can use the traits of the QSE to determine that detection of the BN cannot be realized.Figure 4 visually displays the shape of ??B-Dfor the disappearance of the BN(Ξ=0.4 andγ= 0.2).The center of ??B-Dmoves along the negative orientation of thez-axis aspstrengthens, as displayed in Fig.3(a).It deserves to be emphasized that the center of ??B-Dcannot puncture the center of the Bloch sphere, and ??B-Dfinally degenerates into a point at the center of the Bloch sphere.These traits are different from those in Fig.1(a).According to the characteristics of the QSE,one can conjecture that the purity of ?ρAB-Ddegrades with decreasing ??B-D,finally reaching 0.25 in Fig.3(b).Meanwhile,the system’s FOC monotonously decreases with increasingpand reduces to zero atp=1 in Fig.3(b).One can always witness existence of FOC via the QSE(except atp=1).

    Next let us turn to visualize the influences of the Unruh effect on the FOC,BN and purity when considering a depolarizing channel.We give the QSE parameters,FOC,BN and purity with respect toγin Fig.5.In comparison with the results in Fig.1(without considering the influence of a depolarizing channel),it can be found that the depolarizing channel cannot affect the trends of the QSE,FOC,BN and purity in Fig.5.Of particular note is that the BN more easily disappears(the critical case corresponds toγ=arcsec[2-2Ξ(1-p)])if we additionally consider the effect of the depolarizing channel.The reason for this can be visually explained using the QSE.That is, the size of the QSE is smaller when considering the effect of a depolarizing channel (as revealed in Eqs.(16) and (26))and the semiaxis of ??B-Dmore easily reaches 2/2 under the Unruh effect.In particular,note that the depolarizing channel cannot affect the condition of the disappearance of FOC (the critical case corresponding toγ=arccos[(1-Ξ)/(1+Ξ)]/2)ifp/=1.This phenomenon can be visually interpreted by the fact that the condition for the center of the QSE reaching the center of the Bloch sphere is not affected by the depolarizing channel.

    Fig.5.(a)The dependence of semiaxis lengths and ΞB-D on γ.(b)The dependence of the FOC,BN and purity on γ. Ξ =0.4, p=0.05.

    3.3.The collective influences of the non-inertial frames and the NCGC

    The NCGC is defined as a completely positive tracepreserving map which does not generate quantum coherence from an incoherent state.[88]Incoherent operation is a strict subset of the NCGC.[88]The Kraus operators of a rank-2 NCGC are[88]

    Here,θ,φ,ηandξare all real numbers.For simplicity,ηandξare supposed to be zero in this paper.The channel with the form of Eq.(32) is not an incoherent channel unless sinφcosφsinθcosθ=0.[88]Assuming Bob’s state ofρABcoupled to the NCGC,the final two-qubit state is ?ρAB-N,namely,

    The QSE of Bob is given by

    For each subsystem,the FOC is

    Based on this result,one can attain the FOC of ?ρAB-Nby using the geometrical parameters of ??B-N,namely,

    In the QSE formalism,the maximal CHSH violation of ?ρAB-Nis

    where ?maxand ?secare the longest and the second longest semiaxes of ??B-N, respectly.The BN is BN(?ρAB-N) =max{0,β(?ρAB-N)-2}.The purity of ?ρAB-Nis

    that is,

    To begin with,we visualize and capture the FOC,BN and purity with different channel parametersθin Fig.6.From this figure we can see that the semiaxis lengths ?1-Nand ?3-Nperiodically oscillate under the NCGC.The period of oscillation is equal toπ.However, the length of theysemiaxis?2-Nis invariant withθ.Thereby, ??B-Nperiodically and alternately changes between a three-dimensional ellipsoid and a one-dimensional ellipse.We see that the BN first disappears,then revives and reaches a maximum atθ=nπ(n=0,1,2,...)(corresponding to the maximal lengths of thexandzsemiaxes).It is straightforward to show that the centerΞB-Nof ??B-Nis invariant in this case,and one can always witness the existence and invariance of FOC via the QSE,as described in Fig.6(b).The periodical oscillations of ?1-Nand ?3-Nvisualize a periodic oscillation in the purity of ?ρAB-N.

    Fig.6.The dependence of semiaxis length and ΞB-N on the channel parameter θ.(b) The dependence of the FOC, BN and purity on θ.Ξ =0.4,γ =0.2,and φ =π/20.

    Next, we further visualize the FOC, BN and purity for various values ofφ.One can see from Fig.7 that the length of thexsemiaxis is invariant.?2-Nand ?3-Nperiodically oscillate and achieve a maximum ifφ=nπ/2.Notably, the center of ??B-Nis not invariant with various values ofφ, and the center of ??B-Npunctures the center of the Bloch sphere atφ=nπ/2.One can use the trait of the QSE to visualize and determine that the invariance of the FOC cannot occur, and the FOC periodically oscillates and reaches zero atφ=nπ/2 in Fig.7(b)(the results are remarkably different from those in Fig.6(b)).Also,the tendency of the purity in Fig.7(b)is fully correlated with the trait of FOC due to the periodic oscillations of ?2-N,?3-NandΞB-Nin Fig.7(a).

    Fig.7.(a)The dependence of semiaxis length and ΞB-N on the channel parameter φ.(b)The dependence of the FOC,BN and purity on φ.Ξ =0.4,γ =0.2,and θ =π/20.

    Finally, we direct our attention to explore the influences of the Unruh effect on the FOC, BN and purity under the NCGC.The dependence of the QSE parameters, FOC, BN and purity onγare demonstrated in Fig.8.Comparing Fig.8 with Fig.1, it can be concluded that the NCGC cannot influence the tendencies of the QSE, FOC, BN and purity.However, the NCGC can reduce the size of the QSE (as uncovered in Eqs.(16) and (36)), which means that the BN disappears at a weakerγunder the additional effect of the NCGC,as shown by the green curve in Fig.8(b).Beyond this, one can reveal from Eqs.(15) and (35) and Figs.1 and 8 that the condition ofΞB-N=0 (when the QSE reaches the center of the Bloch sphere) is not influenced by the NCGC if cos2φ/=0.For this reason,the NCGC cannot affect the condition of the disappearance of FOC(the critical case corresponding toγ=arccos[(1-Ξ)/(1+Ξ)]/2)in this scheme.

    4.Conclusions

    We obtain the form of the QSE under the non-inertial frame, and also derive the QSE of the system coupled to the depolarizing channel and the NCGC,respectively.The FOC,BN and purity are visualized and detected via the QSE.To be specific,the distance from the center of the QSE to the center of the Bloch sphere visualizes the FOC of a bipartite system.The lengths of thexandysemiaxes visualize the BN of the system.The shape of the QSE and its position dominate the purity of system.Beyond this, the conditions for the disappearance of the FOC and BN can be directly obtained by the characteristics of the QSE,and one can capture the FOC,BN and purity by using the shape and position of the QSE.That is,FOC will suddenly disappear if and only if the QSE moves to the center of the Bloch sphere, no matter what shape the QSE is.The BN will disappear if and only if the length of thexorysemiaxis is equal to 2/2, no matter where the QSE is in the Bloch sphere.The purity can reach 0.25 if and only if the QSE degenerates into a point at the center of the Bloch sphere.Under a non-inertial frame,the QSE moves along the negative orientation of thez-axis and shrinks with enhancing acceleration.This characteristic visualizes the decrease of the BN and purity.Notably,due to the result that the center of the QSE can puncture the center of the Bloch sphere if the acceleration is strong,the vanished FOC can revive at high acceleration.Considering the depolarizing channel,the QSE monotonically shrinks and finally degenerates into a point at the center of the Bloch sphere.This phenomenon is responsible for the monotonous degeneration of the FOC,BN and purity.Under the effect of the NCGC,the shape of the QSE periodically oscillates with increasing channel parametersθandφ.These traits visualize the periodical oscillations of the BN and purity with increasingθandφ.It deserves to be emphasized that the center of the QSE is invariant with variousθ, which reflects the invariance of FOC.Moreover, our results reveal that the depolarizing channel and NCGC can decrease the size of the QSE,and cannot influence the condition for the QSE reaching the center of the Bloch sphere(ifp/=1 or cos2φ/=0).That is to say, the BN is more fragile when considering the additional effects of a depolarizing channel and the NCGC.The condition for the disappearance of FOC is invariant when considering the depolarizing channel and the NCGC as additional influences.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant No.12175001), the Natural Science Research Key Project of the Education Department of Anhui Province of China (Grant No.KJ2021A0943), the Research Start-up Funding Project of High Level Talent of West Anhui University(Grant No.WGKQ2021048),an Open Project of the Key Laboratory of Functional Materials and Devices for Informatics of Anhui Higher Education Institutes(Grant No.FMDI202106), the University Synergy Innovation Program of Anhui Province(Grant No.GXXT-2021-026)and the Anhui Provincial Natural Science Foundation (Grant Nos.2108085MA18 and 2008085MA20).

    猜你喜歡
    張剛
    Steering quantum nonlocalities of quantum dot system suffering from decoherence
    Characteristics of piecewise linear symmetric tri-stable stochastic resonance system and its application under different noises
    2022年高考模擬試題(三)
    層林盡染
    HeTDSE:A GPU based program to solve the full-dimensional time-dependent Schr¨odinger equation for two-electron helium subjected to strong laser fields*
    戀愛(ài)婚姻家庭(2019年8期)2019-08-30 04:45:15
    戀愛(ài)婚姻家庭(2019年22期)2019-07-29 04:05:00
    Implementation Scheme of Two-Photon Post-Quantum Correlations?
    數(shù)列最值問(wèn)題的求解策略
    活用課本習(xí)題
    国产精品久久久久成人av| 中文天堂在线官网| tube8黄色片| av卡一久久| 啦啦啦视频在线资源免费观看| 十分钟在线观看高清视频www| 国产av码专区亚洲av| 亚洲在久久综合| 欧美97在线视频| 日韩一区二区三区影片| 久久午夜福利片| 日日撸夜夜添| 午夜日本视频在线| 少妇高潮的动态图| 男人添女人高潮全过程视频| 黑人巨大精品欧美一区二区蜜桃 | 午夜福利视频在线观看免费| www日本在线高清视频| 久久久久视频综合| 你懂的网址亚洲精品在线观看| 国产不卡av网站在线观看| 极品少妇高潮喷水抽搐| 一区二区三区乱码不卡18| 伦理电影免费视频| 99热国产这里只有精品6| 久久99一区二区三区| 午夜视频国产福利| 一个人免费看片子| 日韩一区二区视频免费看| 欧美 日韩 精品 国产| 国产在视频线精品| 色哟哟·www| 最黄视频免费看| 天天操日日干夜夜撸| 久久久久久久久久人人人人人人| 午夜福利,免费看| 久久狼人影院| 久热久热在线精品观看| 最后的刺客免费高清国语| 国产精品欧美亚洲77777| 成人国产麻豆网| 亚洲精品久久久久久婷婷小说| 亚洲中文av在线| 国产色婷婷99| 在线观看人妻少妇| 亚洲图色成人| 国产精品熟女久久久久浪| 看免费av毛片| 中文字幕最新亚洲高清| 边亲边吃奶的免费视频| 99久久精品国产国产毛片| 日本爱情动作片www.在线观看| 99视频精品全部免费 在线| 亚洲一级一片aⅴ在线观看| 插逼视频在线观看| 美女中出高潮动态图| 久久人人97超碰香蕉20202| 妹子高潮喷水视频| 免费日韩欧美在线观看| 最后的刺客免费高清国语| 丝袜美足系列| 久久热在线av| 久久午夜综合久久蜜桃| 日韩av免费高清视频| 日韩制服骚丝袜av| 99香蕉大伊视频| 汤姆久久久久久久影院中文字幕| 亚洲成色77777| 久久久久久久久久久免费av| 少妇高潮的动态图| 欧美日本中文国产一区发布| 国产色爽女视频免费观看| 亚洲国产成人一精品久久久| 亚洲丝袜综合中文字幕| 男人爽女人下面视频在线观看| 2021少妇久久久久久久久久久| 美女内射精品一级片tv| xxxhd国产人妻xxx| 在线观看三级黄色| av福利片在线| 99香蕉大伊视频| 制服诱惑二区| 亚洲精品久久久久久婷婷小说| 亚洲一区二区三区欧美精品| 欧美精品一区二区大全| 亚洲欧美一区二区三区黑人 | videos熟女内射| 三上悠亚av全集在线观看| 欧美亚洲日本最大视频资源| 另类精品久久| 亚洲精品一区蜜桃| 丁香六月天网| 人妻 亚洲 视频| 不卡视频在线观看欧美| 国产在线视频一区二区| videosex国产| 99精国产麻豆久久婷婷| 中文字幕人妻丝袜制服| 九九在线视频观看精品| 午夜福利在线观看免费完整高清在| 高清黄色对白视频在线免费看| 国产成人精品久久久久久| 亚洲一区二区三区欧美精品| 人人妻人人澡人人看| 久久久精品94久久精品| 天堂8中文在线网| 久久人人爽av亚洲精品天堂| 黄色毛片三级朝国网站| 咕卡用的链子| 中文乱码字字幕精品一区二区三区| 国产精品99久久99久久久不卡 | 国产av码专区亚洲av| 99视频精品全部免费 在线| 亚洲av国产av综合av卡| 人人妻人人澡人人看| 亚洲国产av影院在线观看| 日韩三级伦理在线观看| 少妇的逼好多水| 亚洲精品久久午夜乱码| 99久久精品国产国产毛片| 啦啦啦啦在线视频资源| 国产欧美日韩一区二区三区在线| 久久精品国产鲁丝片午夜精品| 亚洲欧美色中文字幕在线| 在线观看免费视频网站a站| 国产精品不卡视频一区二区| 亚洲性久久影院| 在线天堂中文资源库| 亚洲欧美精品自产自拍| 亚洲av欧美aⅴ国产| 蜜臀久久99精品久久宅男| 69精品国产乱码久久久| 色婷婷av一区二区三区视频| 精品久久久久久电影网| 免费不卡的大黄色大毛片视频在线观看| 免费不卡的大黄色大毛片视频在线观看| 国产视频首页在线观看| 久久人人爽av亚洲精品天堂| videossex国产| 2021少妇久久久久久久久久久| 一级黄片播放器| 午夜视频国产福利| 边亲边吃奶的免费视频| 国产精品无大码| 极品人妻少妇av视频| 又粗又硬又长又爽又黄的视频| 亚洲精品av麻豆狂野| 国语对白做爰xxxⅹ性视频网站| a 毛片基地| 欧美3d第一页| 乱人伦中国视频| av在线老鸭窝| 欧美激情国产日韩精品一区| 国产又色又爽无遮挡免| 免费大片黄手机在线观看| 最近中文字幕2019免费版| 亚洲一区二区三区欧美精品| 国产精品秋霞免费鲁丝片| 一级片'在线观看视频| 91久久精品国产一区二区三区| 午夜免费鲁丝| videossex国产| 亚洲国产色片| 免费黄色在线免费观看| 国产亚洲av片在线观看秒播厂| 日韩精品免费视频一区二区三区 | 十八禁网站网址无遮挡| av有码第一页| 国产白丝娇喘喷水9色精品| 这个男人来自地球电影免费观看 | 97精品久久久久久久久久精品| 性色av一级| av片东京热男人的天堂| av有码第一页| 狠狠婷婷综合久久久久久88av| 视频在线观看一区二区三区| 亚洲av.av天堂| 成人漫画全彩无遮挡| 国产亚洲精品久久久com| 亚洲精品国产av蜜桃| 免费少妇av软件| 久久精品人人爽人人爽视色| 人成视频在线观看免费观看| 免费人妻精品一区二区三区视频| 久久这里只有精品19| 亚洲内射少妇av| 久久精品久久精品一区二区三区| 热re99久久国产66热| 亚洲精品久久久久久婷婷小说| 国产成人精品福利久久| 亚洲久久久国产精品| 欧美人与善性xxx| 亚洲精品一二三| av有码第一页| 精品人妻偷拍中文字幕| www.色视频.com| 精品少妇久久久久久888优播| 日韩 亚洲 欧美在线| 新久久久久国产一级毛片| 国产伦理片在线播放av一区| 黄色一级大片看看| 亚洲精品乱码久久久久久按摩| 亚洲熟女精品中文字幕| 精品一区在线观看国产| 在线观看免费高清a一片| 老司机影院成人| 精品亚洲成a人片在线观看| 亚洲欧美成人精品一区二区| 大话2 男鬼变身卡| 一区二区av电影网| av又黄又爽大尺度在线免费看| 久久久久久久精品精品| 18禁国产床啪视频网站| 国产成人精品在线电影| 久久免费观看电影| 精品久久蜜臀av无| 国产1区2区3区精品| 日韩一区二区三区影片| 日韩视频在线欧美| 中文字幕人妻丝袜制服| 亚洲欧洲国产日韩| 午夜激情久久久久久久| av电影中文网址| 亚洲av综合色区一区| 国产成人午夜福利电影在线观看| 国产女主播在线喷水免费视频网站| 日本色播在线视频| 有码 亚洲区| av国产久精品久网站免费入址| 蜜桃国产av成人99| 又黄又爽又刺激的免费视频.| 成人亚洲精品一区在线观看| 国产女主播在线喷水免费视频网站| 日韩不卡一区二区三区视频在线| 亚洲精品国产色婷婷电影| www日本在线高清视频| 巨乳人妻的诱惑在线观看| 国产高清不卡午夜福利| 欧美日韩精品成人综合77777| 观看美女的网站| 国产精品一区www在线观看| 亚洲丝袜综合中文字幕| 中文字幕另类日韩欧美亚洲嫩草| 视频区图区小说| 国产综合精华液| 人妻少妇偷人精品九色| 丁香六月天网| 插逼视频在线观看| 超色免费av| 91久久精品国产一区二区三区| 99久国产av精品国产电影| 蜜桃国产av成人99| 欧美激情 高清一区二区三区| 纵有疾风起免费观看全集完整版| 草草在线视频免费看| 成人影院久久| a 毛片基地| 在线观看一区二区三区激情| 成人免费观看视频高清| 18在线观看网站| 在线观看三级黄色| 亚洲婷婷狠狠爱综合网| 晚上一个人看的免费电影| 国产又爽黄色视频| 人体艺术视频欧美日本| 日韩不卡一区二区三区视频在线| 一区二区三区四区激情视频| 另类精品久久| 九草在线视频观看| 精品久久久久久电影网| 国产视频首页在线观看| av电影中文网址| 免费黄频网站在线观看国产| 波野结衣二区三区在线| 只有这里有精品99| www.熟女人妻精品国产 | 国产日韩欧美视频二区| 午夜免费男女啪啪视频观看| 肉色欧美久久久久久久蜜桃| 一本—道久久a久久精品蜜桃钙片| 亚洲成人手机| av在线app专区| 亚洲成人av在线免费| 日韩三级伦理在线观看| av不卡在线播放| 免费黄网站久久成人精品| 国产白丝娇喘喷水9色精品| 日韩伦理黄色片| 久久99热这里只频精品6学生| 亚洲精品国产av蜜桃| 国产白丝娇喘喷水9色精品| 日韩不卡一区二区三区视频在线| 亚洲欧美日韩卡通动漫| 免费看av在线观看网站| 色5月婷婷丁香| 午夜av观看不卡| 国产免费视频播放在线视频| 中文字幕免费在线视频6| 亚洲成色77777| 亚洲欧洲国产日韩| av电影中文网址| 国产高清三级在线| 精品福利永久在线观看| 亚洲精品色激情综合| 国产在视频线精品| 日日啪夜夜爽| 久久女婷五月综合色啪小说| 精品一区二区免费观看| 国语对白做爰xxxⅹ性视频网站| 巨乳人妻的诱惑在线观看| 交换朋友夫妻互换小说| 成人漫画全彩无遮挡| 日日啪夜夜爽| 天堂中文最新版在线下载| 极品人妻少妇av视频| 国语对白做爰xxxⅹ性视频网站| 九九爱精品视频在线观看| 最近中文字幕2019免费版| 十分钟在线观看高清视频www| 嫩草影院入口| 新久久久久国产一级毛片| 免费女性裸体啪啪无遮挡网站| 男女边吃奶边做爰视频| 99热全是精品| 看免费成人av毛片| 国产麻豆69| 欧美日韩国产mv在线观看视频| 在线观看一区二区三区激情| 大话2 男鬼变身卡| 亚洲av福利一区| 韩国高清视频一区二区三区| 看免费成人av毛片| 女人精品久久久久毛片| 国产老妇伦熟女老妇高清| 亚洲人成网站在线观看播放| 最新的欧美精品一区二区| 精品少妇内射三级| 精品国产一区二区三区四区第35| 欧美精品一区二区大全| 激情五月婷婷亚洲| 国产老妇伦熟女老妇高清| 国产精品不卡视频一区二区| 99香蕉大伊视频| 午夜福利影视在线免费观看| 亚洲国产毛片av蜜桃av| 人成视频在线观看免费观看| 色哟哟·www| 国产精品久久久久久久久免| 成年人免费黄色播放视频| 少妇人妻久久综合中文| 国产免费一区二区三区四区乱码| 亚洲国产精品国产精品| 天堂中文最新版在线下载| 男女国产视频网站| 亚洲国产欧美日韩在线播放| 看十八女毛片水多多多| 精品一区二区三区四区五区乱码 | 成人国产av品久久久| 我的女老师完整版在线观看| 亚洲四区av| 97超碰精品成人国产| 久久99蜜桃精品久久| 看免费av毛片| 久久精品国产a三级三级三级| 狠狠婷婷综合久久久久久88av| √禁漫天堂资源中文www| 另类精品久久| 日韩熟女老妇一区二区性免费视频| 日韩中字成人| 丰满少妇做爰视频| 在线观看一区二区三区激情| 波多野结衣一区麻豆| 天美传媒精品一区二区| 亚洲伊人色综图| 精品福利永久在线观看| 久久午夜综合久久蜜桃| 精品99又大又爽又粗少妇毛片| 熟女电影av网| 精品久久国产蜜桃| 国产乱来视频区| 久久国产精品大桥未久av| 亚洲国产欧美在线一区| 99热这里只有是精品在线观看| 亚洲av电影在线进入| 高清av免费在线| 欧美成人精品欧美一级黄| 国产一区二区激情短视频 | 深夜精品福利| 精品一区二区免费观看| 狂野欧美激情性bbbbbb| 亚洲中文av在线| 丰满乱子伦码专区| 中文字幕免费在线视频6| 成年美女黄网站色视频大全免费| 多毛熟女@视频| 国产一级毛片在线| 在线看a的网站| 亚洲,一卡二卡三卡| 美女中出高潮动态图| 男女边摸边吃奶| 国产免费视频播放在线视频| 免费少妇av软件| 这个男人来自地球电影免费观看 | 美女脱内裤让男人舔精品视频| 国产亚洲最大av| 国产无遮挡羞羞视频在线观看| 国产av精品麻豆| 久久人人爽av亚洲精品天堂| 国产一区有黄有色的免费视频| 亚洲色图 男人天堂 中文字幕 | 精品人妻一区二区三区麻豆| 欧美精品人与动牲交sv欧美| 免费大片18禁| 亚洲第一av免费看| 久久99精品国语久久久| 丰满少妇做爰视频| 久久av网站| 亚洲国产精品专区欧美| 青春草国产在线视频| 日韩电影二区| kizo精华| 亚洲在久久综合| 巨乳人妻的诱惑在线观看| 久久精品熟女亚洲av麻豆精品| 天堂俺去俺来也www色官网| 国产老妇伦熟女老妇高清| 欧美 亚洲 国产 日韩一| 最近2019中文字幕mv第一页| 亚洲人成网站在线观看播放| 日本av免费视频播放| 国产精品久久久久成人av| 九草在线视频观看| 国产视频首页在线观看| 伊人久久国产一区二区| 天天躁夜夜躁狠狠久久av| 国产1区2区3区精品| 另类亚洲欧美激情| 国产成人免费观看mmmm| 天堂俺去俺来也www色官网| 精品国产露脸久久av麻豆| 在线观看国产h片| av在线老鸭窝| 男人操女人黄网站| 亚洲精品日本国产第一区| 少妇高潮的动态图| 搡老乐熟女国产| av在线老鸭窝| 国产极品粉嫩免费观看在线| 97人妻天天添夜夜摸| 亚洲中文av在线| 欧美精品av麻豆av| 国产成人精品一,二区| 哪个播放器可以免费观看大片| 国产片特级美女逼逼视频| 人人妻人人澡人人爽人人夜夜| 91久久精品国产一区二区三区| 涩涩av久久男人的天堂| 久久99精品国语久久久| 欧美人与性动交α欧美软件 | 亚洲欧洲精品一区二区精品久久久 | 欧美人与性动交α欧美软件 | 免费观看性生交大片5| 午夜福利乱码中文字幕| 国产精品秋霞免费鲁丝片| 曰老女人黄片| 一级爰片在线观看| 免费人妻精品一区二区三区视频| videossex国产| 不卡视频在线观看欧美| 亚洲内射少妇av| 丝袜喷水一区| 波多野结衣一区麻豆| 丝袜脚勾引网站| 精品酒店卫生间| 欧美精品av麻豆av| 免费少妇av软件| 成人国语在线视频| 国产一区二区三区av在线| 五月天丁香电影| 夫妻性生交免费视频一级片| 丰满迷人的少妇在线观看| 国产又爽黄色视频| 亚洲综合色惰| 欧美日韩亚洲高清精品| 超色免费av| 久久久久精品性色| 亚洲成色77777| 校园人妻丝袜中文字幕| 考比视频在线观看| 久久久久视频综合| av黄色大香蕉| 最新中文字幕久久久久| 国产无遮挡羞羞视频在线观看| a级毛片在线看网站| 又黄又粗又硬又大视频| 成人亚洲精品一区在线观看| 精品少妇久久久久久888优播| 亚洲精品一二三| 97在线视频观看| 一级爰片在线观看| 久久久久久伊人网av| 国产在线一区二区三区精| 69精品国产乱码久久久| 一级黄片播放器| 成人毛片a级毛片在线播放| 日本欧美国产在线视频| 国产有黄有色有爽视频| 日韩欧美精品免费久久| 岛国毛片在线播放| 丰满迷人的少妇在线观看| av视频免费观看在线观看| 日韩av免费高清视频| 国产一区有黄有色的免费视频| 我的女老师完整版在线观看| 97在线人人人人妻| 日本午夜av视频| 激情视频va一区二区三区| 伊人亚洲综合成人网| av不卡在线播放| 美女脱内裤让男人舔精品视频| 91精品伊人久久大香线蕉| www.av在线官网国产| av国产精品久久久久影院| 欧美+日韩+精品| 成人18禁高潮啪啪吃奶动态图| 另类亚洲欧美激情| 免费av中文字幕在线| 成人午夜精彩视频在线观看| 免费久久久久久久精品成人欧美视频 | 亚洲五月色婷婷综合| 成人毛片60女人毛片免费| 日本欧美国产在线视频| 国产精品久久久久久久电影| 成人无遮挡网站| 亚洲国产日韩一区二区| 久久97久久精品| 高清视频免费观看一区二区| 亚洲国产精品一区三区| 亚洲,欧美精品.| 国产精品一区二区在线不卡| av视频免费观看在线观看| 一级毛片电影观看| 午夜免费男女啪啪视频观看| 国产高清国产精品国产三级| 国产精品国产av在线观看| 精品第一国产精品| 伦精品一区二区三区| 国产综合精华液| 伦理电影大哥的女人| 91精品伊人久久大香线蕉| 国产精品一区二区在线观看99| 毛片一级片免费看久久久久| 久久女婷五月综合色啪小说| 99九九在线精品视频| 美女脱内裤让男人舔精品视频| 亚洲四区av| 永久免费av网站大全| 成年人午夜在线观看视频| 22中文网久久字幕| 欧美精品亚洲一区二区| 久久久久久久久久久久大奶| 最近2019中文字幕mv第一页| freevideosex欧美| 黄网站色视频无遮挡免费观看| 一区二区三区精品91| 一边摸一边做爽爽视频免费| 国产精品成人在线| 国产成人欧美| 99热国产这里只有精品6| 九九爱精品视频在线观看| 美女国产视频在线观看| 新久久久久国产一级毛片| 爱豆传媒免费全集在线观看| videos熟女内射| 免费不卡的大黄色大毛片视频在线观看| 亚洲第一av免费看| 男女边吃奶边做爰视频| 免费看不卡的av| 中国国产av一级| 99re6热这里在线精品视频| 少妇猛男粗大的猛烈进出视频| 国产av码专区亚洲av| 久久久久网色| 亚洲精品日韩在线中文字幕| 久热久热在线精品观看| 国产国语露脸激情在线看| 久久久久久久国产电影| 精品一区二区三区四区五区乱码 | 国产日韩欧美视频二区| 日本av免费视频播放| 在线亚洲精品国产二区图片欧美| 美女国产视频在线观看| 国产成人精品一,二区| 精品久久国产蜜桃| kizo精华| 免费观看性生交大片5| 色94色欧美一区二区| 夜夜骑夜夜射夜夜干| 纵有疾风起免费观看全集完整版| 久久久久国产精品人妻一区二区| 黄片无遮挡物在线观看| 女的被弄到高潮叫床怎么办| 精品一区二区免费观看| 丝袜喷水一区| 亚洲欧洲精品一区二区精品久久久 | 亚洲久久久国产精品| 中文字幕av电影在线播放| 国产成人精品在线电影| 国产在视频线精品| 精品人妻偷拍中文字幕| 激情视频va一区二区三区| 视频区图区小说| 午夜福利视频在线观看免费| 国产精品欧美亚洲77777| 高清视频免费观看一区二区|