• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    HeTDSE:A GPU based program to solve the full-dimensional time-dependent Schr¨odinger equation for two-electron helium subjected to strong laser fields*

    2021-07-30 07:37:30XiZhao趙曦GangtaiZhang張剛臺(tái)TingtingBai白婷婷JunWang王俊andWeiWeiYu于偉威
    Chinese Physics B 2021年7期
    關(guān)鍵詞:張剛王俊

    Xi Zhao(趙曦) Gangtai Zhang(張剛臺(tái)) Tingting Bai(白婷婷)Jun Wang(王俊) and Wei-Wei Yu(于偉威)

    1School of Physics and Information Technology,Shaanxi Normal University,Xi’an 710062,China

    2College of Physics and Optoelectronics Technology,Baoji University of Arts and Sciences,Baoji 721016,China

    3College of Mathematics and Information Science,Baoji University of Arts and Sciences,Baoji 721013,China

    4Institute of Atomic and Molecular Physics,Jilin University,Changchun 130012,China

    5Department of Physics,Kansas State University,Manhattan,KS 66506,USA

    6School of Physics and Electronics,Qiannan Normal College for Nationalities,Duyun 558000,China

    7School of Physics and Electronic Technology,Liaoning Normal University,Dalian 116029,China

    Keywords: strong field physics,TDSE,OPENACC,GPU,electron correlation,helium

    1. Introduction

    The rapid development in laser technologies opens a way for scientists to probe and even control the fundamental dynamics of electron correlations.[1-21]As the simplest multi-electron atom, helium is an idea starting point for exploring electron correlation dynamics in multi-electron systerms.[14,25-41]However,due to its six degrees of freedom,the response of helium to strong fields is considerably more complicated than that of single-electron atoms, which poses great theoretical and computational challenge. To overcome this difficulty, a set of conventional CPU parallel computing techniques have been developed to numerically solve the time-dependent Schr¨odinger equation(TDSE)of helium subjected to a laser pulse. Penget al.investigated the electron correlation effects in two-photon-double-ionization(TPDI)of helium by the finite-element-discrete-variable-representation(FEDVR) method.[39]Parkeret al.used the finite-difference method to calculate the above-threshold ionization (ATI)process.[40]Pirauxet al.investigated the electron correlation effect using the Gauss-Sturman function.[30]All of these simulations are very likely a numerical virtual experiment on the servers (about 200 to 1000 CPU cores are used in Refs. [39,40]). Thus, more efficient algorithm is needed to further promote the numerical simulations of helium (and even more complex multi-electron systems beyond helium)in strong laser field investigations. One of the potential solution is the graphic processing unit(GPU)programming,which is the most powerful high performance computing tool so far and widely applied in both science and engineering numerical studies.[43-50]

    GPU contains hundreds of computing cores and is originally designed for highly parallel process of graphic rendering.[43,44]Compared with CPU, the computing performance of GPU can be increased by tens of times with proper optimizing.[43-50]To do this, a so-called “Compute Unified Device Architecture (CUDA)” GPU programming model is present.[44]However,porting of legacy CPU-based codes with CUDA often necessitates explicit compute and data management, thus requiring significant structural changes to existing applications.[45]Therefore, we make the choice to use OpenACC, which gives an alternative model as a GPU programming scheme.[51]OpenACC is a set of directive-based extensions to C,C++and Fortran that allow programmers to annotate regions of code and data for offloading from a CPU host to an attached GPU,without requiring modification to the underlying CPU code itself. Programmers simply insert OpenACC directives before specific code sections to engage the GPU to accelerate the code. This approach enables the compiler to target and optimize parallelism automatically. More example programs and detailed description of openACC can be found in openACC official website.[51]

    In this work, we present a GPU based openACC fortran program HeTDSE,which is an efficient tool to investigate the non-perturbative electronic dynamics of helium subjected to a strong laser pulse by solving full-dimensional two-electron TDSE. It goes beyond the single-electron-approximation(SEA) approach and includes the response to the field of all two electrons. To build helium wavefunction, B-spline basis sets, which were widely used in computational atomic and molecular physics,[21,52-62]are used to construct the radial part of the wavefunction,while spherical harmonic functions are used to express for the angular part. The reason why we use B-spline basis sets to expand helium radial wavefunction is that B-spline function has great advantages of describing both bound and continue states with small number basis sets.[52,53,55]Adams algorithm is employed for the time propagation.[63]Another advantage of using B-spline basis sets and Adams method is that it is easy to parallelize the code and will get an excellent paralleling scaling with openACC.

    The rest of this paper is organized as follows: In Section 2,we present the theoretical background on HeTDSE.In Section 3 we exhibit an overview of the package structure, the input,output files and the code parallelizing. In Section 4 we show several test applications of HeTDSE. The parallel efficiency is given in Section 5. We present our conclusions in Section 6. Atomic units are used throughout, unless stated otherwise.

    2. Mathematical setup and algorithm

    2.1. B-spline function

    B-splines are functions designed to generalize polynomials for the purpose of approximating arbitrary functions, we use B-spline basis sets to construct the helium wavefunction in HeTDSE.Thus,we begin this section with a brief description of B-spline function,very details of B-spline function can be found in Ref.[55].

    A B-spline function is defined by the orderkand a set of the breakpoints{tj},

    This sequence tends to a linear sequence asγ →0 while all points exponentially accumulate close torminasγ →∞.

    The third is a linear-parabolic sequence. A useful sequence adapted to a good description of both the bound and the continuum states associates to a linear spreading at large distances with a quadratic sequence close to the origin.[55]

    The B-spline function orderk=7 is used throughout this work, so we do not write outkin B-spline functions for simplification.

    2.2. Time independent Schr¨odinger equation

    The helium eigenstateφn(r1,r2) and its corresponding eigenvalueEnis the solution to the time-independent Schr¨odinger Eq.(TISE)of helium:

    withH0(r1,r2)being the laser-free Hamiltonian

    whereNis the number of the B-spline basis sets for each timeindependent wavefunctionφn(r1,r2),l1(l2) denotes the angular momenta for electron 1(2),Lis the total orbital angular momentum,Mis itsz-component,Sis the total spin,{ci}is the expansion coefficient, and eachicorresponds to a set of{n1,l1,n2,l2}. Coupled spherical harmonic functions are used to express for the angular part of the time-independent wavefunction:

    wherem1(m2)is thez-component ofl1(l2),andYlm(?r)is usual spherical harmonic functions.

    The wavefunctionφn(r1,r2), eigenvalueEnas well as the expansion coefficient{ci}in Eq. (8) can be obtained by directly diagonalizing Eq. (6). For this purpose, there are a set of matrix integrals that would be performed: the kinetic energy integral matrix element

    Ki j,PijandOi jare straightforward to discretize and to be calculated. However,the calculation ofCi jis different. To calculateCijwe expand the electron-electron correlation term in a truncated multipole series:

    Thus, each of the terms is handled in a similar manner to the one-electron operators.[53]In HeTDSE, all the integrals are carried by the Gauss-Lagrange integration method,which has been widely used in other works.[41]

    2.3. The time-dependent Schr¨odinger equation

    We solve the helium TDSE within the dipole approximation and length gauge. The full-dimension TDSE of helium can be written as

    Here ?εis the laser polarization direction,ωandφare the frequency and the carrier envelope phase,respectively; andf(t)is the temporal envelope.

    The total time-dependent wavefunctionΨ(r1,r2,t) can be expanded in terms of the field-free atomic eigenfunctions:

    which can be solved with the Adams method. Details of this algorithm can be found in Ref. [63]. The energy differenceEmn=Em-Enand the transition dipole element between〈φn(r1,r2)|and|φm(r1,r2)〉,

    can be calculated from the solution to Eq.(6).

    2.4. Absorbing boundary

    An absorbing layerA(r1,r2) is used to smoothly bring down the wavefunction and to prevent the unphysical reflection from the boundary. The absorbing function has the following form:

    Thus,there are two interpretations of the ionization yield.First,we directly calculate the single(double)ionization yield by summing all the possibilities of the wavefunction with an eigenvalue larger than-2.0(0.0):

    Alternatively,the ionization probability is calculated by

    Although we have used an absorbing to avoid the nonphysical reflecting,the simulation box still needs to be set big enough so that the physical system is not perturbed by the absorbing boundaries.

    3. Description of the package

    HeTDSE code package contains 9 fortran files and 4 input files. The fortran driver programs,functions,subroutines,input and output files are all introduced briefly in this section.

    3.1. Fortran program files

    These fortran codes should be run one by one: Firstly,runningeigen-equation.fto solve Eq. (6) to get wavefunctionφn(r1,r2), eigenvalueEnas well as the expansion coefficient{ci}. Then, with the output files ofeigenequation.f,runningdipole.f90to get the transition dipoles element〈φn(r1,r2)|(r1Y10(?r1)+r2Y10(?r2))|φm(r1,r2)〉. Next,runningmatrix.f90to prepare input files fortdse.f90. Finally,runningtdse.f90to solve Eq. (20) to get the time-dependent wavefunctionΨ(r1,r2,t).

    There are other five fortran programsorder.f,rsg.f,wig.f,angl16.f90andSUBROUTINE.f90in HeTDSE. These five programs are the ”support codes”, we DO NOT suggest the users to modulate them.

    3.2. Lower-level functions and subroutines

    The lower-level functions and subroutines in this program are:

    PREQUAN: Get the index of the one electron functionsBn(r)Ylmfrom 1 ton×(lmax+1).

    QUAN2012: Select the basis sets that satisfies physics considerations: the one electron angular momental1,l2should satisfy|l1-l2|≤L ≤|l1+l2| and the wavefunctionΨ(r1,r2)/=0.

    gauleg: Calculate the Gauss-Lagrange integration.

    DBSP2: Calculate the second derivative of the B-spline function d2Bn(r)/dr2.

    DBSP1:Calculate the first derivative of the B-spline function dBn(r)/dr.

    RKTSQ:Set the breakpoints distribution.

    Bspline2006: Calculate the B-spline functionBn(r).

    SingleInteg2012: Calculate the integrationPij,KijorOij.

    DmultiInteg2012:Calculate the electron-electron integrationCij.

    HAMILTON2012: Construct the Hamiltonian.

    RSG: Diagonalize the matrix, get the energy level and wavefunctions.

    ANG: Calculate the angle part of transition dipole element.

    3.3. Input files

    There are totally four input files in HeTDSE,eigenequation.input,dipole.input,matrix.inputandtdse.input,which contain input parameters used byeigne-equation.f,dipole.f90,matrix.f90andtdse.f90, respectively. In this subsection,we present how to set these parameters in these input files one by one.

    Eigen-equation.input

    Line 1: Set total angular momentumLin Eq.(8).

    Line 2: Set total spin in Eq.(8).

    Line 3: Set max angular momentum for each electron

    lmax.

    Line 4: Set the order of the B-spline functionk.

    Line 5: Set number of B-SPLINE function breakpoints,that is to say,nin Eqs.(2),(3),and(4).

    Line 6:Set total number of the basis sets for the He wavefunctionNin Eq.(8).

    Line 7:i0in Eq.(4).

    Line 8: Set the simulation box size in radial direction,rmax.

    Dipole.input

    Line 1:Set total angular momentumLof〈φn(r1,r2)|and|φm(r1,r2)〉in Eq.(8),respectively.

    Line 2: Set total spinMof〈φn(r1,r2)|and|φm(r1,r2)〉in Eq.(8),respectively.

    Lines 3-8 indipole.inputare the same as lines 3-8 in

    eigen-equation.input.

    Matrix.input

    First values in lines 1,2,3 and 4: The numbers of the basis sets used in TDSE of states areL=0,L=1,L=2,L=3 andL=4,respectively.

    Second values in lines 1, 2, 3 and 4: The total numbers of the basis sets of states areL=0,L=1,L=2,L=3 andL=4,respectively.

    The default max total angular momentum isL=4,larger total angular momentums can be added in this input file, if needed.

    Tdse.input

    User should not change lines 1 and 2 intdse.input,so we skip them and begin with line 3.

    Line 3:The maximum number of time steps allowed.Default value is 600000.

    Line 4: Frequency of the electric field in atomic unit.

    Line 5: Number of the laser cycles.

    Line 6: Intensity of the electronic laser field in atomic unit.

    Line 7: Relative and absolute errors. Default values are 10-7and 10-7,respectively.

    3.4. Output files

    Output files of eigen-equation.f:

    There are two output files after runningeigen-equation.f:the coefficientci(i=1,...,N)of the wavefunctionφn(r1,r2),and the eigenvalueEn.

    1.S.dat: This file stores the coefficientciin Eq.(6). The file name would change toP.dat,D.dat,F.datandG.datifL=1,2,3,4,respectively.

    2.OMEGA-S.dat: This file stores the eigenvalueEnof states withφn(r1,r2). The file name would change toOMEGA-P.dat,OMEGA-D.dat,OMEGA-F.dat,OMEGAG.datifL=1,2,3,4,respectively.

    Output files of dipole.f90

    There is one output file after runningdipole.f90: the transition dipole moment elements between a pair of states with neighbouring total angular momentumsLandL+1.

    Output files of matrix.f90:

    There are three output files after runningmatrix.f90:

    1.eigenval.out: This file stores all the eigenvalues in the orderL=0,1,2,3,4.

    2.HI.dat: This files stores all the dipole matrix elements.

    3.OMEGA.dat: This files stores all the energy differences.

    Output files of tdse.f90

    There are four output files after runningtdse.f90:1.laser.dat: This file stores laser fieldE(t).

    2.single-ion.dat: This file stores the single ionization yieldIs(t).

    3.double-ion.dat: This file stores the double ionization yieldId(t).

    4.c.dat: This file stores the solutionan(t) (n=1,...,Ntotal)to the coupled partial differential equation(20)at each time step.In principle,if we obtainan(t),all the physical information can be retrieved.

    3.5. OpenACC parallelizing implementation

    In this subsection, we detailedly explain the OpenACC implementation in HeTDSE.In HeTDSE package,more than 99% computation time would be paid to calculate transition dipole momentdmnand time propagation. Thus,we focus on accelerating the two calculations with openACC.Indipole.f90programs, four do-loops are needed to get all the transition dipole moment elementsdmn(see Eq. (21) for mathematical expression),and each loop would run 2000-10000 times. The code and corresponding openACC accelerated implementation is shown below:

    Although the computing scale is large, the code structure itself is really simple(nothing but a sum calculation)and openACC can achieve a high performance parallelizing scaling. All four do-loops are parallelized directly by inserting the OpenACC directive “!$ACC KERNELS”, then the data transfer between the host and the GPU memory is automatically executed. The calculation in the area (line 2 to line 12)of directive is executed and accelerated on GPU.Optimization for time propagation is similar, here is the Adams time propagation code at each time step and corresponding openACC accelerated implementation:

    As we know,the data transfer between the host and GPU memory affects the computational time. To further minimize the cost of data transfer,we use the OpenACC“DATA COPY”before time propagating starts,and“END DATA”is used to release the GPU memory at the end of time propagating:

    The datacopy (namelist) is the directive that copies the data from host to GPU memory,then data on GPU memory is used without the data transfer back and forth between the host and GPU every time step. Clearly, by inserting datacopy, the calculational time is much saved.

    The advantages of using B-spline basis set and Adams method in HeTDSE are emphasized again at the end of this section: First, it is convenient to implement openACC. Second, the parallelizing scaling has a high performance, which will be shown in Section 5.

    4. Sample results

    In order to verify the accuracy of our program, we compare our results with previous literatures. In the calculations,the radius of the cavity isrmax=70,rmin=0 for both electrons and it is described by 30 B-spline functions of order 7.We useli=1,2=0,1,2,3,4 andL=0,1,2,3,4 in below simulation examples. Linear-parabolic breakpoints sequence is chosen. Total number of basis setsNtotal=11000 are used during the time-dependent simulations.rmaskin absorbing boundary is set tormask=60. It should mention here that choosing such parameters is because we can get a convergence in the ionization calculation in Subsection 4.3. For the other calculations,such as ground/bound states calculations and excited states dynamics simulations,we do not need to use a radius as large as 70.

    4.1. Ground and bound states calculation of helium

    In Table 1, we show the eigenvalues of few low bound states for different total angular momenta. Table 1 shows that,for all the calculated levels, at least the accuracy up to two digits after the decimal point has been obtained. Specifically,we compare our ground state eigenvalue with a more accurate method from Ref. [22]. In Ref. [22], Kinoshita used 39 parameters and finally obtained a eignvalue of-2.9037225,which is only 0.0036935 of difference from our result. This small difference indicates that the accuracy from our method is acceptable.

    Table 1. The energy level of some bound states.

    Fig.1. The density distributions of some bound states in coordinate space.

    The effects of two-electron correlation coming from electron-electron repulsion have been a important subject from the early days of quantum mechanics,the relative positionr12of two electrons are even more important than their absolute positions for some purposes. Thus it is necessary to reduce the two-electron density further. The first specific calculation in respect of this was performed by Coulson and Neilson who deduced the expression for the distribution function of the interelectronic distancer12,[23]

    Fig.2. The intracule density fc(r12)as a function of r12.

    4.2. Excited states dynamics

    Now we turn to the second example: excited states dynamics. We focus on the carrier-envelope phase (CEP) effect on band-band state transition induced by a laser pulse.The CEP is a crucial parameter in describing the characteristics of a laser pulse, we can control the dynamic process of matter-laser interaction by measuring or adjusting the CEP.[64-69]Especially, the CEP effect on the bound-bound transition of an atom has been investigated theoretically and experimentally.[64-69]Here we try to reproduce the result from Ref.[67]. In Ref.[67],the authors used Hylleraas coordinates to reconstruct the wavefunction of helium,and they introduced a parameterMto quantify the CEP effect:

    whereP(φmax) andP(φmin) are, respectively, the maximum and minimum populations for a given excited state. A large value ofMcorresponds to a strong CEP effect. In this simulation,the laser parameters are the same as those in Ref.[67].We use HeTDSE to obtain the valueMfor1Dstate after the laser ends, as shown in Fig 3. Our result matches well with that in Fig.1(b)from Ref.[67].

    Fig. 3. The CEP parameter M vs the laser frequency for 31D state of helium.

    4.3. Excitation and ionization yields

    Next, we calculate the excitation and ionization yields of helium in a strong laser pulse. Our basis sets covers the energy range located beyond the double-ionization threshold. The initial state is the ground state of helium1S2〉.The laser pulse has a duration of 3.8 fs and the peak intensity of 2.97×1014W/cm2, which is the same as those in Refs.[54,59]. The present results in Fig.4 are accordant with the data from Hasbani[54]and Scrinzi,[59]which certifies the accuracy of our code.

    Fig. 4. Excitation and ionization probabilities, for the helium atom,with a pulse duration of 3.8 fs (fixed) and a peak intensity of 2.96×1014 W/cm2.

    Fig.5. Ionization yields for different simulation box R=80(red line),70(blue dotted line),and 60(cyan dotted line),for the helium atom,the laser parameters are the same as those in Fig.4.

    The convergence of the radius is checked in Fig. 5. In Fig.5,we choose three different simulation boxesrmax=80,rmax=70 andrmax=60,the absorbing boundary is set to 70,60 and 50, respectively. In Fig. 5, we can see that ionization yields fromrmax=80 andrmax=70 are almost same,in the meantime, the ionization yields fromrmax=60 are much larger than those in thermax=80 andrmax=70 cases. This result indicate that under such laser parameters,we can obtain a convergence with the radius equal to 70.

    4.4. Electrons wavepacket dynamics

    Using the time-dependent wave function,the density distribution of the electrons in coordinate space can be obtained by

    HereΩ1(2)is the angular part of the electron 1(2). The density distribution of continuous states in coordinate space is shown in Fig.6(a)at the timeTend(which is labeled in Fig.6(b)). We can see that there are evident single ionization characteristics from this figure.

    Once the wavefunction at timetis obtained,we can also calculate the momentum distribution of the wavefunction with momentumk1andk2by Fourier transform

    ,In order to check the accuracy of our code,we employ a twocolor laser field with an intensity ofI=1.0×1012W/cm2,the central energies are 36 eV and 80 eV,respectively, we calculate the momentum distribution after the laser ends in Fig. 7,the result coincides with the result from Ref.[21].

    Fig.6. The distributions of the continuum state in the coordinate space ω =1.0,FWHM=2 OC,intensity I=1.0×1013 W/cm2 when the laser is ended.

    Fig. 7. The two-electron momentum distribution. We use a two-color laser field,in which the central energies are 36 eV and 80 eV,both the intensities are I=1.0×1012 W/cm2.

    5. Parallel scaling

    To test the parallel efficiency of HeTDSE, we compare the serial CPU program(runs at Intel xeon E5-2640 CPU with 2.5GHz clock speed and 15MB L3 cache) and parallel GPU implementations(runs at NVIDIA K20 GPU with 2493 cores).The speedup factor for four simulation cases is shown in Table 2.The larger the basis number,the larger computation cost needs. All the simulations are carried out with PGI fortran compiler, the laser is 3.8 fs (which contains about 4000 time steps)and the simulation box isRmax=70. A speed up of 147 is achieved if 4300 basis sets are used. It indicates that as the simulation system size increases, this improvement becomes more and more pronounced.

    Table 2. The efficiency of our GPU program.

    6. Conclusion

    In this work, we have presented a program which solves the full-dimension-TDSE of helium using OpenACC+GPU simulation acceleration environment. We introduce how to convert the full-dimension-TDSE into coupled partial differential equations.These partial differential equations are solved by the Adams method. Our program has two advantages:Firstly, the codes are easily parallelled by adding few detectives and have a speed up of 147 on GPU, HeTDSE does not have to use a super computer or a computer cluster, even a desktop computer with an openACC-enable GPU can run HeTDSE efficiently. Secondly,we can transplant our program to other accelerators without rewriting the codes. By comparing with literature of the excited state dynamics and ionization yield of helium,the accuracy of our program has been verified.Our codes can be used to investigate the non-perturbative electronic dynamics of helium subjected to a strong laser pulse. In addition,for the programming for accelerators such as CUDA is difficult, we hope HeTDSE to be an example to help more researchers to handle the GPU calculation more easily using OpenACC.

    猜你喜歡
    張剛王俊
    Visualizing and witnessing first-order coherence,Bell nonlocality and purity by using a quantum steering ellipsoid in the non-inertial frame
    Steering quantum nonlocalities of quantum dot system suffering from decoherence
    Characteristics of piecewise linear symmetric tri-stable stochastic resonance system and its application under different noises
    2022年高考模擬試題(三)
    導(dǎo)數(shù)應(yīng)用點(diǎn)睛
    王俊看醫(yī)改政府盡快解決三個(gè)問(wèn)題
    High-resolution boosted reconstruction of γ-ray spectra?
    The flow characteristics of fluid in micro-channels of different shapes?
    国产三级中文精品| 日韩精品中文字幕看吧| 如何舔出高潮| 亚洲婷婷狠狠爱综合网| 性欧美人与动物交配| 精品一区二区三区av网在线观看| 亚洲一区二区三区色噜噜| 色噜噜av男人的天堂激情| 露出奶头的视频| 欧美xxxx黑人xx丫x性爽| a级毛色黄片| 欧美潮喷喷水| 中文字幕av成人在线电影| 国产一区亚洲一区在线观看| 午夜福利视频1000在线观看| 国产精品一区二区免费欧美| 精品国内亚洲2022精品成人| 在线观看66精品国产| 97人妻精品一区二区三区麻豆| 一级毛片电影观看 | 日韩制服骚丝袜av| av卡一久久| 久久草成人影院| 亚洲欧美成人精品一区二区| 午夜福利18| 精品久久国产蜜桃| 精品人妻熟女av久视频| 国产在线男女| 自拍偷自拍亚洲精品老妇| 色哟哟·www| 老司机影院成人| 老女人水多毛片| 国产黄片美女视频| 丰满的人妻完整版| 美女cb高潮喷水在线观看| 亚洲美女搞黄在线观看 | 亚洲欧美清纯卡通| 久久久a久久爽久久v久久| 变态另类成人亚洲欧美熟女| 美女黄网站色视频| 色播亚洲综合网| 又爽又黄无遮挡网站| 亚洲成av人片在线播放无| 大型黄色视频在线免费观看| 最近视频中文字幕2019在线8| 精品一区二区三区视频在线| 在线国产一区二区在线| 亚洲精品在线观看二区| 我要搜黄色片| a级毛色黄片| 日韩在线高清观看一区二区三区| 国产一区二区三区av在线 | 97超级碰碰碰精品色视频在线观看| 国产精品野战在线观看| 午夜福利在线在线| 男女之事视频高清在线观看| 免费黄网站久久成人精品| 又黄又爽又免费观看的视频| 亚洲欧美成人综合另类久久久 | 丰满乱子伦码专区| 欧美丝袜亚洲另类| 成人高潮视频无遮挡免费网站| 无遮挡黄片免费观看| 深爱激情五月婷婷| 亚洲一区高清亚洲精品| 欧美不卡视频在线免费观看| 色吧在线观看| 亚洲av免费高清在线观看| 又黄又爽又刺激的免费视频.| 插逼视频在线观看| 一进一出好大好爽视频| 国产成人影院久久av| 尤物成人国产欧美一区二区三区| 不卡一级毛片| 久久久精品欧美日韩精品| aaaaa片日本免费| 午夜免费男女啪啪视频观看 | 人妻久久中文字幕网| 日韩,欧美,国产一区二区三区 | 亚洲激情五月婷婷啪啪| 综合色丁香网| 成人亚洲精品av一区二区| 国产毛片a区久久久久| 久久精品夜夜夜夜夜久久蜜豆| 欧美zozozo另类| 性欧美人与动物交配| 国产精品一区二区免费欧美| 国产免费男女视频| 国产视频一区二区在线看| 久久久午夜欧美精品| 97超视频在线观看视频| 日日摸夜夜添夜夜爱| 国产中年淑女户外野战色| 精品日产1卡2卡| 欧美潮喷喷水| 亚洲国产高清在线一区二区三| 又粗又爽又猛毛片免费看| 一区福利在线观看| 国产欧美日韩精品亚洲av| 男女之事视频高清在线观看| 99久国产av精品国产电影| 久久久国产成人精品二区| 十八禁国产超污无遮挡网站| 久久久欧美国产精品| 婷婷亚洲欧美| 国产高潮美女av| 久久精品国产自在天天线| 国产男人的电影天堂91| 俄罗斯特黄特色一大片| 欧美色视频一区免费| 老司机福利观看| 天堂网av新在线| 成人综合一区亚洲| 日韩欧美国产在线观看| 国产在视频线在精品| 日韩在线高清观看一区二区三区| 99久久九九国产精品国产免费| 久久久久久九九精品二区国产| 精品国产三级普通话版| 国产黄a三级三级三级人| 亚洲七黄色美女视频| 好男人在线观看高清免费视频| 精品99又大又爽又粗少妇毛片| 日韩一区二区视频免费看| 亚洲经典国产精华液单| 在线观看av片永久免费下载| 成人国产麻豆网| 国产一区二区三区在线臀色熟女| 一区二区三区免费毛片| 成人鲁丝片一二三区免费| 国产精品乱码一区二三区的特点| 亚洲av免费在线观看| 日本一二三区视频观看| 日韩在线高清观看一区二区三区| 亚洲美女视频黄频| 能在线免费观看的黄片| av专区在线播放| 国产一级毛片七仙女欲春2| 九色成人免费人妻av| 最近的中文字幕免费完整| 赤兔流量卡办理| 欧美日韩在线观看h| 一个人观看的视频www高清免费观看| 国产av一区在线观看免费| 欧美日韩一区二区视频在线观看视频在线 | 国产高潮美女av| 国国产精品蜜臀av免费| 成人性生交大片免费视频hd| 国产高清三级在线| 人人妻人人澡人人爽人人夜夜 | 人人妻人人澡欧美一区二区| 色吧在线观看| 在线观看午夜福利视频| 人妻久久中文字幕网| 日日摸夜夜添夜夜添小说| 少妇高潮的动态图| av国产免费在线观看| 精品久久久久久久久av| 久久国内精品自在自线图片| 亚洲图色成人| 伦理电影大哥的女人| 97碰自拍视频| 亚洲av成人av| 国产成人影院久久av| 99久国产av精品| 成人一区二区视频在线观看| 精品熟女少妇av免费看| 亚洲一级一片aⅴ在线观看| 国产黄色小视频在线观看| 国产成人aa在线观看| 欧美潮喷喷水| www.色视频.com| 亚洲国产精品成人久久小说 | 国产 一区精品| 久久午夜福利片| 淫妇啪啪啪对白视频| 亚洲真实伦在线观看| 99久久无色码亚洲精品果冻| 亚洲欧美成人精品一区二区| 深夜精品福利| 国产精品久久久久久久久免| 一进一出抽搐gif免费好疼| 嫩草影院精品99| 中文字幕免费在线视频6| 精品一区二区三区视频在线观看免费| 精品免费久久久久久久清纯| 99精品在免费线老司机午夜| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲最大成人av| 欧美另类亚洲清纯唯美| 日韩一本色道免费dvd| а√天堂www在线а√下载| 老师上课跳d突然被开到最大视频| 国内少妇人妻偷人精品xxx网站| 男女之事视频高清在线观看| 国产精品电影一区二区三区| 亚洲精品成人久久久久久| 99久久精品国产国产毛片| 欧美高清成人免费视频www| 成人国产麻豆网| 能在线免费观看的黄片| 国产精品一区二区三区四区免费观看 | 免费看av在线观看网站| 人妻夜夜爽99麻豆av| 欧美日韩乱码在线| 国产激情偷乱视频一区二区| www.色视频.com| 非洲黑人性xxxx精品又粗又长| 日韩,欧美,国产一区二区三区 | 香蕉av资源在线| 非洲黑人性xxxx精品又粗又长| 波野结衣二区三区在线| 国产精品日韩av在线免费观看| 内地一区二区视频在线| 在线观看av片永久免费下载| 禁无遮挡网站| 日韩国内少妇激情av| 一进一出好大好爽视频| 日本黄色片子视频| 又粗又爽又猛毛片免费看| 午夜福利在线观看吧| 在线播放无遮挡| 99热网站在线观看| 国产v大片淫在线免费观看| 不卡一级毛片| 亚洲av熟女| 国产精品伦人一区二区| 久久久久免费精品人妻一区二区| 国产精品久久久久久亚洲av鲁大| 美女xxoo啪啪120秒动态图| 精品无人区乱码1区二区| 亚洲av中文字字幕乱码综合| 人人妻,人人澡人人爽秒播| 成年女人永久免费观看视频| 能在线免费观看的黄片| 国产午夜精品论理片| 男女啪啪激烈高潮av片| 免费大片18禁| 午夜老司机福利剧场| 亚洲精品影视一区二区三区av| 中国国产av一级| 国产精品国产三级国产av玫瑰| 国产高清视频在线观看网站| 亚洲无线在线观看| 欧美一区二区亚洲| 成人午夜高清在线视频| 日本一二三区视频观看| 日本撒尿小便嘘嘘汇集6| 精品无人区乱码1区二区| 日本在线视频免费播放| 久久久久久久久久久丰满| 99久久成人亚洲精品观看| av专区在线播放| 国产老妇女一区| 九九在线视频观看精品| 亚洲自拍偷在线| 久久综合国产亚洲精品| 免费看av在线观看网站| 天天一区二区日本电影三级| 黄片wwwwww| 成人无遮挡网站| 亚洲在线观看片| ponron亚洲| 精品免费久久久久久久清纯| 亚洲av电影不卡..在线观看| 亚洲经典国产精华液单| 国产精品一区二区三区四区久久| 亚洲人与动物交配视频| 免费看光身美女| 亚洲熟妇中文字幕五十中出| 久久草成人影院| 国产精品亚洲一级av第二区| 精品国产三级普通话版| 最近的中文字幕免费完整| 亚洲人成网站在线播放欧美日韩| 亚洲国产精品成人综合色| 国产激情偷乱视频一区二区| 色吧在线观看| 亚洲久久久久久中文字幕| 国产av在哪里看| 麻豆国产av国片精品| 一个人看的www免费观看视频| 日韩强制内射视频| 可以在线观看毛片的网站| 香蕉av资源在线| 女的被弄到高潮叫床怎么办| av在线观看视频网站免费| 99在线视频只有这里精品首页| 亚洲经典国产精华液单| 亚洲国产精品成人综合色| av在线亚洲专区| АⅤ资源中文在线天堂| 精品久久久久久久久久免费视频| 久久精品国产亚洲av香蕉五月| 精品人妻熟女av久视频| 12—13女人毛片做爰片一| 亚洲高清免费不卡视频| 看十八女毛片水多多多| 亚洲国产精品成人综合色| 91狼人影院| 麻豆国产97在线/欧美| 午夜久久久久精精品| 欧美日本亚洲视频在线播放| 人妻少妇偷人精品九色| 日本黄大片高清| 六月丁香七月| 亚洲,欧美,日韩| 91麻豆精品激情在线观看国产| 少妇猛男粗大的猛烈进出视频 | 九九爱精品视频在线观看| 成人欧美大片| 波野结衣二区三区在线| 神马国产精品三级电影在线观看| 变态另类丝袜制服| 日韩亚洲欧美综合| 国产亚洲精品综合一区在线观看| 欧美bdsm另类| 亚洲av免费高清在线观看| 18+在线观看网站| 久久精品久久久久久噜噜老黄 | 日本免费一区二区三区高清不卡| 日本免费a在线| 精品一区二区三区av网在线观看| 日韩欧美精品v在线| 在线观看午夜福利视频| 国产精品电影一区二区三区| 无遮挡黄片免费观看| 精品久久久久久久末码| 中文在线观看免费www的网站| 亚洲国产高清在线一区二区三| 狂野欧美激情性xxxx在线观看| 色av中文字幕| 免费在线观看影片大全网站| 日韩欧美免费精品| 亚洲人成网站高清观看| 国产三级中文精品| 丝袜美腿在线中文| 欧美最黄视频在线播放免费| 国产三级在线视频| 一边摸一边抽搐一进一小说| 国产精品野战在线观看| 国产不卡一卡二| 老司机影院成人| 日韩国内少妇激情av| 97超视频在线观看视频| 麻豆av噜噜一区二区三区| 国产精品1区2区在线观看.| 97在线视频观看| av黄色大香蕉| 亚洲国产精品sss在线观看| 久久国内精品自在自线图片| 内射极品少妇av片p| 免费高清视频大片| 日韩大尺度精品在线看网址| 亚洲av成人av| 日韩一区二区视频免费看| 变态另类丝袜制服| 成人精品一区二区免费| or卡值多少钱| 久久亚洲国产成人精品v| a级毛片a级免费在线| 亚洲丝袜综合中文字幕| 九九热线精品视视频播放| 免费人成在线观看视频色| 一区福利在线观看| 欧美一区二区国产精品久久精品| 亚洲色图av天堂| 亚洲综合色惰| 99九九线精品视频在线观看视频| 性欧美人与动物交配| 欧美日韩综合久久久久久| 五月玫瑰六月丁香| 国产中年淑女户外野战色| 国产探花极品一区二区| 男女下面进入的视频免费午夜| 午夜爱爱视频在线播放| 免费无遮挡裸体视频| 丰满乱子伦码专区| 在线播放国产精品三级| 国产三级中文精品| 在线观看午夜福利视频| 欧美+日韩+精品| АⅤ资源中文在线天堂| 成年av动漫网址| 嫩草影视91久久| 插阴视频在线观看视频| 欧美日韩国产亚洲二区| 日本精品一区二区三区蜜桃| 老司机午夜福利在线观看视频| 久久久久久九九精品二区国产| 亚洲精品影视一区二区三区av| 91狼人影院| 哪里可以看免费的av片| 亚洲人成网站在线播| 国产免费一级a男人的天堂| 我要看日韩黄色一级片| 一进一出抽搐gif免费好疼| 一级a爱片免费观看的视频| 在线观看美女被高潮喷水网站| 亚洲人成网站高清观看| 日本色播在线视频| 国产黄色视频一区二区在线观看 | 天天躁日日操中文字幕| 中文字幕av在线有码专区| 免费电影在线观看免费观看| 欧美中文日本在线观看视频| 寂寞人妻少妇视频99o| 一个人观看的视频www高清免费观看| 亚洲成av人片在线播放无| 亚洲av成人av| 久久久久精品国产欧美久久久| 少妇高潮的动态图| 精品久久国产蜜桃| 久久精品国产99精品国产亚洲性色| 日韩精品中文字幕看吧| 97热精品久久久久久| 在线天堂最新版资源| 久久久色成人| 久久欧美精品欧美久久欧美| 国产v大片淫在线免费观看| 男女下面进入的视频免费午夜| 欧美国产日韩亚洲一区| 亚洲熟妇中文字幕五十中出| 久久久欧美国产精品| 日韩欧美免费精品| h日本视频在线播放| 插阴视频在线观看视频| 久久久久久九九精品二区国产| 国产精品一区www在线观看| 欧美三级亚洲精品| 一级毛片我不卡| 不卡视频在线观看欧美| 嫩草影院精品99| 中文字幕久久专区| 在线免费观看的www视频| 中文字幕免费在线视频6| 亚洲真实伦在线观看| 亚洲国产色片| 国内精品美女久久久久久| 夜夜爽天天搞| 欧美激情久久久久久爽电影| 欧美日韩乱码在线| 久久久久免费精品人妻一区二区| 亚洲无线在线观看| 国产精品野战在线观看| 日本 av在线| 亚洲最大成人手机在线| 免费一级毛片在线播放高清视频| 18禁在线无遮挡免费观看视频 | 亚洲av中文字字幕乱码综合| 一区福利在线观看| 禁无遮挡网站| 尾随美女入室| 97人妻精品一区二区三区麻豆| 免费大片18禁| 最近最新中文字幕大全电影3| 人人妻,人人澡人人爽秒播| 亚洲精品影视一区二区三区av| 国产亚洲精品久久久com| 欧美高清成人免费视频www| 97在线视频观看| 久久久精品大字幕| 丰满的人妻完整版| 成年女人毛片免费观看观看9| 亚洲激情五月婷婷啪啪| 久久久国产成人免费| 亚洲电影在线观看av| 99riav亚洲国产免费| 国产黄片美女视频| 女人十人毛片免费观看3o分钟| 日日摸夜夜添夜夜添av毛片| 成人特级av手机在线观看| 啦啦啦韩国在线观看视频| 国产精品免费一区二区三区在线| 久久精品国产亚洲av天美| 久久精品久久久久久噜噜老黄 | 久久人人爽人人爽人人片va| 又黄又爽又刺激的免费视频.| 久久精品国产清高在天天线| 久久精品国产鲁丝片午夜精品| 一区福利在线观看| 老司机福利观看| 在线观看一区二区三区| 特大巨黑吊av在线直播| 91av网一区二区| 亚洲精品456在线播放app| 国产老妇女一区| 日韩制服骚丝袜av| 老司机午夜福利在线观看视频| eeuss影院久久| 成年av动漫网址| 国产精品不卡视频一区二区| 噜噜噜噜噜久久久久久91| 午夜福利成人在线免费观看| 一级a爱片免费观看的视频| 国产91av在线免费观看| 美女免费视频网站| 久久久国产成人精品二区| 亚洲国产精品sss在线观看| 最新在线观看一区二区三区| 人人妻人人澡欧美一区二区| 成人性生交大片免费视频hd| 久久热精品热| 最近的中文字幕免费完整| 日韩一本色道免费dvd| 热99re8久久精品国产| 久久热精品热| 亚洲欧美中文字幕日韩二区| 亚洲中文字幕一区二区三区有码在线看| 春色校园在线视频观看| 高清午夜精品一区二区三区 | 日日干狠狠操夜夜爽| 国内精品一区二区在线观看| 99国产精品一区二区蜜桃av| 国产精品一区二区三区四区免费观看 | 日本黄色片子视频| 亚洲国产精品sss在线观看| 晚上一个人看的免费电影| 亚洲乱码一区二区免费版| 欧美丝袜亚洲另类| 国产av在哪里看| 美女高潮的动态| 亚洲成人中文字幕在线播放| 亚洲欧美精品综合久久99| 一a级毛片在线观看| 日本三级黄在线观看| 久久久成人免费电影| 乱码一卡2卡4卡精品| 五月伊人婷婷丁香| 国产麻豆成人av免费视频| 全区人妻精品视频| 给我免费播放毛片高清在线观看| 我的老师免费观看完整版| 精品人妻熟女av久视频| 蜜臀久久99精品久久宅男| 99热这里只有是精品在线观看| 欧美日韩在线观看h| 免费在线观看成人毛片| 亚洲电影在线观看av| 日韩成人av中文字幕在线观看 | a级毛片免费高清观看在线播放| 干丝袜人妻中文字幕| 在线a可以看的网站| 我要看日韩黄色一级片| 国产精品永久免费网站| 自拍偷自拍亚洲精品老妇| 禁无遮挡网站| 黄色配什么色好看| 成人特级av手机在线观看| 亚洲国产精品国产精品| 人人妻,人人澡人人爽秒播| 亚洲欧美清纯卡通| 黄色一级大片看看| 淫秽高清视频在线观看| 精品一区二区三区av网在线观看| 午夜a级毛片| 美女高潮的动态| 一进一出抽搐gif免费好疼| 欧美成人一区二区免费高清观看| 久久久久久久久久成人| 男女边吃奶边做爰视频| 日韩欧美国产在线观看| 3wmmmm亚洲av在线观看| 日本在线视频免费播放| 丰满人妻一区二区三区视频av| 美女被艹到高潮喷水动态| 男女视频在线观看网站免费| 国产精品久久久久久亚洲av鲁大| 国产大屁股一区二区在线视频| 日韩欧美免费精品| 我的老师免费观看完整版| 精品久久久久久成人av| 狂野欧美激情性xxxx在线观看| 亚洲人成网站在线播放欧美日韩| 欧美中文日本在线观看视频| 99在线人妻在线中文字幕| 网址你懂的国产日韩在线| 韩国av在线不卡| 亚洲av美国av| 又黄又爽又免费观看的视频| 最近的中文字幕免费完整| 日日干狠狠操夜夜爽| 天天躁夜夜躁狠狠久久av| 精品久久久久久久久久久久久| 18禁在线播放成人免费| 精品一区二区三区人妻视频| 内地一区二区视频在线| 听说在线观看完整版免费高清| 欧美三级亚洲精品| 亚洲av电影不卡..在线观看| 日韩强制内射视频| 亚洲欧美精品自产自拍| 精品久久久久久成人av| 我要看日韩黄色一级片| 寂寞人妻少妇视频99o| 亚洲久久久久久中文字幕| 嫩草影院精品99| 不卡一级毛片| 高清毛片免费看| 美女xxoo啪啪120秒动态图| 人妻夜夜爽99麻豆av| 久久精品国产亚洲av天美| 国产精品女同一区二区软件| 悠悠久久av| 国内久久婷婷六月综合欲色啪| 国产精品精品国产色婷婷| 亚洲中文字幕一区二区三区有码在线看| 精品99又大又爽又粗少妇毛片| 舔av片在线| 悠悠久久av| 99久久成人亚洲精品观看| 一夜夜www| 男人舔奶头视频| 精品久久久噜噜| 亚洲婷婷狠狠爱综合网|