• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Characteristics of piecewise linear symmetric tri-stable stochastic resonance system and its application under different noises

    2022-08-31 09:56:08GangZhang張剛YuJieZeng曾玉潔andZhongJunJiang蔣忠均
    Chinese Physics B 2022年8期
    關(guān)鍵詞:張剛

    Gang Zhang(張剛) Yu-Jie Zeng(曾玉潔) and Zhong-Jun Jiang(蔣忠均)

    1School of Communication and Information Engineering,Chongqing University of Posts and Telecommunications(CQUPT),Chongqing 400065,China

    2Cyberspace Administration of Guizhou Province,Guiyang 550000,China

    Keywords: bearing fault detection,weak signal detection,piecewise linear symmetric tri-stable system,output signal-noise-ratio,adaptive genetic algorithm

    1. Introduction

    With the rapid development of mechanical fault detection technology,weak signal detection has become an important means of extracting fault characteristic signals,[1,2]but in many practical applications, fault signals are completely submerged in strong background noise. The low signal-tonoise ratio (SNR) makes traditional fault detection methods ineffective. Therefore,the effective extraction of fault signals in strong background noise is of great significance for practical engineering applications.[3,4]Traditional signal detection methods include wavelet decomposition,[5]ensemble empirical mode decomposition,[6]singular value decomposition,[7]etc. These methods are used mainly to detect signals by removing or suppressing noise, but the signals themselves are also suppressed to a certain extent at the same time. In view of this, the stochastic resonance(SR) first proposed by Benziet al.,[8]in 1981 can convert noise energy into signal energy without damaging the signal. Therefore,the SR has become a typical noise-enhancing signal method,which has been widely used in weak signal detection so far.[9]

    In recent years, many scholars have conducted extensive researches of the classical bistable stochastic resonance system(CBSR)and achieved remarkable results,but the CBSR is only suitable for small parameters that satisfy the adiabatic approximation conditions.[10]In practical applications, the adiabatic approximation conditions cannot be satisfied because most of signals are large parameters and submerged in strong background noise. In order to achieve the better detection results and solve the practical problems in engineering applications, many scholars have conducted in-depth researches of SR systems. Lenget al.[11]proposed a second-sampling SR method, which compresses the collected signal and realizes SR through a nonlinear system. Wanget al.[12]proposed a detection method to reduce the correlation among system parameters through a special construction. The tri-stable model proposed by Zhanget al.[13]and Wanget al.[14]is applicable to the case of high noise in weak signal detection, and can better detect the early faults of rotating machinery under strong background noise conditions. Qiaoet al.[15]proposed an improved fractional-order SR model that can not only suppress the multiscale noise embedded in the signal,but also better characterize performance. An unsaturated piecewise system that solves the problem of system output saturation was proposed.[16–18]An SR system was applied to the bearing fault detection,and it was found that system parameters have great influence on system performance.[19–22]Hanet al.[23]derived the escape rate for particles by means of first passage time(MFPT).The system parameters are optimized by genetic algorithm in Refs.[24,25].

    Moreover, most of the noise detected by weak signals is ideal Gaussian white noise, which cannot represent the random noise generated by non-anthropogenic activities in nature,[26]and its waveform has significant impulsive and trailing characteristics. In order to accurately simulate noise in various fields, stochastic resonance induced by Levy noise has attracted the attention of scholars in recent years. Jiaoet al.[27]studied the stochastic resonance phenomenon of asymmetric monostable systems under different Levy stable noise environments. Guet al.[28]systematically analyzed the mean first-passage time of asymmetric bistable system under Levy noise.

    Although some research progress of weak signal detection as mentioned above has been made,further analysis shows that these systems only achieve single performance improvement by increasing the number of steady states or changing the structure of the potential function. Therefore, in order to solve the problem of output saturation and improve the output SNR of the system,a piecewise linear symmetric tri-stable random resonant system is proposed in this work. Firstly,under the premise of the adiabatic approximation theory, the SNR is deduced, and the influence of each parameter of the system on the SNR is analyzed,which is helpful in achieving the optimal detection effect. Then,in order to verify the practicality of the project,numerical simulation is introduced,and the simulation result is compared with that from the classical tristable stochastic resonance system(CTSR).In order to optimize the system parameters, an adaptive genetic algorithm is used to optimize the system parameters globally. Finally,the PLSTSR is applied to the bearing fault detection in Gaussian white noise and Levy noise,and the detection results are compared with the CTSR.

    The rest of this paper is organized as follows. In Section 2 the CTSR and the PLSTSR proposed in this paper are described, and their saturation characteristics are discussed.In Section 3,the Kramers escape rate,MFPT and SNR of the PLSTSR are deduced and the effects of parameters on them are analyzed. Also the unsaturation of PLSTSR is proven and the adaptive genetic algorithm is introduced. In Section 4,the ability of PLSTSR to detect low-frequency, high-frequency,and multi-frequency signals in Gaussian white noise environment are verified. In Section 5, the practicability of the PLSTSR detection technology is verified through two bearing experiments under Gaussian white noise. In Section 6 the bearing fault detection capability of PLSTSR under Levy noise is proved, and its engineering application value is verified.In Section 7 some conclusions are drawn from the present research.

    2. PLSTSR model

    The dynamic equation of the classic stochastic resonance system is shown below.

    Fig.1. Potential function of CTSR.

    It can be seen from Fig. 2, the system parameters exert large influences on the shape of the potential function. The changing ofm1,k1, andm2affect the change inU2,L2,U1respectively. Since the potential function of the PLSTSR is composed of 6 straight lines,the steepness of the barrier wall can be adjusted arbitrarily according to the system parameters.AsU(x)increases,xalso increases linearly,so the system does not saturate.

    Fig.2. Potential function of PLSTSR.

    A cosine signals(t)=0.2cos(2π×0.01t) is simulated under no noise, and the output signal waveform of the CTSR and the PLSTSR are shown in Fig.3 and Fig.4 respectively.

    It can be seen from Fig. 3 that when the value ofAincreases from 0.2 to 0.4,the amplitude of the output signal increases significantly, and whenA>0.4, with the increase ofA,the amplitude of the output signal does not increase significantly, and it is maintained at around 1.5, the system is saturated. Figure 4 shows that as the input signal amplitude increases, the output signal amplitude increases proportionally,thus avoiding output saturation. Comparing Fig.3 with Fig.4,under the same input signal amplitude, the output signal amplitude of Fig.4 is much larger than that of Fig.3,indicating that the PLSTSR has better signal amplification capabilities than the CTSR.

    Fig.4. Output signal of PLSTSR.

    3. SNR of PLSTSR

    The output SNR is the method that is most commonly used to evaluate the performance of stochastic resonance system. Kramers escape rate and adiabatic approximation theory are used to derive the SNR of PLSTSR.Thep1(t),p2(t),andp3(t) are the residence probabilities of Brownian particles at the three stable points at timet. Ther12(t),r21(t),r23(t),andr32(t)are Kramers escape rates between stable points,respectively.TheT12,T21,T23,andT32represent the MFPTs of particles between two stable points respectively.[23]TheR12(t),R21(t),R23(t), andR32(t) are the probabilities of the particle transition between stable points at timet, respectively. According to Refs.[29,30],Taylor series expansion is performed on them under the condition of adiabatic approximation and the first term is taken as shown in Eqs.(6)and(7).

    The MFPT can describe the difficulty of particle transition between potential wells,which can affect the occurrence of SR.Equation(6)shows thatT12andT32are only related tom2,m3,k1,andk2;T21,andT23are only related tom1andk1,;the curves of MFPT under parametersm1,m2,m3,k1,andk2are shown in Figs.5 and 6

    Fig.5. Variations of MFPT(v1 →v2)with D: (a)lnT12 changes with m2,(b)lnT12 changes with m3,(c)lnT12 changes with k1,(d)lnT12 changes with k2.

    Fig.6. Variations of MFPT(v2 →v1)with D: (a)lnT21 changes with m1,(b)lnT21 changes with k1.

    It can be seen from Figs. 5 and 6 that with the increase of noise intensity,the MFPT first gradually decreases and then tends to be stable,which indicates that the noise intensity can promote the transition of particles between potential wells,thereby generating stochastic resonance. Figure 5 show that MFPT(v1→v2)increases with the increase ofm2andk2and decreases with the increase ofm3andk1,indicating that the appropriate reduction ofm2andk2or appropriate increase ofm3andk1can promote the potential of particles from both sides.In Fig.6 that with the increase ofm1andk1,MFPT(v1→v2)increases, indicating that the appropriate reduction ofm2andk2can promote the transition of particles from the middle potential well to the potential wells on both sides.[30]

    Equations(6)and(7)can be expressed by Eq.(8)and Eq.(9)respectively.

    Substituting Eqs.(10)and(11)into Eq.(9),the linear ordinary differential method is used to solve the three-way homogeneous differential equation as given below

    From Eq.(12),using the conditional probability theorem,the conditional probability shown in Eq.(14)can be obtained below.

    According to the properties of transition probability in a symmetric system,equation(16)can be obtained as

    The output power of the signal can be obtained by the Fourier transform of autocorrelation function Eq.(18)below

    3.1. Parameter selection

    According to Eq.(20),the parameters can exert great influence on the value of SNR and determine the performance of the system. So it is necessary to study the influence of system parameters on the system. Lets(t)=0.2cos(2π×0.01t),then the relationship between SNR,noise intensity and system parameters will be shown in Figs.7–12.

    In Fig.7,the PLSTSR has the characteristics of the classical stochastic resonance system. Given other parameters are fixed,with the increase of the noise intensity,the SNR shows a trend first increasing and then decreasing,where the appearing of the peak indicates that the stochastic resonance has occurred.

    Fig.7. The change of SNR in PLSTSR with D.

    Fig.8. SNR versus D and m1.

    Fig.9. SNR versus D and m2.

    Fig.10. SNR versus D and m3.

    It can be seen from Figs. 8–10, and 12 that withDand some parameters fixed,the SNR of the PLSTSR first increases and then decreases with any of the parametersm1,m2,m3,k2increasing, and its peak value also increases as parameterDincreases. Figure 11 shows that the SNR first increases and then decreases with the increase of parameterk1,which means that there is a traditional SR phenomenon. Unlike the changes of other parameters, the SNR increases with parameterk1increasing, but the position and size of the peak do not change as shown in Fig.9.

    Fig.11. SNR versus D and k1.

    Fig.12. SNR versus D and k2.

    3.2. Adaptive genetic algorithm(GA)

    The above conclusions are all analyzed and discussed with part of the parameters fixed, but the coordinates of system parameters can also affect the performance of the system.Therefore, it is necessary to optimize these parameters. For example,many optimization algorithms such as adaptive iterative algorithm are only suitable for optimizing a small number of parameters. If there are too many parameters, then problems of insufficient precision and too high a computational complexity appear. However,the PLSTSR has 5 parameters,which is not suitable for the adaptive iterative algorithm.The adaptive genetic algorithm that simulates the biological genetic process has the advantages of multi-parameter optimization and high parameter accuracy.[24,25]Therefore,in this work the adaptive genetic algorithm is adopted to optimize the parameters. The SNR is used as the fitness function and the crossover operators such as those described Eq.(21)are used to construct the exclusive operator inX′=X+?.

    The flowchart of GA is shown in Fig.11. Subsequent parameter optimization is based on a population size of 400, a genetic generation of 200, and a crossover probability of 0.4.The mutation probability of the PLSTSR is 0.1 and the mutation probability of the CTSR is 0.4.

    Fig.13. Flowchart of adaptive genetic algorithm.

    4. Numerical simulation

    4.1. Comparative analysis

    In order to further prove the performance of PLSTSR,the fourth-order Runge–Kutta algorithm is used to simulate the periodic signals(t) = 0.2cos(2π×0.01t) in the Gaussian white noise environment, and the SNR is used as a measure.[32]Its definition is shown as follows:

    The optimal parameters of the PLSTSR are obtained by using the adaptive genetic algorithm:m1=2,m2=3,m3=3.5,k1=1,andk2=2. The optimal parameters of the CTSR area1=1,b1=2,andc1=0.1. After the 10th degree polynomial fitting,the SNR curve is obtained as shown in Fig.14.In Fig.14,with the increase ofD,the SNR for each of the two systems shows a trend first increasing and then decreasing,indicating a typical stochastic resonance phenomenon, but the peak value of the PLSTSR is larger,no matter whether the ambient noise is strong or weak,the value of SNR is larger than that of the CTSR,which proves the superiority of the PLSTSR.

    Fig.14. Comparison of SNR between PLSTSR and CTSR.

    4.2. Weak signal detection

    In order to further verify the performance of PLSTSR in signal detection,single-frequency signals(low-frequency signal and high-frequency signal)and multi-frequency signals are input into PLSTSR respectively, and the time-domain waveform and spectrum of the output signal are observed and compared with those in the case of CTSR.

    4.2.1. Single-frequency signal detection

    4.2.1.1. Low-frequency signal detection

    The low-frequency signals(t)=0.2cos(2π×0.01t)and the Gaussian white noise ofD= 0.8 are used. The optimal parameters of the CTSR are given below:a1=0.4819,b1= 1.0028, andc1= 0.4003. The optimal parameters of the PLSTSR arem1= 0.0085,m2= 0.0489,m3= 0.1605,k1=0.2539,andk2=0.3316. Figures 15 and 16 are the time domains and spectrum waveforms of the input and output signals,respectively.

    Fig.15. Time domain waveforms of input and output signals: (a)low-frequency cosine input signal,(b)low-frequency cosine input signal with noise,(c)CTSR output signal,(d)PLSTSR output signal.

    Fig. 16. Powers spectrum of input signal and output signals: (a) low-frequency cosine input signal, (b) low-frequency cosine input signal with noise, (c)CTSR output signal,(d)PLSTSR output signal.

    4.2.1.2. High-frequency signal detection

    The high-frequency signals(t)=0.2cos(2π×11.5t) and the Gaussian white noise ofD=0.8 are used. The optimal parameters of CTSR area1=1.3007,b1=0.5162, andc1=0.0418. The optimal parameters of PLSTSR arem1=0.0651,m2=0.6589,m3=0.4605,k1=0.2653,andk2=0.4816. Figures 17 and 18 are the time domains and spectrum waveforms of the input and output signals,respectively.

    Fig.17. Time domain waveforms of input and output signals. (a)High-frequency cosine input signal,(b)high-frequency cosine input signal with noise,(c)CTSR output signal,(d)PLSTSR output signal.

    Fig.18.Power spectra of input signal and output signals:(a)high-frequency cosine input signal,(b)high-frequency cosine input signal with noise,(c)CTSR output signal,(d)PLSTSR output signal.

    4.2.2. Multi-frequency signal detection

    The multi-frequency signals(t)=0.1cos(2π×0.01t)+0.2cos(2π×0.03t)+0.3cos(2π×0.05t)and the Gaussian white noise ofD=0.8 are used. The optimal parameters of CTSR area1=0.2819,b1=0.7632, andc1=0.5118. The optimal parameters of PLSTSR arem1=0.0158,m2=0.0169,m3=0.3558,k1=0.2169,andk2=0.4308. Figures 19 and 20 are the time domains and spectrum waveforms of the input and output signals,respectively.

    Fig.19. Time domain waveforms of input and output signals: (a)multi-frequency input signal,(b)multi-frequency input signal with noise,(c)CTSR output signal,(d)PLSTSR output signal.

    Fig. 20. Power spectra of input signal and output signals: (a) multi-frequency input signal, (b) multi-frequency input signal with noise, (c) CTSR output signal,(d)PLSTSR output signal.

    4.2.3. Summary

    As can be seen from Figs.15–20,the PLSTSR can detect low-frequency,high-frequency,and multi-frequency signals well,indicating wide range of applications. Compared with the CTSR,the PLSTSR has very high output signal amplitude and signalto-noise ratio as shown in Tables 1 and 2.

    Table 1. Comparison of performance between different systems in weak signal detection.

    Table 2. Comparison of SNR between different systems in weak signal detection.

    5. Bearing fault detection under Gaussian white noise

    5.1. Bearing the fault detection for 6205-2RS JEM SKF model

    To prove the great potential of the PLSTSR proposed in this paper in practical engineering applications,the CTSR and PLSTSR are used to detect the bearing fault data of Case Western Reserve University(CWRU).The bearing model is 6205-2RS JEM SKF, and the experimental workbench is shown in Fig. 21. The main parameters are shown in Table 3.[33,34]Since the adiabatic approximation theory needs to satisfy the condition of small parameters,the stochastic resonance is generated by the method of second-sampling. The sampling frequency isfs=12000 Hz, the number of sampling points isN=10000, and the secondary sampling frequency isfsr=5 Hz. In order to improve the fault detection performance of the system,an adaptive genetic algorithm is used to obtain the optimal parameters. By comparing the consistency between the characteristic frequency and the detection frequency,it can be judged whether a fault occurs. The calculation of the characteristic frequency is shown in Eq.(23).

    wherefr=29.9 Hz is the rotational frequency of the bearing. By substituting the data in Table 3 into Eq. (23), the fault frequencies of the inner and outer rings of the bearing can be calculated to befBPFI=162.2 Hz andfBPFO=107.3 Hz,respectively. Secondly, the sampling frequency is set to befs=12000 Hz, the sampling pointN=10000 and the secondary sampling frequencyfsr=5 Hz to preprocess the fault signal so as to meet the adiabatic approximation condition.

    Fig.21. 6205-2RS JEM SKF deep groove ball bearing test device.

    5.1.1. Inner ring fault detection

    Figures 22(a)and 23(a)show the time–frequency diagram of the 6205-2RS JEM SKF inner ring bearing fault signal. Figures 22(b)and 23(b)are time–frequency diagrams of the fault signal after adding Gaussian white noise. Figures 22(c)and 22(d)and figures 23(c)and 23(d)show the time–frequency diagrams of the output signals of the CTSR and PLSTSR respectively. The optimal parameters of the CTSR area1=2.4876,b1=1.1249, andc1=0.003. The optimal parameters of the PLSTSR arem1=0.4312,m2=1.4347,m3=1.0996,k1=0.0342,andk2=0.0838.

    Fig. 22. Time domain waveforms of input and output signals: (a) inner ring fault input signal, (b) inner ring fault signal with noise (D=0.2), (c) CTSR output signal,(d)PLSTSR output signal.

    Fig.23. Power spectra of input signal and output signals: (a)inner ring fault input signal,(b)inner ring fault signal with noise,(c)CTSR output signal,(d)PLSTSR output signal.

    It can be seen from Figs. 22(c) and 22(d) that the amplitude of the time domain waveform of the output signal of PLSTSR is significantly larger than that of the CTSR,and the periodicity is stronger. Figures 23(c)and 23(d)show the peak of PLSTSR and CTSR atf=162 Hz(relative error is 0.12%),which are 8.748 and 32.21 respectively, so the PLSTSR is 23.462 higher than that of CTSR. The SNRs of the two systems are?13.0787 dB and?10.8274 dB respectively,and the PLSTSR is 2.2513 dB higher than the CTSR,which proves the advantage of the PLSTSR in fault signal detection.

    5.1.2. Outer ring fault detection

    Figures 24(a) and 25(a) show the time–frequency diagram of the 6205-2RS JEM SKF outer ring bearing fault signal. Figures 24(b) and 25(b) show the time–frequency diagrams of the fault signal after adding Gaussian white noise.Figures 24(c) and 24(d) and Figs. 25(c) and 25(d) show the time–frequency diagram of the output signals of the CTSR and PLSTSR respectively. The optimal parameters of the CTSR area1=0.1507,b1=0.5291,andc1=0.3201. The optimal parameters of the PLSTSR arem1= 1.9598,m2= 1.3831,m3=5.6892,k1=3.5269,andk2=4.0129.

    It can be seen from Fig. 24 that the time domain waveform of the PLSTSR output signal has stronger periodicity and larger output amplitude. It can be seen from Figs. 25(c)and 25(d) that the spectral peaks of the output signals of the two systems are both atf= 108 Hz (relative error is 0.65%), but the spectral peak of the CTSR output signal is only 2.419,while the spectral peak of the PLSTSR output signal is 1269.The SNR of PLSTSR and CTSR are?14.2030 dB and?5.5644 dB,respectively,and the PLSTSR is 7.6389 dB higher than the CTSR.

    Fig. 24. Time domain waveforms of input and output signals: (a) outer ring fault input signal, (b) outer ring fault signal with noise (D=0.8), (c) CTSR output signal,(d)PLSTSR output signal.

    Fig.25. Power spectra of input signal and output signals: (a)outer ring fault input signal,(b)outer ring fault signal with noise(D=0.8),(c)CTSR output signal,(d)PLSTSR output signal.

    5.2. Bearing fault detection under LDK UER204 model

    Currently, the experimental data which are widely used by many scholars of SR are the CWRU bearing fault data public set. Therefore, in order to verify the applicability of the PLSTSR in different scenarios, the national public data LDK UER204-type bearing is selected for the experiment. The experimental device is shown in Fig.26. The bearing structural parameters[35]are shown in Table 4. The sampling frequency is set to befs=25600 Hz,sampling pointN=20000,and the theoretical value of outer ring fault frequency is calculated to bef=107.91 Hz. Since the signal does not meet the adiabatic approximation condition either, the secondary sampling frequency is set to befsr=5 Hz.

    Fig.26. LDK UER204 bearing test device.

    Table 4. Main data of LDK UER204 bearing.

    5.2.1. Outer ring fault detection

    Figures 27(a)and 28(a)show the time–frequency diagram of the LDK UER204 bearing fault signal. Figures 27(b) and 28(b) show the time–frequency diagrams of the fault signal after adding noise. Figure 27(c) and 27(d) and figures 28(c)and 28(d) show the time–frequency diagrams of the output signals of the CTSR and PLSTSR, respectively. The optimal parameters of the CTSR area1=0.1007,b1=2.6162,andc1=0.0418. The optimal parameters of the PLSTSR arem1=1.1512,m2=1.0547,m3=1.3156,k1=0.4354, andk2=0.5677.

    Fig. 27. Time domain waveforms of input and output signals: (a) outer ring fault input signal, (b) outer ring fault signal with noise (D=0.2), (c) CTSR output signal,(d)PLSTSR output signal.

    Fig. 28. Power spectra of input signal and output signals: (a) outer ring fault input signal, (b) CTSR output signal, (c) PLSR output signal, (d) PLSTSR output signal.

    From Figs. 28(a) and 28(b), it can be seen that the fault frequency cannot be identified by directly using Fourier transform to obtain the power spectrum of the original fault signal nor the noise-added fault signal. In Figs.28(c)and 28(d),the spectral peaks of both systems are atf=107.5 Hz(relative error is 0.38%)with peaks of 0.3402 and 5.75 respectively. The SNR of the two systems are?23.1750 dB and?20.2316 dB,respectively. The PLSTSR is improved by 2.9434 dB relative to CTSR.Obviously,the PLSTSR has a larger peak and SNR,less noise interference which makes it easier to detect the fault signal.

    6. Bearing fault detection under Levy noise

    Since Gaussian white noise is an ideal noise and cannot effectively simulate the actual noise in engineering practice,non-Gaussian Levy noise is introduced in order to be more similar to the random noise in the actual engineering environment.

    6.1. Levy noise

    The characteristic function expression of Levy noise[36]is shown as follows:

    where is the characteristic parameter,which determines the smearing characteristics and impulse characteristics of its distribution.The smearing characteristics of the noise turns stronger as increases,and the impulse characteristics becomes weaker as increases.The is a symmetry parameter, which determines the symmetry of the distribution. is the scale parameter, and represents the position parameter,which determines the center position of the distribution.

    The random variables of Levy noise are generated by the Chambers–Mallows–Stuck(CMS)method.

    where the random variablesVandWare independent of each other,V ∈(?π/2,π/2) obeys a uniform distribution,Wfollows an exponential distribution with a mean of 1, andCα,β= arctan(βtan(πα/2))/α,Dα,β,σ=σ[cos(arctan(βtan(πα/2)))]?1/α.

    6.2. Bearing fault detection under LDK UER204 model

    In order to verify the ability of PLSTSR to detect th bearing fault under Levy noise, the same LDK UER204 type of bearing as that in the previous section is selected. The sampling frequency is set to befs=25600 Hz, sampling pointN=20000, and the theoretical value of outer ring fault frequency is calculated to befout=107.91 Hz. Since the signal does not meet the adiabatic approximation condition either,the secondary sampling frequency is set to befsr=5 Hz.

    Figures 29(a) and 30(a) show the time–frequency diagrams of the LDK UER204 bearing fault signal, and figures 29(b) and 30(b) display the time–frequency diagrams of the fault signal after adding Levy noise. None of the characteristic frequencies of the fault signals can be identified. Figures 29(c) and 29(d) and figures 30(c) and 30(d) show the time–frequency diagrams of the output signals of the CTSR and PLSTSR, respectively. The optimal parameters of the CTSR area1=0.7112,b1=1.562,andc1=0.2311.The optimal parameters of the PLSTSR arem1=4.4652,m2=5.0647,m3=9.0956,k1=1.3354,andk2=1.6697.

    Fig.29. Time domain waveforms of input and output signals. (a)Outer ring fault input signal, (b)outer ring fault signal with noise(D=0.2), (c)CTSR output signal,(d)PLSTSR output signal.

    Fig.30. Power spectra of input signal and output signals: (a)outer ring fault input signal,(b)outer ring fault signal with noise,(c)CTSR output signal,(d)PLSTSR output signal.

    Comparing spectra among Figs. 30(a)–30(d), only the spectral peak of PLSTSR output signal is located atf=107.5 Hz (relative error is 0.38%), the CTSR cannot detect fault frequency well in Levy noise environment. Although the noise utilization rate of PLSTSR is not ideal, the fault frequency can still be detected. The SNR at fault frequency is?19.8919 dB,and the relative input SNR is also improved by 25.684 dB,which proves the engineering application value of PLSTSR.

    7. Conclusions and perspectives

    In this work,the PLSTSR is proposed and applied to the detecting of low-frequency, high-frequency, multi-frequency signal,and bearing fault under Gaussian white noise and Levy noise. The PLSTSR is introduced, its saturation is verified,and the Kramers escape rate and MFPT are derived. Then,using the SNR as a measure,the influence of system parameters on the SNR is analyzed.Some conclusions are drawn from the present research as follows.

    (i)PLSTSR overcomes the saturation of CTSR,improves the system output SNR,and amplifies the signal amplitude.

    (ii) The adaptive genetic algorithm optimizes the system parameters collaboratively,so that the results can achieve global optimization.

    (iii) The PLSTSR can detect low-frequency, highfrequency and multi-frequency signals well, and its SNR and output amplitude are better than those of the CTSR.

    (iv) The PLSTSR is applied to the bearing fault detection of two scenarios under the Gaussian white noise, which eliminates the chance that the proposed system is only suitable for a certain bearing. The experimental results show that the PLSTSR has better large output amplitude and SNR.It is proved that the system has good theoretical significance and practical value. The details are shown in Table 5.

    (v) The PLSTSR and CTSR are applied to detecting of bearing fault under the Levy noise, which proves that the PLSTSR can also detect fault signals in a noise environment closer to engineering scenario,while the CTSR cannot detect fault signals. The specific test results are listed in Table 5.

    Table 5. Comparison of performances among different systems in bearing fault detection.

    The system proposed in this paper is a one-dimensional system. Subsequent research will apply the potential function of PLSTSR to a two-dimensional system or an underdamped system,and judge its superiority in performance.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant No. 61771085), the Research Project of Chongqing Educational Commission,China(Grant Nos. KJ1600407 and KJQN201900601), and the Natural Science Foundation of Chongqing, China (Grant No.cstc2021jcyj-msxmX0836).

    猜你喜歡
    張剛
    Visualizing and witnessing first-order coherence,Bell nonlocality and purity by using a quantum steering ellipsoid in the non-inertial frame
    Steering quantum nonlocalities of quantum dot system suffering from decoherence
    2022年高考模擬試題(三)
    層林盡染
    HeTDSE:A GPU based program to solve the full-dimensional time-dependent Schr¨odinger equation for two-electron helium subjected to strong laser fields*
    最萌“海拔差”:我要給你一個(gè)“補(bǔ)齊的幸?!?/a>
    最萌“海拔差”:我要給你一個(gè)“補(bǔ)齊的幸?!?/a>
    Implementation Scheme of Two-Photon Post-Quantum Correlations?
    數(shù)列最值問題的求解策略
    活用課本習(xí)題
    日韩精品免费视频一区二区三区| 国产精品免费一区二区三区在线| 制服丝袜大香蕉在线| 男人的好看免费观看在线视频 | 国产熟女午夜一区二区三区| 国产片内射在线| 欧美国产精品va在线观看不卡| 乱人伦中国视频| 久久香蕉国产精品| 男人操女人黄网站| 精品国内亚洲2022精品成人| 不卡一级毛片| 亚洲精品国产精品久久久不卡| 桃红色精品国产亚洲av| 高潮久久久久久久久久久不卡| 国产精品国产高清国产av| 国产野战对白在线观看| 91av网站免费观看| 亚洲一区高清亚洲精品| 在线十欧美十亚洲十日本专区| 人人妻人人澡欧美一区二区 | 天天一区二区日本电影三级 | 免费久久久久久久精品成人欧美视频| www日本在线高清视频| 久久人人精品亚洲av| 国产一区二区在线av高清观看| 在线观看免费日韩欧美大片| 啦啦啦观看免费观看视频高清 | 99久久精品国产亚洲精品| 中文字幕av电影在线播放| 国产一区二区三区视频了| 亚洲第一青青草原| 欧美人与性动交α欧美精品济南到| 国产日韩一区二区三区精品不卡| 欧美亚洲日本最大视频资源| 国产三级黄色录像| 性少妇av在线| 国产精品乱码一区二三区的特点 | av天堂久久9| 一二三四在线观看免费中文在| 一区福利在线观看| 高清毛片免费观看视频网站| 国内精品久久久久精免费| 一边摸一边做爽爽视频免费| 久热爱精品视频在线9| 亚洲中文字幕一区二区三区有码在线看 | 国产精品 国内视频| 成人亚洲精品av一区二区| 欧美乱色亚洲激情| 亚洲片人在线观看| 在线观看免费日韩欧美大片| 久久 成人 亚洲| 少妇粗大呻吟视频| or卡值多少钱| 亚洲免费av在线视频| 亚洲午夜理论影院| 婷婷精品国产亚洲av在线| 亚洲人成77777在线视频| 久久久精品国产亚洲av高清涩受| 又黄又粗又硬又大视频| 日韩欧美一区视频在线观看| 十八禁人妻一区二区| 中文字幕最新亚洲高清| 精品国产超薄肉色丝袜足j| 免费av毛片视频| 这个男人来自地球电影免费观看| 成人18禁高潮啪啪吃奶动态图| 在线观看免费视频日本深夜| 免费高清视频大片| 精品无人区乱码1区二区| 九色国产91popny在线| 亚洲情色 制服丝袜| 香蕉丝袜av| 欧美成人性av电影在线观看| 欧美成人性av电影在线观看| 最近最新中文字幕大全电影3 | 少妇 在线观看| 亚洲视频免费观看视频| 这个男人来自地球电影免费观看| 欧美一级a爱片免费观看看 | 老司机靠b影院| 亚洲精品粉嫩美女一区| 女人精品久久久久毛片| 日韩欧美在线二视频| 一二三四社区在线视频社区8| 国产高清激情床上av| 久久国产乱子伦精品免费另类| 精品人妻在线不人妻| cao死你这个sao货| 亚洲欧美日韩高清在线视频| 精品人妻1区二区| 制服丝袜大香蕉在线| 精品欧美一区二区三区在线| 亚洲熟女毛片儿| 欧美午夜高清在线| 黄色片一级片一级黄色片| 欧美日本视频| 男女下面进入的视频免费午夜 | 欧美在线一区亚洲| 国内精品久久久久精免费| 午夜福利高清视频| 天天添夜夜摸| 国产亚洲欧美精品永久| 妹子高潮喷水视频| 国产精品自产拍在线观看55亚洲| 又大又爽又粗| 午夜免费激情av| 宅男免费午夜| 深夜精品福利| а√天堂www在线а√下载| 久久九九热精品免费| 一进一出抽搐动态| 亚洲精品国产一区二区精华液| 我的亚洲天堂| netflix在线观看网站| 亚洲欧美日韩另类电影网站| 成人亚洲精品一区在线观看| 欧美中文综合在线视频| 欧美一区二区精品小视频在线| 亚洲av电影在线进入| 国产精品亚洲av一区麻豆| 国产精品国产高清国产av| 丰满的人妻完整版| 国内精品久久久久久久电影| 天天一区二区日本电影三级 | 性欧美人与动物交配| 欧美不卡视频在线免费观看 | 国产在线观看jvid| 欧美成狂野欧美在线观看| 国产激情欧美一区二区| 亚洲国产毛片av蜜桃av| 欧美乱妇无乱码| 久久国产亚洲av麻豆专区| 人人妻人人澡欧美一区二区 | 亚洲国产欧美日韩在线播放| 国产亚洲精品久久久久5区| 亚洲avbb在线观看| 天天躁夜夜躁狠狠躁躁| av网站免费在线观看视频| 久久人人爽av亚洲精品天堂| 亚洲自拍偷在线| 色播亚洲综合网| 最新美女视频免费是黄的| 日本免费一区二区三区高清不卡 | 在线观看免费视频日本深夜| 黄色视频,在线免费观看| 亚洲avbb在线观看| 嫩草影视91久久| 性色av乱码一区二区三区2| 欧洲精品卡2卡3卡4卡5卡区| 纯流量卡能插随身wifi吗| 俄罗斯特黄特色一大片| 精品久久久久久久久久免费视频| 日本欧美视频一区| 欧美日韩福利视频一区二区| 欧美精品亚洲一区二区| 90打野战视频偷拍视频| 中文字幕最新亚洲高清| 午夜影院日韩av| 久久天躁狠狠躁夜夜2o2o| 人妻丰满熟妇av一区二区三区| 韩国精品一区二区三区| 免费看十八禁软件| 亚洲国产日韩欧美精品在线观看 | www.www免费av| 窝窝影院91人妻| 亚洲美女黄片视频| 欧美乱妇无乱码| 大香蕉久久成人网| 99国产精品99久久久久| 亚洲 国产 在线| 国产真人三级小视频在线观看| 欧美久久黑人一区二区| 757午夜福利合集在线观看| 村上凉子中文字幕在线| 琪琪午夜伦伦电影理论片6080| 亚洲色图 男人天堂 中文字幕| 天堂影院成人在线观看| 一级a爱视频在线免费观看| 久久狼人影院| 欧美成人性av电影在线观看| 亚洲第一欧美日韩一区二区三区| 欧美乱色亚洲激情| 精品久久久久久,| 天天添夜夜摸| 日本撒尿小便嘘嘘汇集6| 男男h啪啪无遮挡| 精品电影一区二区在线| 国产黄a三级三级三级人| 亚洲一卡2卡3卡4卡5卡精品中文| xxx96com| 999久久久精品免费观看国产| 国产91精品成人一区二区三区| 这个男人来自地球电影免费观看| 国产人伦9x9x在线观看| 亚洲专区国产一区二区| 亚洲国产毛片av蜜桃av| 欧美日韩乱码在线| 欧美丝袜亚洲另类 | 人人澡人人妻人| 久久久久久免费高清国产稀缺| 久久精品aⅴ一区二区三区四区| 国产高清有码在线观看视频 | 在线观看www视频免费| 久久国产乱子伦精品免费另类| 国产av精品麻豆| 欧美丝袜亚洲另类 | 国内久久婷婷六月综合欲色啪| 一本综合久久免费| 亚洲精品一区av在线观看| 啦啦啦 在线观看视频| 精品欧美国产一区二区三| 亚洲精品国产色婷婷电影| 日韩精品中文字幕看吧| 村上凉子中文字幕在线| 日韩视频一区二区在线观看| 日韩一卡2卡3卡4卡2021年| 99精品在免费线老司机午夜| 国产成人欧美| 国产蜜桃级精品一区二区三区| 最近最新中文字幕大全免费视频| 国产成人一区二区三区免费视频网站| 久久 成人 亚洲| 久久久久久人人人人人| 99精品欧美一区二区三区四区| tocl精华| 色播在线永久视频| 欧美日本中文国产一区发布| 中文字幕色久视频| 自线自在国产av| 中亚洲国语对白在线视频| 一级毛片高清免费大全| 亚洲精品美女久久久久99蜜臀| 国产97色在线日韩免费| 国产欧美日韩一区二区三区在线| 青草久久国产| 亚洲最大成人中文| 99国产综合亚洲精品| 最近最新中文字幕大全电影3 | 国产私拍福利视频在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 丝袜在线中文字幕| 午夜免费激情av| 国产免费男女视频| 亚洲熟妇熟女久久| av天堂久久9| av中文乱码字幕在线| 亚洲成av人片免费观看| 欧美不卡视频在线免费观看 | 深夜精品福利| 午夜成年电影在线免费观看| 99re在线观看精品视频| 成人国语在线视频| av天堂在线播放| 给我免费播放毛片高清在线观看| 精品少妇一区二区三区视频日本电影| 久久精品国产亚洲av高清一级| 成人欧美大片| 十八禁网站免费在线| 自拍欧美九色日韩亚洲蝌蚪91| 好男人电影高清在线观看| 欧美成人一区二区免费高清观看 | 日韩高清综合在线| 精品福利观看| 欧美成人性av电影在线观看| 久久精品亚洲精品国产色婷小说| 嫩草影院精品99| 欧美一级a爱片免费观看看 | 男女下面进入的视频免费午夜 | 亚洲欧洲精品一区二区精品久久久| 免费看a级黄色片| 麻豆国产av国片精品| 欧美日韩精品网址| 男女下面插进去视频免费观看| 亚洲av成人一区二区三| 亚洲精品粉嫩美女一区| 国产精品一区二区在线不卡| 国产av一区二区精品久久| 国产精品亚洲av一区麻豆| ponron亚洲| 视频在线观看一区二区三区| 又黄又爽又免费观看的视频| 精品久久久久久久毛片微露脸| 黄色a级毛片大全视频| 日本 av在线| 成人国语在线视频| 韩国精品一区二区三区| 日本一区二区免费在线视频| 亚洲电影在线观看av| av视频在线观看入口| 99久久99久久久精品蜜桃| 国产成年人精品一区二区| 法律面前人人平等表现在哪些方面| 精品人妻1区二区| 99香蕉大伊视频| 精品不卡国产一区二区三区| 18美女黄网站色大片免费观看| 黄色丝袜av网址大全| 黄色a级毛片大全视频| 欧美成人午夜精品| 一卡2卡三卡四卡精品乱码亚洲| 国产欧美日韩精品亚洲av| 此物有八面人人有两片| 国产精品98久久久久久宅男小说| 中文字幕av电影在线播放| 国产单亲对白刺激| 91国产中文字幕| 日本免费a在线| 久久天堂一区二区三区四区| 亚洲欧美日韩无卡精品| 午夜精品国产一区二区电影| 成人特级黄色片久久久久久久| 国产三级在线视频| 男女做爰动态图高潮gif福利片 | 亚洲国产精品sss在线观看| 每晚都被弄得嗷嗷叫到高潮| 亚洲午夜精品一区,二区,三区| 色综合婷婷激情| 99精品在免费线老司机午夜| 又黄又粗又硬又大视频| 亚洲中文字幕一区二区三区有码在线看 | 欧美成人一区二区免费高清观看 | 国产亚洲精品综合一区在线观看 | 国产精品久久久久久亚洲av鲁大| 丁香欧美五月| 这个男人来自地球电影免费观看| 999久久久国产精品视频| 午夜亚洲福利在线播放| 国产亚洲精品综合一区在线观看 | 黄色成人免费大全| 欧美成人免费av一区二区三区| 91国产中文字幕| 国产成人精品无人区| 91av网站免费观看| 国产亚洲欧美在线一区二区| 在线观看免费视频网站a站| 婷婷精品国产亚洲av在线| 人妻丰满熟妇av一区二区三区| 99精品久久久久人妻精品| 亚洲片人在线观看| 国产精品亚洲一级av第二区| 亚洲一区中文字幕在线| 丝袜美足系列| 91精品国产国语对白视频| 亚洲第一电影网av| 久久久国产成人精品二区| 久久久精品国产亚洲av高清涩受| 真人一进一出gif抽搐免费| 真人一进一出gif抽搐免费| 精品欧美国产一区二区三| 波多野结衣高清无吗| 视频区欧美日本亚洲| 亚洲精品国产一区二区精华液| 999精品在线视频| 日韩视频一区二区在线观看| 欧美大码av| 国产av在哪里看| 在线观看免费日韩欧美大片| 亚洲专区字幕在线| 亚洲av电影在线进入| svipshipincom国产片| 12—13女人毛片做爰片一| 男女下面插进去视频免费观看| 日日夜夜操网爽| 欧美av亚洲av综合av国产av| 禁无遮挡网站| 欧美精品啪啪一区二区三区| 黄片小视频在线播放| 国产97色在线日韩免费| 女人被躁到高潮嗷嗷叫费观| 桃红色精品国产亚洲av| 好看av亚洲va欧美ⅴa在| 亚洲成人国产一区在线观看| 性少妇av在线| 999久久久精品免费观看国产| av有码第一页| 多毛熟女@视频| 乱人伦中国视频| 中亚洲国语对白在线视频| 可以在线观看毛片的网站| 亚洲国产看品久久| 免费在线观看黄色视频的| 少妇熟女aⅴ在线视频| 99国产精品免费福利视频| 精品日产1卡2卡| 老熟妇仑乱视频hdxx| 夜夜爽天天搞| 看片在线看免费视频| 少妇被粗大的猛进出69影院| 久久久久国产一级毛片高清牌| 午夜福利高清视频| 69精品国产乱码久久久| 12—13女人毛片做爰片一| 波多野结衣一区麻豆| 国产精品亚洲一级av第二区| 一区二区三区精品91| 午夜激情av网站| 制服丝袜大香蕉在线| 精品国产国语对白av| 女性生殖器流出的白浆| 波多野结衣巨乳人妻| 亚洲精品粉嫩美女一区| 日日爽夜夜爽网站| 美女高潮到喷水免费观看| 日韩大尺度精品在线看网址 | 亚洲色图综合在线观看| 欧美日本中文国产一区发布| 日日夜夜操网爽| 国产一区二区在线av高清观看| 我的亚洲天堂| 久久精品影院6| 精品国产乱子伦一区二区三区| 亚洲,欧美精品.| 久久午夜综合久久蜜桃| 国产精品二区激情视频| 高潮久久久久久久久久久不卡| 在线免费观看的www视频| 国产精品一区二区免费欧美| 99在线人妻在线中文字幕| 高潮久久久久久久久久久不卡| 欧美另类亚洲清纯唯美| 久久国产乱子伦精品免费另类| 操美女的视频在线观看| 亚洲国产毛片av蜜桃av| 亚洲欧美精品综合久久99| 国产av又大| 国产精品1区2区在线观看.| 免费人成视频x8x8入口观看| 午夜激情av网站| 啪啪无遮挡十八禁网站| 在线观看66精品国产| 一级,二级,三级黄色视频| 国产精品一区二区精品视频观看| 中亚洲国语对白在线视频| 亚洲欧美日韩另类电影网站| 午夜免费激情av| 黄网站色视频无遮挡免费观看| 两性夫妻黄色片| 国产99白浆流出| 亚洲色图 男人天堂 中文字幕| 成人av一区二区三区在线看| 国产极品粉嫩免费观看在线| 男女午夜视频在线观看| 老司机午夜福利在线观看视频| 亚洲国产毛片av蜜桃av| 国产精品久久电影中文字幕| 久久中文看片网| 久久热在线av| 欧美日本中文国产一区发布| 亚洲国产欧美网| 俄罗斯特黄特色一大片| 一边摸一边抽搐一进一出视频| 免费人成视频x8x8入口观看| 国产亚洲精品久久久久久毛片| 亚洲人成电影观看| 欧美亚洲日本最大视频资源| 日本一区二区免费在线视频| 国产av在哪里看| 国产精品亚洲av一区麻豆| 中文字幕人成人乱码亚洲影| svipshipincom国产片| 99热只有精品国产| 国产精品电影一区二区三区| 久久久久久大精品| 亚洲国产日韩欧美精品在线观看 | 淫妇啪啪啪对白视频| 免费在线观看亚洲国产| 日本三级黄在线观看| 精品久久久精品久久久| 亚洲国产欧美日韩在线播放| 精品国产美女av久久久久小说| 亚洲欧美一区二区三区黑人| 国产成人一区二区三区免费视频网站| 国内精品久久久久精免费| 亚洲电影在线观看av| 国产精品二区激情视频| 欧美乱妇无乱码| 人人澡人人妻人| 黄网站色视频无遮挡免费观看| 99精品欧美一区二区三区四区| 国产成人av激情在线播放| 国产午夜精品久久久久久| 欧美最黄视频在线播放免费| videosex国产| 超碰成人久久| 中国美女看黄片| 999久久久精品免费观看国产| 日本一区二区免费在线视频| 搡老岳熟女国产| 日本三级黄在线观看| 99国产精品免费福利视频| 亚洲国产欧美网| 国产成人精品久久二区二区91| 亚洲人成网站在线播放欧美日韩| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲成人精品中文字幕电影| 国产高清videossex| 亚洲久久久国产精品| 久久国产亚洲av麻豆专区| 国产av精品麻豆| 99国产精品一区二区三区| 丝袜美腿诱惑在线| 色播在线永久视频| 在线观看日韩欧美| 欧美精品亚洲一区二区| 夜夜爽天天搞| 国产精品99久久99久久久不卡| 亚洲av熟女| 一本大道久久a久久精品| 国产精品爽爽va在线观看网站 | 国产97色在线日韩免费| 亚洲少妇的诱惑av| 日韩一卡2卡3卡4卡2021年| 国产欧美日韩一区二区三区在线| 亚洲色图 男人天堂 中文字幕| 亚洲国产日韩欧美精品在线观看 | 免费看a级黄色片| x7x7x7水蜜桃| 日韩精品青青久久久久久| 无人区码免费观看不卡| 午夜精品国产一区二区电影| 国产欧美日韩综合在线一区二区| 亚洲 国产 在线| 无人区码免费观看不卡| 久久久久亚洲av毛片大全| 国产麻豆69| 自线自在国产av| 嫁个100分男人电影在线观看| 999久久久精品免费观看国产| 桃色一区二区三区在线观看| 午夜福利一区二区在线看| 看片在线看免费视频| 母亲3免费完整高清在线观看| 12—13女人毛片做爰片一| 成人三级做爰电影| 久久精品影院6| 亚洲国产精品合色在线| 欧美日韩一级在线毛片| 亚洲国产精品sss在线观看| 淫妇啪啪啪对白视频| 亚洲av第一区精品v没综合| 亚洲熟女毛片儿| 真人一进一出gif抽搐免费| 麻豆久久精品国产亚洲av| 亚洲熟妇中文字幕五十中出| 黄片大片在线免费观看| 久久婷婷成人综合色麻豆| 欧美色视频一区免费| 欧美成人午夜精品| 视频在线观看一区二区三区| 在线观看免费视频日本深夜| 这个男人来自地球电影免费观看| 999久久久精品免费观看国产| 国产极品粉嫩免费观看在线| 精品久久久久久,| 成人国语在线视频| 亚洲自拍偷在线| 成人三级做爰电影| 欧美老熟妇乱子伦牲交| 国产激情久久老熟女| 日本精品一区二区三区蜜桃| 成人精品一区二区免费| 免费高清在线观看日韩| 在线观看舔阴道视频| 国产成人精品无人区| 一级黄色大片毛片| 真人一进一出gif抽搐免费| 免费看a级黄色片| 日本在线视频免费播放| 免费高清视频大片| 国产1区2区3区精品| 亚洲性夜色夜夜综合| 欧美国产精品va在线观看不卡| 久久精品成人免费网站| 精品国产亚洲在线| 一级作爱视频免费观看| 韩国精品一区二区三区| 女人被狂操c到高潮| 中文字幕人成人乱码亚洲影| 九色国产91popny在线| 成人亚洲精品一区在线观看| 在线观看舔阴道视频| 亚洲精华国产精华精| 丝袜在线中文字幕| 在线av久久热| 久久婷婷人人爽人人干人人爱 | av中文乱码字幕在线| 亚洲欧美精品综合久久99| 18禁国产床啪视频网站| 免费在线观看日本一区| 国产精品精品国产色婷婷| 一边摸一边抽搐一进一出视频| 黄片大片在线免费观看| 波多野结衣高清无吗| 校园春色视频在线观看| 婷婷六月久久综合丁香| 午夜久久久久精精品| 在线天堂中文资源库| 欧美国产精品va在线观看不卡| 国产亚洲av嫩草精品影院| 亚洲专区中文字幕在线| 亚洲第一欧美日韩一区二区三区| 欧美午夜高清在线| 一区二区三区国产精品乱码| 国产伦人伦偷精品视频| 国产精品亚洲一级av第二区| 无人区码免费观看不卡| 午夜福利欧美成人| 9色porny在线观看| 久久精品人人爽人人爽视色| 天天一区二区日本电影三级 | 一边摸一边做爽爽视频免费| 操出白浆在线播放| 男人舔女人下体高潮全视频| 久久久久久久久免费视频了|