• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Inversion techniques to obtain local rotation velocity and ion temperature profiles for the x-ray crystal spectrometer on EAST

    2023-10-08 08:20:38ZichaoLIN林子超HongmingZHNG張洪明FudiWNG王福地heonhoBEJiaFU符佳YifeiJIN金仡飛DianLU盧迪安ShengyuFU傅盛宇JiankangLI李建康andBoLYU呂波
    Plasma Science and Technology 2023年9期
    關(guān)鍵詞:迪安福地建康

    Zichao LIN(林子超),Hongming ZHNG(張洪明),Fudi WNG(王福地),heonho BE,Jia FU(符佳),Yifei JIN(金仡飛),Di’an LU(盧迪安),Shengyu FU(傅盛宇),Jiankang LI(李建康),3 and Bo LYU(呂波),?

    1 Institute of Plasma Physics,HFIPS,Chinese Academy of Sciences,Hefei 230031,People’s Republic of China

    2 Science Island Branch,Graduate School of University of Science and Technology of China,Hefei 230026,People’s Republic of China

    3 School of Nuclear Science and Technology,University of South China,Hengyang 421001,People’s Republic of China

    Abstract Inversion techniques are conducted based on the tangential x-ray crystal spectroscopy(TXCS)geometry on EAST to obtain the local profiles of ion temperature(Ti) and toroidal rotation velocity(vt).Firstly,local emissivity profiles of the impurity argon are obtained using the asymmetrical Abel inversion.Then,the local vt and Ti profiles are calculated by considering the local emissivity profiles and the TXCS detailed geometry.In addition,how the changes in the vt profiles affect the accuracy in the Ti profiles is discussed in detail.It is also found that the lineintegrated Ti profiles are becoming less accurate with the increase in the radial gradient in the local vt profiles.Nonetheless,accurate Ti radial profiles are reconstructed after considering the effects of the emissivity and velocity,which are verified by comparing the inverted vt and Ti profiles with those local profile measurements from the Charge eXchange Recombination Spectroscopy(CXRS) on EAST.

    Keywords:plasma toroidal rotation,ion temperature,x-ray crystal spectroscopy,Abel inversion

    1.Introduction

    Ion temperature(Ti)and toroidal rotation velocity(vt)profiles are essential for the analysis of plasma transport and for optimization of the high-temperature operational range of tokamak plasmas.X-ray crystal spectroscopy(XCS),as one of the key diagnostics for measuring thevtandTi,has been equipped on many magnetic confinement fusion devices,including EAST[1-3].Usually,theTiprofiles measured by EAST XCS are line integrated;thus their profiles typically deviate from the true ones if no post-processing steps,such as inversion techniques,are applied [4].Therefore,application of inversion techniques is an essential step for obtaining reliable localTiandvtprofiles that are suitable for the analysis of high-performance plasma discharges.Inversion operations to obtain localvtandTiprofiles have been studied on the TFTR,Alcator C-Mod,etc [5-11].An inversion methodology ofTiandvtfor elongated tokamak plasmas has also been illustrated in[12].However,such an inversion operation has not been tested on actual experimental data on EAST.Since the hardware performances of the EAST XCS system have been well optimized in recent years,the signal quality of argon(Ar)spectra is also improved[13].Therefore,it becomes possible to conductthe profile inversion to obtain reliable local emissivity,velocity and ion temperature on EAST.The emissivity inversion,which is the prerequisite inversion step for attaining thevtandTiprofiles,has been conducted in a previous study to analyze impurity tungsten behavior[14].Based on that experience,the inversions of thevtandTiprofiles have recently been conducted in addition to the emissivity profile inversions and with the detailed geometry of the EAST XCS considered.The inverted localvtandTiprofiles are also compared to those measured by Charge eXchange Recombination Spectroscopy(CXRS) to validate the inversion technique applied to EAST XCS data [15-17].In this paper,the applied inversion method is briefly introduced in section 2,and the detailed geometry of the EAST XCS system is illustrated in section 3.Then,the line-integrated andvteffects onTiprofiles are discussed in section 4.The inverted profiles ofvtandTion EAST are presented in section 5 and compared with the well-calibrated CXRS data.Finally,this study is summarized in section 6.

    2.Methods of XCS inversion techniques

    As mentioned above,the line-integrated spectra that carry the emissivity strength,Doppler shift and Doppler broadening information are the basis of the XCS measurements.Therefore,the methods of non-circular cross-section Abel inversion(which is usually used to invert the line-integrated profiles)to obtain the local radial profiles of emissivity,rotation velocity and ion temperature with the spectra are illustrated in this section.

    2.1.Emissivity inversion

    Obtaining inverted emissivity profiles is a prerequisite for the velocity and ion temperature inversions.As illustrated in detail in [18],the basic principle of non-circular Abel inversion is to divide the plasma cross-section into several radial zones with the same emissivityEj,and the line-integrated brightness of each chord can be expressed asBi.These two parameters are related by a length matrixLij,as shown in equations(1) and(2),calculated along the path length of theith observation chord through thejth zone,which illustrates the key process of the Abel inversion.

    whereLij-1is the inverted length matrix.After obtaining the local emissivityEjillustrated above,the inversion of the velocity and the ion temperature can now be conducted.

    2.2.Velocity inversion

    The inversions of velocity and ion temperature are more complicated than the emissivity inversion.For theTiandvtinversions,a Gaussian spectral emission profile in each emission zone is assumed,

    Here,λ0is the unshifted wavelength,cis the light speed,kis the Boltzmann constant,mis the mass of the ion,is the unit vector in the direction of theith observation sightline andυjis the rotation velocity vector.The dot products ofandυjrepresent the differences between the true velocity and the line-integrated ones.The local wavelength shiftδλijcan be obtained by integrating over the first moment of the spectral emissivity and normalizing it with the total emissivity,

    where υj=∣υ j∣is the jth zone’s scalar velocity,andθijis the angle between the sightline and the velocity directions.The relationship between the measured line-integrated velocity(ui) and local velocity(υj) is given by,

    Then,the local velocity can be expressed as,

    whereMijis defined as,

    Considering that the velocity is the sum of the toroidal and poloidal components but the poloidal rotation velocity is usually smaller than the toroidal component in general discharges,the poloidal rotation velocity can be neglected [12].Typically,the poloidal velocities are around 10 km s-1and the toroidal velocities are more than tens of km s-1.Therefore,the errors in the toroidal velocities caused by neglecting the poloidal rotations depend on the ratio of the poloidal to the toroidal velocities,which are usually no more than 10%(without considering the pseudo rotation effects [19]).If the pseudo effects exist,the inverted toroidal velocity will be smaller than its real values,which will make the errors increase.If more accurate toroidal velocity results are needed,the average of measured velocities from the upper and lowersightlines can be used to eliminate the effects of poloidal components.Then,the toroidal velocity can be further updated as,

    whereuiupanduidownare the measured velocities from the upper and lower sightlines,respectively.

    2.3.Ion temperature inversion

    The inversion technique used to obtain ion temperature measurement is based on the measured FWHM(ωj).Integrating over the second moment of the spectral emissivity from equation(3) yields,

    Also,the line-integrated second moment can be used to obtain the line-integrated ion temperature,

    whereTiis the line-integrated ion temperature observed at theith observation chord.The second term on the right-hand side shows how the velocity differences between different emission zones affect the ion temperature profile.However,it should be noted that the radial velocity has not been taken into account here and,as a result,the calculated error may potentially be greater than what was estimated in the error analysis presented in section 5.

    3.XCS geometry on EAST

    The XCS system on EAST consists of two subsystems: a tangential x-ray crystal spectrometer(TXCS) and a poloidal x-ray crystal spectrometer.In this study,only the measured data from the TXCS are used for the inversion techniques.The TXCS is installed on the #G horizontal port of EAST,and the angle between the TXCS sightline and the magnetic axis is about 60.5° in the horizontal plane.One single spectral crystal(quartz 011,2d=4.913 ?)with a curvature radius of 3750 mm and an effective area of 80×80 mm2is placed at the location where its major radius isR=10.95 m and its vertical position is atZ=0 m.A PILATUS 900 K detector consisting of nine sub-modules is used to record the spectra.Each module of the detector consists of 487×195 pixels with each pixel size of 172×172μm2.With this large size detector,the vertical spatial observation range covers fromZ=0.4 to-0.4 m of the EAST plasma crosssections.The spatial resolution can be as low as 0.542 mm,and the time resolution can be as good as 0.01 s.In cases with weak signals,the pixels are always combined along the vertical direction to improve the signal intensity.TheTiandvtare calculated by the Doppler broadening(mainly contributed by thermal velocity) and the Doppler shift(mainly contributed by the rotation velocities) of the Ar XVII(3.9494 ?) line spectra.The broadening caused by Zeeman splitting is neglected during the calculation,since it is several orders of magnitude smaller than the observed Doppler broadening at the typical magnetic field strength in EAST.During the discharges,Ar gas is always actively injected to the EAST plasmas through a horizontal #J port gas puffing system to obtain sufficient Ar emissions.Figure 1 shows the spectra measured by the TXCS during the EAST #115199 discharge; the curved spectra are caused by the focusing properties of the spherical crystal.The Ar w-line is the aforementioned line spectra of Ar XVII(3.9494 ?),which is used to calculate the rotation velocities and ion temperatures.These spectra are taken by the TXCS detector with an exposure time oft=0.2 s.The line-integrated profile of the spectra intensity is also presented for the vertical range of-40 cm≤Z≤40 cm.

    Figure 1.(a) A typical spectra recorded by the TXCS detector in EAST,which contains nine sub-modules covering the EAST vertical range of-40 cm≤Z≤40 cm.(b)The measured fifth sub-module spectra data with an obvious Ar w-line.

    To apply the aforementioned inversion techniques,the crucial step is to obtain the length and angle matricesLijandMijin equation(11).In doing so,it is necessary to consider the realistic geometry of the TXCS sightlines for high accuracy in the resulting velocity and temperature profiles.Figure 2(a) shows the top view of the realistic geometry of the TXCS sightline(in red) at the midplane,and the magnetic surfaces(which are assumed to be toroidally symmetric) of EAST plasmas in blue lines.Therefore,thelength and angle matrices can be expressed as follows,

    Figure 2.(a) The detailed geometry top-view profile used for the inversion technique.(b) The projection of the length matrix on the basis of EFIT information; the intersection of all the lines of the sightlines is not the real crystal position for illustration convenience.

    Figure 3.The results of the simulation(real) profiles and lineintegrated profiles for(a) the emissivity,(b) the velocity and(c) the ion temperature based on the method illustrated above.

    Figure 4.(a) The assumed different velocity profiles.(b) The lineintegrated effects with different velocity profiles on ion temperature profiles; the red line in(b) is the true profile of the ion temperature.

    whereHis the vertical distance from the device center to the sightline on the midplane that can be calculated by the angle mentioned earlier,Lijis the chord length calculated according to the projectiongenerated by EFIT [20],φis the angle between the major radius and the sightline,θis the angle between the sightline and the toroidal velocity direction tangent to the magnetic surface andαis the angle between the projection of the sightline in the poloidal and horizontal plane(pink dashed line),as illustrated in detail in figure 2(b).In addition,the red lines are the poloidal crosssection sightlines,which correspond to the red line in figure 2(a).The sightlines are chosen to be tangent to the magnetic surfaces at locations indicated with the red asterisks for convenience.Theis calculated along the path length of theith observation chord through thejth zone,indicated with the yellow and black lines in figure 2(b).

    4.Simulations of effects on the ion temperature profiles

    Since the absolute calibration of the TXCS-measured velocities is currently not available at EAST,we focus on ion temperature profile measurements as the key aspect,unless there are other elements significantly affecting the velocities.Previously,it is mentioned that the line-integrated profiles will deviate from the local true profiles.Besides,according to equation(11),it is obvious that the velocity terms are coupled with the ion temperatures terms.Thus,in this section,lineintegration and velocity effects on the ion temperature radial profiles are simulated.

    4.1.Effects of line-integration

    To verify the line-integration effects on emissivity,rotation velocity and ion temperature profiles,a tanh-shape distribution of the local profiles can be assumed,as in equation(15),to conduct the simulations,as in [21],

    One typical plasma geometry data of EAST #115199 att=4.8 s is applied during the simulation.The results of lineintegration and inversion are shown in figure 3 with all calculated emission,vt,andTiprofiles presented.The assumed local profiles(red solid lines),which are also the true radial profiles,are integrated along each observation chord(to restore the TXCS direct measurement results) to obtain the line-integrated profile(blue dotted lines) of the emission,vtandTiprofiles.The line-integrated profiles are in the coordinateZ(blue axis at the top),which is simply mapped to the coordinateρ(red axis at the bottom) corresponding to the magnetic flux provided by EFIT.Since the quantities are assumed to be uniform within each magnetic flux surface,only the sightlines located above the magnetic axis were considered in this analysis.It is obvious that all of the lineintegrated profiles deviate from the assumed(true) profiles,and the absolute values of the line-integrated results are smaller than the assumed(true) values.It is notable that although only the tanh-shape profile is discussed here,different radial profile shapes will have different line-integrated profiles,and they will always deviate from the true profiles.

    The details of the line-integration effects of the toroidal rotation velocityvton theTiprofile are demonstrated in figure 4.To investigate the effects ofvton the line-integratedTiprofiles,four different velocity profiles are selected.Theresults show that increasingvtleads to greater line-integratedTiprofiles.

    Figure 5 shows the ratio between the line-integratedTi(LineIntegrated)and the assumedTi(Assumed)for a range of typical toroidal velocities in tokamaks when no inversion techniques are applied.In the low-velocity range(<100 km s-1),approximately 20% reduction(~0.8 ratio) in the line-averagedTiis expected from the true values and approximately equal to the assumed value near 250 km s-1,without applying the inversion techniques.This interpretation can also be translated to the core and edge radial gradients of tokamak plasmas since the core velocities are much higher than those in the edge.Therefore,it can be generalized that different velocity gradients produce varying effects on the line-integrated ion temperature profile.

    Figure 5.The relation between the core velocity value and the differences between the line-integrated and real ion temperature.

    Figure 6.(a)The assumed velocity profiles.(b)The inversion results after ignoring the velocity term in the ion temperature inversion operation using according to the profiles in(a).

    Figure 7.Time evolutions of(a)plasma current,(b)electron density,(c)NBI power,(d)toroidal velocity and(e)ion temperature of EAST#115199.

    4.2.Effects of absolute velocity and velocity gradient

    Since the absolute velocity calibration is currently not available for EAST TXCS,it is necessary to further study the effects of the absolute value and radial gradients of the velocity profiles on the accuracy of the obtained local profiles.For this purpose,a set of comparisons between different velocity profiles without considering the second term in equation(11) during the inversion operation is shown in figure 6.The line styles and colors correspond in figures 6(a)and(b).It is shown that the inverted profiles(in dot-dashed yellow and dashed crimson) deviate significantly from the true profile(in red crosses) in figure 6(b).Conversely,the other two(in solid blue and dotted cyan) are much closer to the assumed profile.It should be noted that the blue line overlaps with the red true profile,thus lies underneath the true red plus profiles in figure 6(b).The main difference between these two different groups being compared is in their radial velocity gradients.The effect of velocity magnitudes can also be investigated by comparing the dot-dashed yellow and dotted crimson lines or solid blue and dotted cyan lines,and it is much less than that of the velocity gradient effect.The slight differences between these two groups’ profiles are caused by the difference in the velocity term in equation(11).From a practical perspective,since the absolute wavelength is not well calibrated for the EAST XCS at present,it is still difficult to provide the absolute values of the rotation velocities.However,as aforementioned,when the velocity gradient of the profile is small enough,it is acceptable to neglect the second term during the calculation process.Specifically,when applying inversion techniques to plasmas,obtainingvelocity profiles with accurate radial gradients is more crucial than calibrating their absolute magnitudes.

    5.TXCS inversion operations on EAST

    The EAST discharge(#115199) is chosen for the inversion application in this study because of its high ion temperature.The discharge waveform of this shot is shown in figure 7.As the EAST neutral beam injections(NBIs) typically introduce large gradients in the velocity profiles,this shot is a good example where the second term in equation(11)should not be neglected.

    Figure 8 shows the raw TXCS-measuredvtandTiprofiles of shot #115199 att=5.5 s before any inversion techniques are applied.It should be noted that thevthere is approximately obtained by dividing the rough line-integrated data by cos(60.5°),where 60.5°represents the angle between the sightlines and magnetic axis.Furthermore,the ion temperature on the edge is set to be 0.5 keV according to the CXRS measurement.As mentioned above,the absolute velocity calibrations of TXCS measurements are currently not available;the velocity in figure 8 is obtained by comparing the wavelength shift before the NBI injection(att=2.0 s) because the co-NBI(co-direction with toroidal rotation) provides an enormous momentum input to accelerate the toroidal velocity [22].If these measurements are converted into their respective radial profiles,the maxvtin the core range is expected to be ~115 km s-1and the maxTinear 4.2 keV.Abel inversion techniques are applied to theTXCS-measured profiles to yield their respective radial profiles,as presented in figure 9.The invertedvtprofile is averaged according to equation(9),and theTiprofile is also averaged by the results from the upper and lower profiles.As a result,the accuracy in the TXCS-measured velocity gradients has significantly improved,which is important because many tokamak discharge analyses are based on reliable velocity gradients,although their absolute calibrations may not be available.With the availability of the CXRS measurement,the TXCS velocity profiles can be adjusted to match the CXRS profiles by matching the CXRS edge velocity,as shown in figure 9(a).It is shown that the maxvtin the core range,with the inversion techniques applied and calibrated with the CXRS edge data,has been calibrated to be near 150 km s-1,which introduces about 35 km s-1differences in the magnitude ofv.t A similar difference can also be observed forTi,where its max value at near 4.2 keV before the inversion is re-calculated to about 5 keV.

    Figure 8.The measured(a) toroidal velocity profile and(b) ion temperature profile by TXCS;the red dots are measured data,and the blue lines are fitted profiles by smoothing splines.

    The error in the inversion techniques is analyzed according to the error propagation theory,and the relative error of velocity can be expressed as,

    where the relative error of theuiis ~10%,and theθis calculated by the EFIT magnetic surface information and causes a ~5% margin of error,which yields the final accumulated error of about 11.2% for the velocity inversion.With regard to the ion temperature,the relative error is expressed as,

    where the relative errorof theTiis ~10% andthe absence of any other quantity is because they could be neglected sinceisa small amount compared to their relative errors.According to the above data,the final accumulated error is at about 10% for the ion temperature inversion.

    Therefore,the Abel inversion techniques applied to the radialvtandTiprofiles measured by EAST XCS have shown significant improvements in their corresponding final profiles.

    6.Summary

    The inversion techniques have been applied to increase the accuracy in the obtained localvtandTiprofiles from the lineintegrated profiles measured by TXCS on EAST.To test the performance of the Abel inversion method,simulations based on a set of assumed profiles are performed in this study and introduced in this article.It is also verified that the inverted results are sensitive to the accuracy of the velocity gradients but much less sensitive to the accuracy of the velocity magnitudes.To demonstrate this inversion method with actual experimental data,the line-integrated profiles ofvtandTimeasured by TXCS from EAST shot # 115199 have been used to apply the inversion operations to obtain the localvtandTiprofiles.Furthermore,the comparison between the inverted profiles and those from the CXRS measurement show good qualitative agreement,which also demonstrates the reliable accuracy of the inversion method applied in this study.Therefore,the Abel inversion technique is expected to assist when cross-checking the accuracy of CXRS and XCS data in future EAST experiments.Besides,the localvtandTiprofiles can also be provided in those situations where the CXRS is not available with no NBI injections.

    The obtained localvtandTiprofiles can be used to evaluate the plasma performance in the next EAST campaign.The obtained local profiles will also be used to study the related momentum transport in EAST.

    Acknowledgments

    The authors wish to thank the EAST team.The work is partially supported by National Natural Science Foundation of China(Nos.12175278 and 12205072),the Comprehensive Research Facility for Fusion Technology Program of China(No.2018-000052-73-01-001228),Major Science and Technology Infrastructure Maintenance and Reconstruction Projects of the Chinese Academy of Sciences(2021),the University Synergy Innovation Program of Anhui Province(No.GXXT-2021-029),Anhui Provincial Key Research and Development Project(No.202104a06020021),Open Fund of the Magnetic Confinement Fusion Laboratory of Anhui Province(No.2021AMF01002),and the National Magnetic Confinement Fusion Science Program of China(Nos.2019YFE03040000 and 2018YFE0303103).

    ORCID iDs

    猜你喜歡
    迪安福地建康
    商山銀花
    公交站里的背影
    中外文摘(2021年22期)2021-12-30 02:17:18
    方一新《建康實(shí)錄釋詞》手稿
    阿維迪安黃金公司簡(jiǎn)介
    常來常熟 江南福地的一碗面等著你
    臨夏·福地
    《太常引·建康中秋夜為呂叔潛賦》
    人間福地楠溪江
    幸福家庭(2019年14期)2019-01-06 09:15:34
    讓農(nóng)村成為農(nóng)民的福地
    對(duì)不起,我愛你
    新青年(2017年11期)2017-11-23 18:30:47
    久久久久久久久免费视频了| 91精品三级在线观看| av天堂在线播放| 久久人人爽av亚洲精品天堂| 99精品在免费线老司机午夜| 亚洲欧美一区二区三区久久| 一进一出好大好爽视频| 丰满饥渴人妻一区二区三| 又大又爽又粗| 亚洲人成电影观看| 国产成人免费无遮挡视频| 欧美性长视频在线观看| 一a级毛片在线观看| 最近最新免费中文字幕在线| 变态另类成人亚洲欧美熟女 | 亚洲成人免费av在线播放| 精品久久久久久,| 精品人妻熟女毛片av久久网站| 久久人妻福利社区极品人妻图片| 久久午夜亚洲精品久久| 精品欧美一区二区三区在线| 夜夜躁狠狠躁天天躁| 美女国产高潮福利片在线看| 成人av一区二区三区在线看| 自线自在国产av| 久久精品熟女亚洲av麻豆精品| 身体一侧抽搐| 女同久久另类99精品国产91| 免费看a级黄色片| 日韩免费高清中文字幕av| 曰老女人黄片| 国产精品影院久久| 国产一区在线观看成人免费| av视频免费观看在线观看| 丝袜美腿诱惑在线| 欧美激情 高清一区二区三区| 国产一区二区三区综合在线观看| 99国产综合亚洲精品| 99riav亚洲国产免费| 在线av久久热| 搡老乐熟女国产| 国产aⅴ精品一区二区三区波| 热re99久久国产66热| 建设人人有责人人尽责人人享有的| 女人高潮潮喷娇喘18禁视频| 在线观看免费视频网站a站| a级片在线免费高清观看视频| 大香蕉久久网| 久久午夜亚洲精品久久| 黑人猛操日本美女一级片| 欧美 亚洲 国产 日韩一| 午夜视频精品福利| 亚洲视频免费观看视频| 岛国毛片在线播放| 嫁个100分男人电影在线观看| 极品人妻少妇av视频| 夫妻午夜视频| 欧美日韩国产mv在线观看视频| 欧美日韩黄片免| 亚洲国产毛片av蜜桃av| 午夜福利免费观看在线| 青草久久国产| 国产亚洲欧美精品永久| 色播在线永久视频| 女同久久另类99精品国产91| 免费少妇av软件| 午夜福利免费观看在线| 中国美女看黄片| а√天堂www在线а√下载 | 国产免费男女视频| 悠悠久久av| 一二三四社区在线视频社区8| 免费看十八禁软件| 欧美成人免费av一区二区三区 | 久久国产精品男人的天堂亚洲| 成人亚洲精品一区在线观看| 欧美日韩成人在线一区二区| 国产单亲对白刺激| 一级毛片高清免费大全| 亚洲精品在线美女| 少妇被粗大的猛进出69影院| 久久精品国产亚洲av香蕉五月 | 真人做人爱边吃奶动态| 国产精品免费视频内射| 亚洲三区欧美一区| 日韩 欧美 亚洲 中文字幕| 视频区欧美日本亚洲| 国产精品偷伦视频观看了| 亚洲国产中文字幕在线视频| 一本综合久久免费| 国产成人欧美| 亚洲第一av免费看| 日韩欧美一区视频在线观看| 亚洲片人在线观看| 久久久久久久午夜电影 | 亚洲国产毛片av蜜桃av| 中文字幕人妻丝袜一区二区| 夜夜爽天天搞| 国产极品粉嫩免费观看在线| 高清在线国产一区| 成年人午夜在线观看视频| 婷婷精品国产亚洲av在线 | 搡老乐熟女国产| 亚洲欧美精品综合一区二区三区| 免费黄频网站在线观看国产| 日韩三级视频一区二区三区| 999精品在线视频| 亚洲欧美精品综合一区二区三区| 国产不卡一卡二| 欧美老熟妇乱子伦牲交| videosex国产| 亚洲五月天丁香| 精品久久久久久电影网| 男女高潮啪啪啪动态图| 美国免费a级毛片| 一二三四在线观看免费中文在| 人人妻,人人澡人人爽秒播| 亚洲,欧美精品.| 亚洲av第一区精品v没综合| 99久久国产精品久久久| 久久热在线av| 丰满饥渴人妻一区二区三| 国产午夜精品久久久久久| 精品久久久久久电影网| 侵犯人妻中文字幕一二三四区| 精品乱码久久久久久99久播| 99久久精品国产亚洲精品| 国产精品久久久久成人av| 亚洲精品久久成人aⅴ小说| 嫁个100分男人电影在线观看| 国产激情欧美一区二区| 精品一区二区三卡| 欧美人与性动交α欧美精品济南到| 精品国内亚洲2022精品成人 | 天堂√8在线中文| 日本wwww免费看| 免费日韩欧美在线观看| 他把我摸到了高潮在线观看| 性少妇av在线| 亚洲欧美日韩另类电影网站| 国产男女超爽视频在线观看| 男女高潮啪啪啪动态图| 国产男靠女视频免费网站| 天天操日日干夜夜撸| 久久影院123| 午夜精品国产一区二区电影| 99国产精品一区二区蜜桃av | 久久中文字幕一级| 成人影院久久| 嫩草影视91久久| 亚洲精品中文字幕一二三四区| 国产片内射在线| 午夜视频精品福利| av超薄肉色丝袜交足视频| 黄色怎么调成土黄色| 丝瓜视频免费看黄片| 中文字幕另类日韩欧美亚洲嫩草| 黑人欧美特级aaaaaa片| 精品久久久久久,| 在线观看午夜福利视频| 丝袜美足系列| 国产不卡av网站在线观看| 99精品久久久久人妻精品| 中文字幕精品免费在线观看视频| 一二三四社区在线视频社区8| 夜夜夜夜夜久久久久| 午夜激情av网站| 久久精品国产清高在天天线| 欧美丝袜亚洲另类 | 午夜福利影视在线免费观看| 国产91精品成人一区二区三区| 久久久国产成人免费| 国产成+人综合+亚洲专区| 一进一出好大好爽视频| 女人被狂操c到高潮| 国产精品免费视频内射| 国产有黄有色有爽视频| 一级毛片女人18水好多| 亚洲精品久久成人aⅴ小说| 久久久国产成人免费| 国产精品久久久久成人av| 久久中文看片网| 免费在线观看亚洲国产| 午夜两性在线视频| 精品国产乱码久久久久久男人| 久久ye,这里只有精品| 嫩草影视91久久| 久久久久久久久久久久大奶| 91九色精品人成在线观看| 黄色女人牲交| 狂野欧美激情性xxxx| 动漫黄色视频在线观看| 在线看a的网站| 两个人看的免费小视频| 在线观看一区二区三区激情| 欧美精品一区二区免费开放| 美女国产高潮福利片在线看| 国产精品自产拍在线观看55亚洲 | 色94色欧美一区二区| 成人三级做爰电影| 国产在线一区二区三区精| 亚洲精华国产精华精| 久久国产亚洲av麻豆专区| 一区福利在线观看| 日本撒尿小便嘘嘘汇集6| 女同久久另类99精品国产91| 久久精品国产亚洲av高清一级| 黄片播放在线免费| 精品一品国产午夜福利视频| 久久这里只有精品19| 一二三四在线观看免费中文在| 91成年电影在线观看| 国产亚洲欧美精品永久| 亚洲伊人色综图| 国产黄色免费在线视频| 欧美日韩瑟瑟在线播放| 国产一区二区三区综合在线观看| 日韩欧美在线二视频 | 老司机福利观看| 身体一侧抽搐| 国产精品久久久久久人妻精品电影| 高潮久久久久久久久久久不卡| 久久国产乱子伦精品免费另类| 桃红色精品国产亚洲av| 欧美精品亚洲一区二区| 成在线人永久免费视频| 啦啦啦视频在线资源免费观看| av在线播放免费不卡| 精品熟女少妇八av免费久了| 久久香蕉精品热| 国产亚洲精品久久久久5区| 黄片播放在线免费| 丰满的人妻完整版| 女人被狂操c到高潮| 婷婷成人精品国产| 国产精品久久久久久人妻精品电影| 真人做人爱边吃奶动态| 十八禁网站免费在线| 欧美日韩亚洲国产一区二区在线观看 | 久久久久国内视频| 女人爽到高潮嗷嗷叫在线视频| 99热只有精品国产| 国产男女内射视频| 精品久久久久久,| 亚洲熟女精品中文字幕| 国产亚洲av高清不卡| 狠狠婷婷综合久久久久久88av| 久久青草综合色| 一区二区日韩欧美中文字幕| 亚洲成国产人片在线观看| 国产一区二区三区视频了| 18禁美女被吸乳视频| 一级毛片精品| 欧美黑人欧美精品刺激| 91大片在线观看| 老熟女久久久| 欧美日韩一级在线毛片| 国产99白浆流出| 亚洲av欧美aⅴ国产| 精品高清国产在线一区| 男女床上黄色一级片免费看| 人妻久久中文字幕网| 亚洲全国av大片| a在线观看视频网站| 国产精品乱码一区二三区的特点 | 99re6热这里在线精品视频| 777米奇影视久久| 久久久久久久国产电影| 国产精品偷伦视频观看了| 岛国在线观看网站| 男女之事视频高清在线观看| 亚洲一区二区三区不卡视频| 黄色视频不卡| 人妻丰满熟妇av一区二区三区 | 久久草成人影院| 久久久久久人人人人人| 成人黄色视频免费在线看| 欧美精品亚洲一区二区| 久久久久久久精品吃奶| 亚洲专区字幕在线| 午夜福利在线免费观看网站| 99国产精品99久久久久| 99在线人妻在线中文字幕 | 国产精品.久久久| 制服人妻中文乱码| 在线永久观看黄色视频| 国产精品免费大片| 国产淫语在线视频| 成人三级做爰电影| 欧美在线黄色| 亚洲成国产人片在线观看| 亚洲全国av大片| 国产色视频综合| 亚洲欧美精品综合一区二区三区| 久久亚洲真实| 成年人午夜在线观看视频| 精品国产一区二区三区久久久樱花| 黄色怎么调成土黄色| 国产不卡av网站在线观看| 人妻久久中文字幕网| videos熟女内射| 在线观看日韩欧美| 老司机靠b影院| 国产成人影院久久av| 无限看片的www在线观看| 国产欧美日韩精品亚洲av| 制服人妻中文乱码| 黄片小视频在线播放| 多毛熟女@视频| 欧美av亚洲av综合av国产av| 18禁裸乳无遮挡动漫免费视频| 成人国产一区最新在线观看| 女警被强在线播放| 成人av一区二区三区在线看| 欧美日韩视频精品一区| 动漫黄色视频在线观看| 欧美成狂野欧美在线观看| 777久久人妻少妇嫩草av网站| 狠狠婷婷综合久久久久久88av| 99久久99久久久精品蜜桃| 国产一区二区三区综合在线观看| 一级毛片女人18水好多| 国产欧美亚洲国产| 亚洲精品av麻豆狂野| 在线免费观看的www视频| 午夜成年电影在线免费观看| 一区福利在线观看| svipshipincom国产片| 亚洲国产看品久久| 校园春色视频在线观看| 亚洲精品久久成人aⅴ小说| 亚洲综合色网址| 在线视频色国产色| 亚洲成国产人片在线观看| 免费看a级黄色片| 一进一出抽搐动态| 久久久久久人人人人人| 99久久国产精品久久久| 午夜精品国产一区二区电影| 午夜老司机福利片| 韩国精品一区二区三区| 国产麻豆69| 18禁观看日本| 视频区图区小说| 国产精品综合久久久久久久免费 | 欧美日韩中文字幕国产精品一区二区三区 | 亚洲av电影在线进入| 欧美最黄视频在线播放免费 | 亚洲av第一区精品v没综合| 日韩免费高清中文字幕av| 大陆偷拍与自拍| 色播在线永久视频| 丝袜美腿诱惑在线| 国产精品乱码一区二三区的特点 | 日韩视频一区二区在线观看| 9191精品国产免费久久| 国内毛片毛片毛片毛片毛片| 亚洲专区字幕在线| 满18在线观看网站| 欧美国产精品va在线观看不卡| 性色av乱码一区二区三区2| 99久久99久久久精品蜜桃| 一个人免费在线观看的高清视频| 香蕉久久夜色| 亚洲欧美一区二区三区黑人| 一边摸一边抽搐一进一出视频| 日本a在线网址| 老司机亚洲免费影院| 黄频高清免费视频| 激情在线观看视频在线高清 | 不卡一级毛片| 欧美日韩一级在线毛片| 亚洲伊人色综图| 色婷婷av一区二区三区视频| 波多野结衣av一区二区av| 国产亚洲欧美98| videos熟女内射| 首页视频小说图片口味搜索| 亚洲国产精品sss在线观看 | 欧美最黄视频在线播放免费 | 国产成人精品久久二区二区91| www日本在线高清视频| 黄频高清免费视频| 午夜激情av网站| 中国美女看黄片| 中文亚洲av片在线观看爽 | 91成人精品电影| 久久久国产成人精品二区 | 精品福利永久在线观看| 女同久久另类99精品国产91| 91国产中文字幕| 美女视频免费永久观看网站| 日本一区二区免费在线视频| 老熟女久久久| 精品欧美一区二区三区在线| 黄色女人牲交| 午夜免费鲁丝| 精品久久久久久久毛片微露脸| 好看av亚洲va欧美ⅴa在| 久久人妻熟女aⅴ| av不卡在线播放| 午夜亚洲福利在线播放| 一边摸一边抽搐一进一出视频| 啪啪无遮挡十八禁网站| 亚洲三区欧美一区| 精品熟女少妇八av免费久了| 乱人伦中国视频| 女人被狂操c到高潮| 99re在线观看精品视频| 成人影院久久| 国产欧美亚洲国产| 香蕉久久夜色| 欧美精品人与动牲交sv欧美| 国产精品一区二区在线观看99| 在线观看舔阴道视频| 中文字幕人妻丝袜制服| 亚洲色图av天堂| 日韩大码丰满熟妇| 欧美日韩亚洲高清精品| 色婷婷av一区二区三区视频| 国产精品香港三级国产av潘金莲| 国产片内射在线| 欧美黑人欧美精品刺激| 精品卡一卡二卡四卡免费| 中文字幕人妻丝袜制服| 亚洲欧美精品综合一区二区三区| 亚洲色图 男人天堂 中文字幕| 少妇粗大呻吟视频| av片东京热男人的天堂| 国产一区在线观看成人免费| 成人18禁在线播放| 久久久久精品人妻al黑| 欧美日韩国产mv在线观看视频| 亚洲精品中文字幕一二三四区| 水蜜桃什么品种好| 后天国语完整版免费观看| 久久人人97超碰香蕉20202| 亚洲成a人片在线一区二区| 国产真人三级小视频在线观看| 午夜久久久在线观看| 18禁国产床啪视频网站| 日日夜夜操网爽| 国产av精品麻豆| 欧美 亚洲 国产 日韩一| 国产精品 国内视频| 精品国产超薄肉色丝袜足j| 18禁黄网站禁片午夜丰满| 亚洲少妇的诱惑av| av网站在线播放免费| av视频免费观看在线观看| 夜夜躁狠狠躁天天躁| 亚洲av电影在线进入| 在线十欧美十亚洲十日本专区| 欧美精品人与动牲交sv欧美| 老汉色∧v一级毛片| 老司机午夜十八禁免费视频| 午夜福利一区二区在线看| 少妇的丰满在线观看| 国产不卡一卡二| 最新美女视频免费是黄的| 亚洲精品国产精品久久久不卡| 91在线观看av| 日韩人妻精品一区2区三区| 精品国产超薄肉色丝袜足j| 午夜老司机福利片| 国产精品香港三级国产av潘金莲| 黄色a级毛片大全视频| 亚洲av电影在线进入| 亚洲一区中文字幕在线| 国产av又大| 亚洲少妇的诱惑av| 成人18禁在线播放| 大香蕉久久网| 欧美国产精品va在线观看不卡| 亚洲一区二区三区欧美精品| 大型黄色视频在线免费观看| 国产亚洲欧美精品永久| 十八禁网站免费在线| 91九色精品人成在线观看| 亚洲国产欧美一区二区综合| 国产精品久久久久久精品古装| 日本撒尿小便嘘嘘汇集6| 一区福利在线观看| av国产精品久久久久影院| 日韩欧美免费精品| 欧美成人午夜精品| av福利片在线| 美女午夜性视频免费| 最近最新中文字幕大全电影3 | 正在播放国产对白刺激| 19禁男女啪啪无遮挡网站| 咕卡用的链子| 又大又爽又粗| 亚洲精品在线观看二区| 欧美国产精品一级二级三级| 亚洲中文av在线| 久久久久国产精品人妻aⅴ院 | 亚洲少妇的诱惑av| www.熟女人妻精品国产| 成人亚洲精品一区在线观看| 97人妻天天添夜夜摸| 欧美色视频一区免费| 久久国产乱子伦精品免费另类| 久久ye,这里只有精品| 欧美日韩中文字幕国产精品一区二区三区 | 国产成人影院久久av| 嫩草影视91久久| 精品久久蜜臀av无| 亚洲精品久久成人aⅴ小说| 成人18禁在线播放| 日韩欧美一区二区三区在线观看 | 精品国产超薄肉色丝袜足j| 欧美色视频一区免费| 国产精品亚洲一级av第二区| 这个男人来自地球电影免费观看| 国产视频一区二区在线看| 黄片大片在线免费观看| 亚洲熟女毛片儿| 中文欧美无线码| 美女视频免费永久观看网站| 精品熟女少妇八av免费久了| 18禁观看日本| 精品无人区乱码1区二区| 韩国精品一区二区三区| 操美女的视频在线观看| 国产日韩欧美亚洲二区| 亚洲一区高清亚洲精品| 欧美av亚洲av综合av国产av| 自拍欧美九色日韩亚洲蝌蚪91| 精品一区二区三卡| √禁漫天堂资源中文www| 久久精品aⅴ一区二区三区四区| 男女高潮啪啪啪动态图| 18禁国产床啪视频网站| 人人妻人人添人人爽欧美一区卜| 日本黄色日本黄色录像| 窝窝影院91人妻| 久久久国产精品麻豆| 国产在视频线精品| 俄罗斯特黄特色一大片| 色婷婷久久久亚洲欧美| 午夜福利在线观看吧| 亚洲欧美激情在线| 日本一区二区免费在线视频| 人妻 亚洲 视频| 亚洲成人手机| 国产成人影院久久av| 国产亚洲精品第一综合不卡| 制服人妻中文乱码| 中文字幕另类日韩欧美亚洲嫩草| 欧美日韩黄片免| 婷婷丁香在线五月| 国产午夜精品久久久久久| 手机成人av网站| 99香蕉大伊视频| 国产主播在线观看一区二区| 国产成人精品久久二区二区免费| 一边摸一边抽搐一进一小说 | 亚洲欧洲精品一区二区精品久久久| 久久国产精品大桥未久av| 中文亚洲av片在线观看爽 | 欧美激情 高清一区二区三区| 国产成+人综合+亚洲专区| tocl精华| 精品一品国产午夜福利视频| 午夜日韩欧美国产| 十八禁人妻一区二区| 国产日韩欧美亚洲二区| 成人18禁高潮啪啪吃奶动态图| 成在线人永久免费视频| 精品一区二区三区视频在线观看免费 | 一区在线观看完整版| 久久精品熟女亚洲av麻豆精品| 精品高清国产在线一区| 亚洲人成电影观看| 亚洲欧美色中文字幕在线| 日日夜夜操网爽| 国产精品久久视频播放| 免费看a级黄色片| 国产成人av激情在线播放| 亚洲av日韩在线播放| 亚洲 国产 在线| 欧美大码av| 亚洲精品中文字幕一二三四区| 纯流量卡能插随身wifi吗| 国产片内射在线| 少妇裸体淫交视频免费看高清 | 国产真人三级小视频在线观看| 久久 成人 亚洲| 久久天躁狠狠躁夜夜2o2o| 男女午夜视频在线观看| 国产在线精品亚洲第一网站| 国产成人精品久久二区二区91| www.自偷自拍.com| 国产高清国产精品国产三级| 人人妻人人澡人人爽人人夜夜| 女人爽到高潮嗷嗷叫在线视频| 久久天躁狠狠躁夜夜2o2o| 老汉色∧v一级毛片| 日本wwww免费看| 在线观看一区二区三区激情| 国产高清videossex| 深夜精品福利| 99国产精品99久久久久| 一夜夜www| 又紧又爽又黄一区二区| 69精品国产乱码久久久| 新久久久久国产一级毛片| 亚洲国产欧美网| xxxhd国产人妻xxx| 国产av精品麻豆| 侵犯人妻中文字幕一二三四区| 日韩精品免费视频一区二区三区| 夫妻午夜视频| 亚洲男人天堂网一区|