• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Visualizing and witnessing first-order coherence,Bell nonlocality and purity by using a quantum steering ellipsoid in the non-inertial frame

    2023-11-02 08:12:30HuanYang楊歡LingLingXing邢玲玲MingMingDu杜明明MinKong孔敏GangZhang張剛andLiuYe葉柳
    Chinese Physics B 2023年10期
    關(guān)鍵詞:張剛

    Huan Yang(楊歡), Ling-Ling Xing(邢玲玲), Ming-Ming Du(杜明明),Min Kong(孔敏), Gang Zhang(張剛),?, and Liu Ye(葉柳)

    1School of Electrical and Photoelectronic Engineering,West Anhui University,Lu’an 237012,China

    2College of Electronic and Optical Engineering,Nanjing University of Posts and Telecommunications,Nanjing 210003,China

    3School of Physics and Optoelectronic Engineering,Anhui University,Hefei 230039,China

    Keywords: quantum steering ellipsoid,first-order coherence,Bell-nonlocality,purity

    1.Introduction

    As a basic concept in the physical world, coherence arises from quantum superposition and is essential for the quantum information sciences, including quantum interference and multipartite entanglement.[1,2]It also plays a vital part in the fields of quantum metrology,[3]low-temperature thermodynamics,[4-6]solid-state physics[7]and so on.Meanwhile,coherence can also be used to depict the interference capability of interacting fields in quantum optics research.[8-12]Beyond this, there have been various efforts to ascertain the interrelations between coherence and correlations,[13-20]and these relations are essential for predicting the coherent transfer in researched quantum systems.Various coherence measures have been established to quantify coherence.Examples include first-order coherence(FOC)[13](which is a basisindependent measure)and thel1norm of coherence(which is a basis-dependent measure).[21]It should be emphasized that there is a relationship between FOC and thel1norm of coherence.For a single-qubit state, the FOC of a state is equal to thel1norm of coherence quantified on the optimal basis.In principle, quantum correlations include various forms, such as quantum entanglement, Einstein-Podolsky-Rosen (EPR)steering and Bell nonlocality(BN).Among these, BN(quantum entanglement) is the strongest (weakest) quantum correlation.Coherence is one of the important bases for generating quantum correlations; even conceptually, coherence is more fundamental than quantum correlations, including BN.One can detect the BN of a system by violating some Bell-type inequalities,[22-32]especially the Clauser-Horne-Shimony-Holt (CHSH) inequality.[30-34]It deserves to be emphasized that not all entangled states can possess BN.[35]Horodeckiet al.have derived the sufficient and necessary conditions for BN for arbitrary bipartite states.[36]

    In the field of quantum information science, the construction of three-dimensional pictures of different quantum states is an important avenue for investigating quantum correlations.[37]A Bloch vector provides a simple and intuitive representation of any single-qubit state.[37]However,for a two-qubit state, 15 parameters of the state need to be described,introducing amazing complexity and difficulty for the geometric description of a two-qubit state.Fortunately,Jevticet al.[38]proposed a scheme in which a quantum steering ellipsoid (QSE) is used to visualize any two-qubit state.To clarify, there is a remarkable phenomenon in which measuring the subsystem of an entangled state can remotely steer the state of the other subsystem.This phenomenon is called EPR steering.[39,40]If one performs all possible local operations on one qubit,all Bloch vectors of the other qubit’s steered states form a QSE in the Bloch sphere.[38]Any bipartite state can correspond to a QSE.In particular, not all QSEs can faithfully express a two-qubit state.The sufficient and necessary condition for a QSE to denote a bipartite state was derived by Milneet al.[41]It is worth mentioning that the QSE provides an intuitive depiction and indication for quantum correlations.Examples include steered coherence,[42-44]discord,[38,45-47]entanglement[38,41,48]and EPR steering.[49-54]Zhanget al.[55]experimentally verified the QSE of two-qubit states and also demonstrated volume monogamy relations of the QSE.[56]Recently,Duet al.[57]investigated quantum phase transitions in theXXZmodel through a QSE.However,these efforts are limited to inertial systems.[42-45,57]

    The non-inertial frame provides nontrivial tools for understanding relativistic quantum information and black holes,and is a rapidly developing field.[58]Relevant explorations in the non-inertial frame have been widely carried out.[59-74]There has been a lot of effort made to investigate nonlocality under non-inertial frames.[75-78]Friiset al.[75]explored entanglement of accelerated fermions.Smithet al.[76]analyzed tripartite nonlocality of non-inertial observers.Subsequently,Tianet al.[77,78]investigated nonlocality, entanglement and measurement-induced nonlocality under the Unruh effect.Of particular note is that each actual system is inevitably coupled with the surrounding environment.This coupling can accelerate the degeneration of quantum nonlocalities and set obstacles for achieving various quantum information tasks.For this reason, explorations of quantum nonlocalities in non-inertial frames suffering from different noise channels have been extensively performed.[79-86]Nevertheless, use of a QSE to visualize nonlocality under non-inertial frames is still lacking,especially when considering the collective influences of noninertial frames and noise channels in the QSE formalism.Such an investigation may provide a more visual tool to ascertain the influences of relativistic motion and external noise on different quantum correlations.

    Encouraged by this,we visualize the FOC,BN and purity in a non-inertial frame by utilizing a QSE, and also explore them when the particle suffers from a depolarizing channel or a non-coherence-generating channel(NCGC).Our results reveal that FOC, BN and purity can be visualized and detected by the parameters of the QSE.Particle acceleration induces shrinking and movement of the QSE.These peculiarities are responsible for the results that the BN and purity are reduced with increase in the acceleration.Note that FOC can be revived by higher acceleration due to the trait that the QSE can puncture the center of the Bloch sphere under a higher acceleration.The condition of FOC disappearance(or recovery)can be attained through the QSE.The depolarizing channel results in monotonic shrinking of the QSE,and it finally degenerates into a point at the center of the Bloch sphere.The results imply that the coherence,BN and purity monotonously decrease as noise strength increases.Under the influence of the NCGC,the periodic oscillation of the QSE visualizes the periodic oscillations of the BN and purity with growing noise parametersθandφ.The FOC is invariant with different values ofθsince the center of the QSE cannot move with the change ofθ.Moreover, the BN is more fragile after considering the additional effects of a depolarizing channel and NCGC because the depolarizing channel and the NCGC can reduce the size of the QSE.Under the additional influences of a depolarizing channel and NCGC,the conditions for FOC disappearance are invariant because the condition for the QSE to achieve the center of the Bloch sphere cannot be influenced by the depolarizing channel and the NCGC.

    Section 2 of this paper briefly describes QSE theory.In Subsection 3.1,we characterize and capture the FOC,BN and purity of a system in the QSE formalism.The collective influences of the depolarizing channel and the NCGC on the FOC,BN and purity are explored in Subsections 3.2 and 3.3,respectively.Finally,conclusions are drawn.

    2.The QSE

    Alice and Bob collectively possess bipartite statesρ,

    whereIis the identity operator,σ=(σ1,σ2,σ3) denotes the vector of the Pauli matrix.Mnm= Tr(ρσn ?σm) (m,n=1,2,3),a= Tr(ρσ ?I),b= Tr(ρ·I ?σ).According to Ref.[38], if we perform all possible local measurements on Bob,the QSE of Alice(i.e.,?A)can be constructed by all the vectors of Alice’s steered states.One can use center?Aand ellipsoid matrix ?Ato characterize ?A:

    The orientations and lengths of the semiaxes of ?Aare reflected by the eigenvectors of ?Aand the arithmetic square root of eigenvalues of ?A, respectively.One can also obtain the QSE of Bob(?B),namely,

    3.Visualizing and detecting the FOC, BN and purity via the QSE

    3.1.Under the influence of a non-inertial frame

    Of particular note is that the ellipsoid ?Bcannot puncture the Bloch sphere.The maximally obese statescorrespond to the state with the largest ellipsoid volume at the centerc=(0,0,Ξ).can be expressed by

    Its matrix form is

    The maximally obese state is very useful and can bind many quantum nonlocalities for two-qubit states,such as the entanglement and BN.[48]The largest volume ellipsoid of Bob for the centerc=(0,0,Ξ)can be represented as

    Now, let us consider that Alice and Bob (as two observers) collectively possessin Minkowski space-time.Alice remains stationary and Bob moves with uniform acceleration.As a consequence,the Unruh effect will appear.Meanwhile,we assume that Alice possesses a detector which is sensitive only to mode|n〉A(chǔ)(the mode of Minkowski space-time that corresponds to Alice)and Bob possesses another detector which is sensitive only to mode|n〉B(the mode of Minkowski space-time that corresponds to Bob).We then let Alice remain stationary while Bob moves with a uniform acceleration.Considering a fermionic field system, from the accelerated perspective of Bob the Minkowski vacuum state is found to be a two-mode squeezed state[87]

    with acceleration parameterγ=(e-2πωc'/a+1)-1/2.Here,ais the acceleration of Bob,ωis the frequency of the Dirac particle andc'is the speed of light in a vacuum.0<γ <π/4 corresponding to 0<a <∞.{|0〉I}and{|0〉II}indicate Rindler modes in regions I and II,respectively.The only excited state is given by[87]

    Using Eqs.(10) and (11), the state of Eq.(8) is transformed into

    Due to the fact that Bob is causally disconnected from region II, the physically accessible information is encoded in mode A(described by Alice)and mode I(described by Bob).Tracing over the mode in region II,we obtain

    We calculate the QSE of Bob in the form

    The central coordinate of the QSE on thez-axis is

    Thex,yandzsemiaxis lengths of the QSE are ?1,?2and ?3,respectively.Namely,

    The FOC for the bipartite systemρABis

    This result implies that the FOC of the whole bipartite system can be directly visualized by the distance from the center of the QSE ?Bto the center of the Bloch sphere.D2ABdisappears only if ?Breaches the center of the Bloch sphere,which provides an avenue to witness the FOC.We also visualize the maximal CHSH violation[30-33]ofρABthrough ?B,i.e.,

    The BN ofρABisBN(ρAB)=max{0,β(ρAB)-2}.It is revealed that the BN ofρABcan be intuitively characterized and detected by ?1or ?2.Using ?B,one can visualize the purity ofρAB,namely,

    which establishes the connection between purity and the QSE.It is straightforward that the purity can reach 0.25 only if the QSE degenerates into a point at the center of the Bloch sphere.Equation(20)can also be rewritten as

    The results obtained above provide visual tools to investigate and detect the FOC,BN and purity under a non-inertial frame.For clarity, we herein use Fig.1 to depict the geometric parameters of the QSE,FOC,BN and purity with respect to the acceleration parameterγ.Under the Unruh effect, lengths of?1, ?2and ?3degenerate with increasingγ, as shown in Fig.1(a).According to the result of Eq.(19), one can reveal that the shrinkage of ?Bvisually reflects the reduction in BN in Fig.1(b).The BN cannot be detected if the semiaxis of ?BsatisfiesThe critical case corresponds to.In the critical case,the shape of ?BwithΞ=0.4 is plotted in Fig.2(green ellipsoid).

    Fig.1.(a) The dependence of semiaxis length and ΞB on γ.(b) The dependence of the FOC,BN and purity on γ. Ξ =0.4.

    Fig.2.The shape of ?B: (a) stereoscopic view, (b) front perspective.The yellow ellipsoid represents the initial ?B with γ =0.The green QSE and blue QSE are ?B with γ =0.4205 (corresponding to the case when the BN suddenly disappears in Fig.1(b))and γ =0.5639(corresponding to the case when the FOC suddenly disappears in Fig.1(b)),respectively.The red ellipsoid represents the final ?B with γ =π/4. Ξ =0.4.

    As seen in Figs.1(a)and 2,the Unruh effect induces the result that the ?Band its center move along the negative orientation of thez-axis asγincreases.Note that the FOC is only associated with the centerΞBof ?B.Therefore, the movement of the center of the QSE is responsible for the detection of the FOC.Namely,FOC first degenerates and suddenly disappears; subsequently, it revives under the strong Unruh effect.The revival of the FOC in Fig.1(b) due to the center of the ?B,ΞB, can puncture the center of the Bloch sphere in Fig.1(a).The phenomenon is different from the peculiarity of the BN.Using the QSE parameters in Eq.(14), one can see and easily obtain that FOC will suddenly disappear ifγ=arccos[(1-Ξ)/(1+Ξ)]/2 and will revive in the interval of arccos[(1-Ξ)/(1+Ξ)]/2<γ ≤π/4.The blue ellipsoid in Fig.2 is the shape of ?Bcorresponding to the case of FOC disappearance.We also provide the final ?B(corresponding toγ=π/4,as red ellipsoid plotted)under the non-inertial frames in Fig.2.These results indicate that the QSE cannot degenerate into a point under the non-inertial frame as the acceleration parameterγincreases, meaning that the purity ofρABdecays with decreasing ?Band cannot reach 0.25 in Fig.1(b).

    3.2.The collective effects of the non-inertial frames and depolarizing channel

    Exotic environments unavoidably influence the quantum systems in a realistic scenario.Herein,we consider Bob in the state of Eq.(13)coupled to a depolarizing channel,which can be described by the Kraus operators

    andp=1-e-γ0t.Hence,the non-zero matrix elements of the output state ?ρAB-Dread as

    The QSE of Bob has the form

    For each subsystem,FOC is visualized by

    The FOC for bipartite systems is

    Similarly, the maximal CHSH violation and the purity of ?ρAB-Dare visualized by ??B-D,i.e.,

    The BN is BN(?ρAB-D)=max{0,β(?ρAB-D)-2}.Hence,the FOC, BN and purity under a depolarizing channel can be visualized and captured by ??B-D.Equation (30) can also be rewritten as

    Fig.4.The ??B-D corresponding to the case when the BN suddenly disappears under the depolarizing channel: (a)stereoscopic view,(b)front perspective. Ξ =0.4,γ =0.2.

    To visualize and capture the FOC,BN and purity under a depolarizing channel we plot the dependence of the QSE parameters,FOC,BN and purity on the depolarizing channel parameterpin Fig.3.Figure 3(a)shows that the semiaxis lengths linearly degrade with increasingp.This characteristic leads to a linear decrease of the BN in Fig.3(b).The semiaxis length?1-Drapidly shrinks to■which causes a sudden disappearance of the BN in this case,and one can use the traits of the QSE to determine that detection of the BN cannot be realized.Figure 4 visually displays the shape of ??B-Dfor the disappearance of the BN(Ξ=0.4 andγ= 0.2).The center of ??B-Dmoves along the negative orientation of thez-axis aspstrengthens, as displayed in Fig.3(a).It deserves to be emphasized that the center of ??B-Dcannot puncture the center of the Bloch sphere, and ??B-Dfinally degenerates into a point at the center of the Bloch sphere.These traits are different from those in Fig.1(a).According to the characteristics of the QSE,one can conjecture that the purity of ?ρAB-Ddegrades with decreasing ??B-D,finally reaching 0.25 in Fig.3(b).Meanwhile,the system’s FOC monotonously decreases with increasingpand reduces to zero atp=1 in Fig.3(b).One can always witness existence of FOC via the QSE(except atp=1).

    Next let us turn to visualize the influences of the Unruh effect on the FOC,BN and purity when considering a depolarizing channel.We give the QSE parameters,FOC,BN and purity with respect toγin Fig.5.In comparison with the results in Fig.1(without considering the influence of a depolarizing channel),it can be found that the depolarizing channel cannot affect the trends of the QSE,FOC,BN and purity in Fig.5.Of particular note is that the BN more easily disappears(the critical case corresponds toγ=arcsec[2-2Ξ(1-p)])if we additionally consider the effect of the depolarizing channel.The reason for this can be visually explained using the QSE.That is, the size of the QSE is smaller when considering the effect of a depolarizing channel (as revealed in Eqs.(16) and (26))and the semiaxis of ??B-Dmore easily reaches 2/2 under the Unruh effect.In particular,note that the depolarizing channel cannot affect the condition of the disappearance of FOC (the critical case corresponding toγ=arccos[(1-Ξ)/(1+Ξ)]/2)ifp/=1.This phenomenon can be visually interpreted by the fact that the condition for the center of the QSE reaching the center of the Bloch sphere is not affected by the depolarizing channel.

    Fig.5.(a)The dependence of semiaxis lengths and ΞB-D on γ.(b)The dependence of the FOC,BN and purity on γ. Ξ =0.4, p=0.05.

    3.3.The collective influences of the non-inertial frames and the NCGC

    The NCGC is defined as a completely positive tracepreserving map which does not generate quantum coherence from an incoherent state.[88]Incoherent operation is a strict subset of the NCGC.[88]The Kraus operators of a rank-2 NCGC are[88]

    Here,θ,φ,ηandξare all real numbers.For simplicity,ηandξare supposed to be zero in this paper.The channel with the form of Eq.(32) is not an incoherent channel unless sinφcosφsinθcosθ=0.[88]Assuming Bob’s state ofρABcoupled to the NCGC,the final two-qubit state is ?ρAB-N,namely,

    The QSE of Bob is given by

    For each subsystem,the FOC is

    Based on this result,one can attain the FOC of ?ρAB-Nby using the geometrical parameters of ??B-N,namely,

    In the QSE formalism,the maximal CHSH violation of ?ρAB-Nis

    where ?maxand ?secare the longest and the second longest semiaxes of ??B-N, respectly.The BN is BN(?ρAB-N) =max{0,β(?ρAB-N)-2}.The purity of ?ρAB-Nis

    that is,

    To begin with,we visualize and capture the FOC,BN and purity with different channel parametersθin Fig.6.From this figure we can see that the semiaxis lengths ?1-Nand ?3-Nperiodically oscillate under the NCGC.The period of oscillation is equal toπ.However, the length of theysemiaxis?2-Nis invariant withθ.Thereby, ??B-Nperiodically and alternately changes between a three-dimensional ellipsoid and a one-dimensional ellipse.We see that the BN first disappears,then revives and reaches a maximum atθ=nπ(n=0,1,2,...)(corresponding to the maximal lengths of thexandzsemiaxes).It is straightforward to show that the centerΞB-Nof ??B-Nis invariant in this case,and one can always witness the existence and invariance of FOC via the QSE,as described in Fig.6(b).The periodical oscillations of ?1-Nand ?3-Nvisualize a periodic oscillation in the purity of ?ρAB-N.

    Fig.6.The dependence of semiaxis length and ΞB-N on the channel parameter θ.(b) The dependence of the FOC, BN and purity on θ.Ξ =0.4,γ =0.2,and φ =π/20.

    Next, we further visualize the FOC, BN and purity for various values ofφ.One can see from Fig.7 that the length of thexsemiaxis is invariant.?2-Nand ?3-Nperiodically oscillate and achieve a maximum ifφ=nπ/2.Notably, the center of ??B-Nis not invariant with various values ofφ, and the center of ??B-Npunctures the center of the Bloch sphere atφ=nπ/2.One can use the trait of the QSE to visualize and determine that the invariance of the FOC cannot occur, and the FOC periodically oscillates and reaches zero atφ=nπ/2 in Fig.7(b)(the results are remarkably different from those in Fig.6(b)).Also,the tendency of the purity in Fig.7(b)is fully correlated with the trait of FOC due to the periodic oscillations of ?2-N,?3-NandΞB-Nin Fig.7(a).

    Fig.7.(a)The dependence of semiaxis length and ΞB-N on the channel parameter φ.(b)The dependence of the FOC,BN and purity on φ.Ξ =0.4,γ =0.2,and θ =π/20.

    Finally, we direct our attention to explore the influences of the Unruh effect on the FOC, BN and purity under the NCGC.The dependence of the QSE parameters, FOC, BN and purity onγare demonstrated in Fig.8.Comparing Fig.8 with Fig.1, it can be concluded that the NCGC cannot influence the tendencies of the QSE, FOC, BN and purity.However, the NCGC can reduce the size of the QSE (as uncovered in Eqs.(16) and (36)), which means that the BN disappears at a weakerγunder the additional effect of the NCGC,as shown by the green curve in Fig.8(b).Beyond this, one can reveal from Eqs.(15) and (35) and Figs.1 and 8 that the condition ofΞB-N=0 (when the QSE reaches the center of the Bloch sphere) is not influenced by the NCGC if cos2φ/=0.For this reason,the NCGC cannot affect the condition of the disappearance of FOC(the critical case corresponding toγ=arccos[(1-Ξ)/(1+Ξ)]/2)in this scheme.

    4.Conclusions

    We obtain the form of the QSE under the non-inertial frame, and also derive the QSE of the system coupled to the depolarizing channel and the NCGC,respectively.The FOC,BN and purity are visualized and detected via the QSE.To be specific,the distance from the center of the QSE to the center of the Bloch sphere visualizes the FOC of a bipartite system.The lengths of thexandysemiaxes visualize the BN of the system.The shape of the QSE and its position dominate the purity of system.Beyond this, the conditions for the disappearance of the FOC and BN can be directly obtained by the characteristics of the QSE,and one can capture the FOC,BN and purity by using the shape and position of the QSE.That is,FOC will suddenly disappear if and only if the QSE moves to the center of the Bloch sphere, no matter what shape the QSE is.The BN will disappear if and only if the length of thexorysemiaxis is equal to 2/2, no matter where the QSE is in the Bloch sphere.The purity can reach 0.25 if and only if the QSE degenerates into a point at the center of the Bloch sphere.Under a non-inertial frame,the QSE moves along the negative orientation of thez-axis and shrinks with enhancing acceleration.This characteristic visualizes the decrease of the BN and purity.Notably,due to the result that the center of the QSE can puncture the center of the Bloch sphere if the acceleration is strong,the vanished FOC can revive at high acceleration.Considering the depolarizing channel,the QSE monotonically shrinks and finally degenerates into a point at the center of the Bloch sphere.This phenomenon is responsible for the monotonous degeneration of the FOC,BN and purity.Under the effect of the NCGC,the shape of the QSE periodically oscillates with increasing channel parametersθandφ.These traits visualize the periodical oscillations of the BN and purity with increasingθandφ.It deserves to be emphasized that the center of the QSE is invariant with variousθ, which reflects the invariance of FOC.Moreover, our results reveal that the depolarizing channel and NCGC can decrease the size of the QSE,and cannot influence the condition for the QSE reaching the center of the Bloch sphere(ifp/=1 or cos2φ/=0).That is to say, the BN is more fragile when considering the additional effects of a depolarizing channel and the NCGC.The condition for the disappearance of FOC is invariant when considering the depolarizing channel and the NCGC as additional influences.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant No.12175001), the Natural Science Research Key Project of the Education Department of Anhui Province of China (Grant No.KJ2021A0943), the Research Start-up Funding Project of High Level Talent of West Anhui University(Grant No.WGKQ2021048),an Open Project of the Key Laboratory of Functional Materials and Devices for Informatics of Anhui Higher Education Institutes(Grant No.FMDI202106), the University Synergy Innovation Program of Anhui Province(Grant No.GXXT-2021-026)and the Anhui Provincial Natural Science Foundation (Grant Nos.2108085MA18 and 2008085MA20).

    猜你喜歡
    張剛
    Steering quantum nonlocalities of quantum dot system suffering from decoherence
    Characteristics of piecewise linear symmetric tri-stable stochastic resonance system and its application under different noises
    2022年高考模擬試題(三)
    層林盡染
    HeTDSE:A GPU based program to solve the full-dimensional time-dependent Schr¨odinger equation for two-electron helium subjected to strong laser fields*
    戀愛(ài)婚姻家庭(2019年8期)2019-08-30 04:45:15
    戀愛(ài)婚姻家庭(2019年22期)2019-07-29 04:05:00
    Implementation Scheme of Two-Photon Post-Quantum Correlations?
    數(shù)列最值問(wèn)題的求解策略
    活用課本習(xí)題
    亚洲国产色片| 中文乱码字字幕精品一区二区三区| 麻豆乱淫一区二区| 久久婷婷青草| 色94色欧美一区二区| 国产黄色免费在线视频| 一级毛片电影观看| 国产精品熟女久久久久浪| 欧美成人精品欧美一级黄| 伊人久久国产一区二区| 久久国产精品大桥未久av| 制服诱惑二区| 9色porny在线观看| 国产亚洲一区二区精品| 国产精品不卡视频一区二区| 亚洲精品视频女| 国产欧美另类精品又又久久亚洲欧美| 国产成人免费无遮挡视频| 丝袜脚勾引网站| 亚洲精品一区蜜桃| 国产在线免费精品| 亚洲欧洲国产日韩| 亚洲精品av麻豆狂野| 麻豆精品久久久久久蜜桃| 亚洲国产毛片av蜜桃av| 免费观看在线日韩| 亚洲国产精品专区欧美| 日日摸夜夜添夜夜爱| 黄网站色视频无遮挡免费观看| 男人添女人高潮全过程视频| 精品人妻偷拍中文字幕| 激情五月婷婷亚洲| 一级黄片播放器| 夜夜爽夜夜爽视频| 寂寞人妻少妇视频99o| 草草在线视频免费看| 人人妻人人添人人爽欧美一区卜| 久久精品久久久久久久性| 80岁老熟妇乱子伦牲交| 免费观看在线日韩| 九色成人免费人妻av| 日韩欧美精品免费久久| 高清在线视频一区二区三区| av.在线天堂| 日日撸夜夜添| 国产精品熟女久久久久浪| 精品人妻一区二区三区麻豆| 久久久久久久久久人人人人人人| 亚洲国产av新网站| 99久久精品国产国产毛片| 日韩中文字幕视频在线看片| 看免费av毛片| 飞空精品影院首页| 欧美+日韩+精品| 婷婷色麻豆天堂久久| 国产激情久久老熟女| 99久国产av精品国产电影| 涩涩av久久男人的天堂| 在线看a的网站| 国产一区亚洲一区在线观看| 欧美国产精品va在线观看不卡| 亚洲伊人色综图| 90打野战视频偷拍视频| 久久久久久伊人网av| 午夜老司机福利剧场| 国产深夜福利视频在线观看| 国产熟女欧美一区二区| 国产欧美另类精品又又久久亚洲欧美| 最近的中文字幕免费完整| h视频一区二区三区| 交换朋友夫妻互换小说| 久久久久人妻精品一区果冻| 国产一级毛片在线| 免费高清在线观看日韩| 亚洲综合色网址| 99久国产av精品国产电影| 亚洲av在线观看美女高潮| 色网站视频免费| 日韩制服骚丝袜av| 大香蕉97超碰在线| 国产成人精品一,二区| h视频一区二区三区| 久热这里只有精品99| 午夜精品国产一区二区电影| 又黄又爽又刺激的免费视频.| 青春草视频在线免费观看| www.av在线官网国产| 一级片免费观看大全| 免费播放大片免费观看视频在线观看| 久久久国产一区二区| 黑人欧美特级aaaaaa片| 水蜜桃什么品种好| 老女人水多毛片| 欧美老熟妇乱子伦牲交| 国产又色又爽无遮挡免| 看免费成人av毛片| 国产成人精品无人区| 欧美bdsm另类| 久久午夜综合久久蜜桃| av国产久精品久网站免费入址| 性色avwww在线观看| 亚洲精品第二区| 精品亚洲成国产av| 不卡视频在线观看欧美| 国产精品 国内视频| 久久久久视频综合| 亚洲,一卡二卡三卡| 黄网站色视频无遮挡免费观看| 青春草视频在线免费观看| 免费大片黄手机在线观看| 一区二区三区精品91| 日韩av免费高清视频| 中文字幕精品免费在线观看视频 | 亚洲在久久综合| 只有这里有精品99| 中文精品一卡2卡3卡4更新| 国产综合精华液| 老司机影院成人| 丁香六月天网| 国产在线视频一区二区| 亚洲av欧美aⅴ国产| 亚洲国产av影院在线观看| av在线播放精品| 欧美精品亚洲一区二区| 日本欧美视频一区| 夫妻性生交免费视频一级片| 哪个播放器可以免费观看大片| 欧美精品av麻豆av| 午夜老司机福利剧场| 免费黄网站久久成人精品| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 一级,二级,三级黄色视频| 成人黄色视频免费在线看| 亚洲国产欧美在线一区| xxxhd国产人妻xxx| 国产精品久久久久久av不卡| 热re99久久国产66热| 一二三四中文在线观看免费高清| 大片免费播放器 马上看| 亚洲精品日本国产第一区| 天堂俺去俺来也www色官网| 97精品久久久久久久久久精品| 亚洲精品国产av蜜桃| 国产淫语在线视频| 国产精品.久久久| 国产熟女欧美一区二区| 免费高清在线观看视频在线观看| 久久精品国产自在天天线| 免费不卡的大黄色大毛片视频在线观看| 一级片'在线观看视频| av国产精品久久久久影院| 啦啦啦中文免费视频观看日本| 久久久久网色| 国产xxxxx性猛交| 亚洲激情五月婷婷啪啪| 亚洲高清免费不卡视频| 国产日韩欧美在线精品| 波多野结衣一区麻豆| 久久精品国产综合久久久 | 97在线视频观看| 99久久综合免费| 热re99久久精品国产66热6| 亚洲国产精品国产精品| 18禁国产床啪视频网站| 亚洲精品自拍成人| 免费大片18禁| 18禁观看日本| 中文天堂在线官网| 蜜桃在线观看..| 成人毛片60女人毛片免费| 久久人人爽人人爽人人片va| 国产69精品久久久久777片| 伦精品一区二区三区| 超色免费av| 在线观看免费高清a一片| 国产亚洲av片在线观看秒播厂| 90打野战视频偷拍视频| 亚洲av电影在线观看一区二区三区| 丰满饥渴人妻一区二区三| 九草在线视频观看| 国产亚洲欧美精品永久| 女人被躁到高潮嗷嗷叫费观| 99国产综合亚洲精品| 2018国产大陆天天弄谢| 香蕉精品网在线| 亚洲成色77777| 亚洲欧洲国产日韩| 最黄视频免费看| 在线观看一区二区三区激情| 精品少妇黑人巨大在线播放| 精品少妇黑人巨大在线播放| 丝袜人妻中文字幕| 一本色道久久久久久精品综合| 人人妻人人添人人爽欧美一区卜| 人妻人人澡人人爽人人| 国产69精品久久久久777片| h视频一区二区三区| 深夜精品福利| 欧美日韩一区二区视频在线观看视频在线| 亚洲精品乱码久久久久久按摩| 少妇人妻 视频| 男女边吃奶边做爰视频| 成人无遮挡网站| 久久久久国产精品人妻一区二区| 男人舔女人的私密视频| 国产日韩欧美亚洲二区| 成人亚洲精品一区在线观看| 中文字幕最新亚洲高清| 国产色爽女视频免费观看| 亚洲精品自拍成人| 亚洲精品国产av成人精品| 亚洲,欧美精品.| 国产成人91sexporn| 99热6这里只有精品| 国产免费现黄频在线看| 久久热在线av| av在线老鸭窝| 国产精品秋霞免费鲁丝片| 免费黄色在线免费观看| 国产福利在线免费观看视频| 丝袜美足系列| 欧美人与善性xxx| 成人国产av品久久久| 亚洲综合色惰| 欧美国产精品va在线观看不卡| 又黄又爽又刺激的免费视频.| 中文字幕另类日韩欧美亚洲嫩草| 国产一区二区在线观看av| 免费观看无遮挡的男女| 性色av一级| 成年人免费黄色播放视频| 免费播放大片免费观看视频在线观看| 少妇猛男粗大的猛烈进出视频| 亚洲精品久久成人aⅴ小说| av福利片在线| 性色av一级| 大话2 男鬼变身卡| 一级毛片我不卡| 日韩成人伦理影院| 大片电影免费在线观看免费| 日日啪夜夜爽| 婷婷色麻豆天堂久久| 在线观看美女被高潮喷水网站| 国产精品国产三级国产专区5o| 久久毛片免费看一区二区三区| 欧美最新免费一区二区三区| 91aial.com中文字幕在线观看| 亚洲色图综合在线观看| 99热6这里只有精品| h视频一区二区三区| 香蕉丝袜av| 国产黄频视频在线观看| 久久久久人妻精品一区果冻| 少妇 在线观看| 男女无遮挡免费网站观看| 久久99一区二区三区| 一边亲一边摸免费视频| 国产老妇伦熟女老妇高清| 亚洲少妇的诱惑av| 色网站视频免费| 大码成人一级视频| 欧美 亚洲 国产 日韩一| 亚洲国产看品久久| 亚洲精品日韩在线中文字幕| 国产视频首页在线观看| 一本久久精品| 亚洲,欧美,日韩| 国产成人精品婷婷| 国产日韩欧美在线精品| 桃花免费在线播放| av线在线观看网站| 成人国产麻豆网| 啦啦啦啦在线视频资源| 亚洲精品视频女| 大香蕉97超碰在线| 成人亚洲欧美一区二区av| 国产精品女同一区二区软件| 少妇被粗大的猛进出69影院 | 欧美成人午夜精品| 亚洲精品自拍成人| 最近2019中文字幕mv第一页| 天天操日日干夜夜撸| 亚洲国产最新在线播放| 性高湖久久久久久久久免费观看| 久久精品久久精品一区二区三区| 欧美人与善性xxx| 多毛熟女@视频| 日本91视频免费播放| 国产精品无大码| 97精品久久久久久久久久精品| 欧美xxⅹ黑人| 99久国产av精品国产电影| 亚洲人成77777在线视频| 两个人看的免费小视频| 久热这里只有精品99| 国产欧美另类精品又又久久亚洲欧美| 91成人精品电影| 日韩中字成人| a级毛色黄片| 成人毛片60女人毛片免费| 一区二区三区乱码不卡18| 成年人免费黄色播放视频| 青春草亚洲视频在线观看| 亚洲丝袜综合中文字幕| 免费久久久久久久精品成人欧美视频 | 亚洲精品一区蜜桃| 日本色播在线视频| 亚洲精品中文字幕在线视频| 满18在线观看网站| 久久久精品94久久精品| 久久国产精品男人的天堂亚洲 | 另类精品久久| 亚洲在久久综合| av片东京热男人的天堂| 美国免费a级毛片| 亚洲图色成人| 亚洲国产日韩一区二区| 亚洲欧美成人综合另类久久久| 精品久久久精品久久久| 久久毛片免费看一区二区三区| 亚洲天堂av无毛| 王馨瑶露胸无遮挡在线观看| 丁香六月天网| 欧美日韩综合久久久久久| 看非洲黑人一级黄片| 好男人视频免费观看在线| 久久国产精品男人的天堂亚洲 | 亚洲综合精品二区| 国产乱人偷精品视频| 岛国毛片在线播放| 亚洲精品视频女| 免费观看性生交大片5| 亚洲av综合色区一区| 在线精品无人区一区二区三| 少妇被粗大猛烈的视频| 日本欧美国产在线视频| 男人添女人高潮全过程视频| 国产精品一国产av| 亚洲av免费高清在线观看| 亚洲在久久综合| 美女主播在线视频| 久久青草综合色| 一个人免费看片子| 免费av不卡在线播放| 亚洲成国产人片在线观看| a级毛色黄片| 中文字幕人妻丝袜制服| 国产视频首页在线观看| 丰满少妇做爰视频| 久久国产精品男人的天堂亚洲 | 水蜜桃什么品种好| 成年人免费黄色播放视频| 日韩三级伦理在线观看| 成人二区视频| 日韩中字成人| 久久久久久人妻| 欧美日韩精品成人综合77777| 久久99热6这里只有精品| 国产极品天堂在线| 婷婷色av中文字幕| 五月伊人婷婷丁香| 韩国精品一区二区三区 | 国产日韩欧美在线精品| 少妇的逼好多水| 免费人成在线观看视频色| 黑人高潮一二区| 午夜福利视频在线观看免费| 亚洲成国产人片在线观看| 久久久a久久爽久久v久久| 十分钟在线观看高清视频www| 男女午夜视频在线观看 | 成人午夜精彩视频在线观看| 制服人妻中文乱码| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 人人澡人人妻人| 18禁国产床啪视频网站| 人人妻人人添人人爽欧美一区卜| 大香蕉久久网| 欧美日韩国产mv在线观看视频| 亚洲经典国产精华液单| 丰满少妇做爰视频| 寂寞人妻少妇视频99o| 女性被躁到高潮视频| 亚洲一码二码三码区别大吗| 国产精品久久久久久精品电影小说| 天天操日日干夜夜撸| 午夜激情av网站| 亚洲av欧美aⅴ国产| 狂野欧美激情性bbbbbb| 亚洲精品久久久久久婷婷小说| 最近的中文字幕免费完整| freevideosex欧美| 久热久热在线精品观看| 国产国语露脸激情在线看| 精品99又大又爽又粗少妇毛片| 亚洲美女视频黄频| 精品亚洲成a人片在线观看| 极品人妻少妇av视频| 丁香六月天网| 国产精品免费大片| 免费看不卡的av| 国产精品一区二区在线不卡| 欧美日本中文国产一区发布| av国产久精品久网站免费入址| 熟女电影av网| 午夜激情av网站| 亚洲精品久久久久久婷婷小说| 久久精品久久久久久久性| 国产熟女午夜一区二区三区| 老熟女久久久| 在线观看三级黄色| 18+在线观看网站| 国产成人av激情在线播放| 亚洲精品美女久久av网站| 在线观看免费高清a一片| 亚洲成人av在线免费| 午夜福利影视在线免费观看| 久久久久久久久久久久大奶| 国产乱来视频区| 日本色播在线视频| 亚洲精品一区蜜桃| 一级片'在线观看视频| 午夜视频国产福利| 日韩成人av中文字幕在线观看| 精品酒店卫生间| 午夜老司机福利剧场| 男女免费视频国产| 国产乱来视频区| 国产熟女午夜一区二区三区| 国产日韩欧美亚洲二区| 国产精品免费大片| 亚洲久久久国产精品| 国产免费视频播放在线视频| 午夜福利在线观看免费完整高清在| 亚洲四区av| 日韩一本色道免费dvd| 久久久精品区二区三区| 欧美精品一区二区免费开放| 久久精品国产a三级三级三级| 久久久久视频综合| 18+在线观看网站| 黄色怎么调成土黄色| 少妇高潮的动态图| 国内精品宾馆在线| 视频在线观看一区二区三区| 久久久久久久大尺度免费视频| 日本vs欧美在线观看视频| 日韩视频在线欧美| 两个人看的免费小视频| 国产精品一区二区在线观看99| 国产精品久久久久成人av| 久久久亚洲精品成人影院| 亚洲成人一二三区av| 草草在线视频免费看| 一个人免费看片子| 日韩三级伦理在线观看| 18禁动态无遮挡网站| freevideosex欧美| 日韩 亚洲 欧美在线| 亚洲欧美一区二区三区黑人 | 亚洲综合精品二区| 黄色配什么色好看| 黄片播放在线免费| 热99久久久久精品小说推荐| 2018国产大陆天天弄谢| 在线观看一区二区三区激情| 99久久中文字幕三级久久日本| 自线自在国产av| 观看av在线不卡| 亚洲精品456在线播放app| 一级,二级,三级黄色视频| 日韩 亚洲 欧美在线| 男人操女人黄网站| 中文字幕制服av| 18禁裸乳无遮挡动漫免费视频| 成人午夜精彩视频在线观看| 日日爽夜夜爽网站| 午夜福利在线观看免费完整高清在| 久久婷婷青草| 91在线精品国自产拍蜜月| 国产av码专区亚洲av| 国产精品一区www在线观看| 制服诱惑二区| tube8黄色片| av天堂久久9| 欧美日本中文国产一区发布| 国产亚洲精品久久久com| 男女免费视频国产| 韩国高清视频一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 久久婷婷青草| 高清不卡的av网站| 成人毛片60女人毛片免费| 热re99久久精品国产66热6| 69精品国产乱码久久久| 99热全是精品| 这个男人来自地球电影免费观看 | 欧美国产精品一级二级三级| 亚洲中文av在线| 婷婷色综合www| 精品福利永久在线观看| av女优亚洲男人天堂| 男女下面插进去视频免费观看 | 久久免费观看电影| 春色校园在线视频观看| 国产有黄有色有爽视频| 一区二区三区四区激情视频| 亚洲国产日韩一区二区| 亚洲成人手机| 日韩av不卡免费在线播放| 午夜精品国产一区二区电影| 亚洲内射少妇av| 国产欧美亚洲国产| av女优亚洲男人天堂| 五月伊人婷婷丁香| 男人添女人高潮全过程视频| av在线播放精品| 亚洲国产精品一区二区三区在线| 国产69精品久久久久777片| 日日撸夜夜添| 尾随美女入室| 又黄又粗又硬又大视频| 免费人妻精品一区二区三区视频| 国产亚洲精品第一综合不卡 | 久久女婷五月综合色啪小说| 最近的中文字幕免费完整| 亚洲欧美成人综合另类久久久| 久久这里有精品视频免费| 久久国产亚洲av麻豆专区| 满18在线观看网站| 久久久久久人人人人人| 国产精品免费大片| 国产精品.久久久| 中文乱码字字幕精品一区二区三区| 国产极品天堂在线| 国产一级毛片在线| 一区二区av电影网| 91成人精品电影| 精品久久蜜臀av无| 精品人妻熟女毛片av久久网站| 免费日韩欧美在线观看| 最黄视频免费看| 午夜福利乱码中文字幕| 丝袜美足系列| 欧美亚洲 丝袜 人妻 在线| 丁香六月天网| 人人妻人人添人人爽欧美一区卜| 男女免费视频国产| 国产欧美日韩一区二区三区在线| 大片电影免费在线观看免费| 五月开心婷婷网| 一二三四在线观看免费中文在 | 美女视频免费永久观看网站| 亚洲国产欧美在线一区| 岛国毛片在线播放| 狂野欧美激情性bbbbbb| 日日撸夜夜添| 欧美激情国产日韩精品一区| 中文乱码字字幕精品一区二区三区| 国产一区二区在线观看日韩| 国产淫语在线视频| 亚洲成人手机| 日韩人妻精品一区2区三区| 乱人伦中国视频| 成人漫画全彩无遮挡| 免费观看av网站的网址| 国产精品蜜桃在线观看| 夫妻午夜视频| 久久女婷五月综合色啪小说| 99热这里只有是精品在线观看| 亚洲成国产人片在线观看| 不卡视频在线观看欧美| 午夜激情av网站| 精品一区二区免费观看| 伦精品一区二区三区| 国产片特级美女逼逼视频| 国产极品粉嫩免费观看在线| 国产精品人妻久久久久久| 亚洲综合精品二区| 日本午夜av视频| 国产日韩欧美在线精品| 国产成人免费无遮挡视频| 亚洲av国产av综合av卡| tube8黄色片| 日日爽夜夜爽网站| 国产黄色免费在线视频| 久久精品国产亚洲av天美| 国产国拍精品亚洲av在线观看| 人人妻人人爽人人添夜夜欢视频| 男男h啪啪无遮挡| 日本黄大片高清| 亚洲精品成人av观看孕妇| 制服诱惑二区| 亚洲少妇的诱惑av| 色哟哟·www| 亚洲成av片中文字幕在线观看 | 有码 亚洲区| 欧美激情国产日韩精品一区| 夜夜骑夜夜射夜夜干| 中文字幕人妻熟女乱码| 热99久久久久精品小说推荐| 久久国内精品自在自线图片| 精品国产乱码久久久久久小说| 亚洲精华国产精华液的使用体验| 欧美 亚洲 国产 日韩一| 最新中文字幕久久久久| 欧美激情 高清一区二区三区| 亚洲精品日本国产第一区| 国产一区二区在线观看av| 99re6热这里在线精品视频| 国产老妇伦熟女老妇高清| 亚洲伊人久久精品综合| 十八禁网站网址无遮挡| 少妇 在线观看| 亚洲av福利一区|