• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Inversion techniques to obtain local rotation velocity and ion temperature profiles for the x-ray crystal spectrometer on EAST

    2023-10-08 08:20:38ZichaoLIN林子超HongmingZHNG張洪明FudiWNG王福地heonhoBEJiaFU符佳YifeiJIN金仡飛DianLU盧迪安ShengyuFU傅盛宇JiankangLI李建康andBoLYU呂波
    Plasma Science and Technology 2023年9期
    關(guān)鍵詞:迪安福地建康

    Zichao LIN(林子超),Hongming ZHNG(張洪明),Fudi WNG(王福地),heonho BE,Jia FU(符佳),Yifei JIN(金仡飛),Di’an LU(盧迪安),Shengyu FU(傅盛宇),Jiankang LI(李建康),3 and Bo LYU(呂波),?

    1 Institute of Plasma Physics,HFIPS,Chinese Academy of Sciences,Hefei 230031,People’s Republic of China

    2 Science Island Branch,Graduate School of University of Science and Technology of China,Hefei 230026,People’s Republic of China

    3 School of Nuclear Science and Technology,University of South China,Hengyang 421001,People’s Republic of China

    Abstract Inversion techniques are conducted based on the tangential x-ray crystal spectroscopy(TXCS)geometry on EAST to obtain the local profiles of ion temperature(Ti) and toroidal rotation velocity(vt).Firstly,local emissivity profiles of the impurity argon are obtained using the asymmetrical Abel inversion.Then,the local vt and Ti profiles are calculated by considering the local emissivity profiles and the TXCS detailed geometry.In addition,how the changes in the vt profiles affect the accuracy in the Ti profiles is discussed in detail.It is also found that the lineintegrated Ti profiles are becoming less accurate with the increase in the radial gradient in the local vt profiles.Nonetheless,accurate Ti radial profiles are reconstructed after considering the effects of the emissivity and velocity,which are verified by comparing the inverted vt and Ti profiles with those local profile measurements from the Charge eXchange Recombination Spectroscopy(CXRS) on EAST.

    Keywords:plasma toroidal rotation,ion temperature,x-ray crystal spectroscopy,Abel inversion

    1.Introduction

    Ion temperature(Ti)and toroidal rotation velocity(vt)profiles are essential for the analysis of plasma transport and for optimization of the high-temperature operational range of tokamak plasmas.X-ray crystal spectroscopy(XCS),as one of the key diagnostics for measuring thevtandTi,has been equipped on many magnetic confinement fusion devices,including EAST[1-3].Usually,theTiprofiles measured by EAST XCS are line integrated;thus their profiles typically deviate from the true ones if no post-processing steps,such as inversion techniques,are applied [4].Therefore,application of inversion techniques is an essential step for obtaining reliable localTiandvtprofiles that are suitable for the analysis of high-performance plasma discharges.Inversion operations to obtain localvtandTiprofiles have been studied on the TFTR,Alcator C-Mod,etc [5-11].An inversion methodology ofTiandvtfor elongated tokamak plasmas has also been illustrated in[12].However,such an inversion operation has not been tested on actual experimental data on EAST.Since the hardware performances of the EAST XCS system have been well optimized in recent years,the signal quality of argon(Ar)spectra is also improved[13].Therefore,it becomes possible to conductthe profile inversion to obtain reliable local emissivity,velocity and ion temperature on EAST.The emissivity inversion,which is the prerequisite inversion step for attaining thevtandTiprofiles,has been conducted in a previous study to analyze impurity tungsten behavior[14].Based on that experience,the inversions of thevtandTiprofiles have recently been conducted in addition to the emissivity profile inversions and with the detailed geometry of the EAST XCS considered.The inverted localvtandTiprofiles are also compared to those measured by Charge eXchange Recombination Spectroscopy(CXRS) to validate the inversion technique applied to EAST XCS data [15-17].In this paper,the applied inversion method is briefly introduced in section 2,and the detailed geometry of the EAST XCS system is illustrated in section 3.Then,the line-integrated andvteffects onTiprofiles are discussed in section 4.The inverted profiles ofvtandTion EAST are presented in section 5 and compared with the well-calibrated CXRS data.Finally,this study is summarized in section 6.

    2.Methods of XCS inversion techniques

    As mentioned above,the line-integrated spectra that carry the emissivity strength,Doppler shift and Doppler broadening information are the basis of the XCS measurements.Therefore,the methods of non-circular cross-section Abel inversion(which is usually used to invert the line-integrated profiles)to obtain the local radial profiles of emissivity,rotation velocity and ion temperature with the spectra are illustrated in this section.

    2.1.Emissivity inversion

    Obtaining inverted emissivity profiles is a prerequisite for the velocity and ion temperature inversions.As illustrated in detail in [18],the basic principle of non-circular Abel inversion is to divide the plasma cross-section into several radial zones with the same emissivityEj,and the line-integrated brightness of each chord can be expressed asBi.These two parameters are related by a length matrixLij,as shown in equations(1) and(2),calculated along the path length of theith observation chord through thejth zone,which illustrates the key process of the Abel inversion.

    whereLij-1is the inverted length matrix.After obtaining the local emissivityEjillustrated above,the inversion of the velocity and the ion temperature can now be conducted.

    2.2.Velocity inversion

    The inversions of velocity and ion temperature are more complicated than the emissivity inversion.For theTiandvtinversions,a Gaussian spectral emission profile in each emission zone is assumed,

    Here,λ0is the unshifted wavelength,cis the light speed,kis the Boltzmann constant,mis the mass of the ion,is the unit vector in the direction of theith observation sightline andυjis the rotation velocity vector.The dot products ofandυjrepresent the differences between the true velocity and the line-integrated ones.The local wavelength shiftδλijcan be obtained by integrating over the first moment of the spectral emissivity and normalizing it with the total emissivity,

    where υj=∣υ j∣is the jth zone’s scalar velocity,andθijis the angle between the sightline and the velocity directions.The relationship between the measured line-integrated velocity(ui) and local velocity(υj) is given by,

    Then,the local velocity can be expressed as,

    whereMijis defined as,

    Considering that the velocity is the sum of the toroidal and poloidal components but the poloidal rotation velocity is usually smaller than the toroidal component in general discharges,the poloidal rotation velocity can be neglected [12].Typically,the poloidal velocities are around 10 km s-1and the toroidal velocities are more than tens of km s-1.Therefore,the errors in the toroidal velocities caused by neglecting the poloidal rotations depend on the ratio of the poloidal to the toroidal velocities,which are usually no more than 10%(without considering the pseudo rotation effects [19]).If the pseudo effects exist,the inverted toroidal velocity will be smaller than its real values,which will make the errors increase.If more accurate toroidal velocity results are needed,the average of measured velocities from the upper and lowersightlines can be used to eliminate the effects of poloidal components.Then,the toroidal velocity can be further updated as,

    whereuiupanduidownare the measured velocities from the upper and lower sightlines,respectively.

    2.3.Ion temperature inversion

    The inversion technique used to obtain ion temperature measurement is based on the measured FWHM(ωj).Integrating over the second moment of the spectral emissivity from equation(3) yields,

    Also,the line-integrated second moment can be used to obtain the line-integrated ion temperature,

    whereTiis the line-integrated ion temperature observed at theith observation chord.The second term on the right-hand side shows how the velocity differences between different emission zones affect the ion temperature profile.However,it should be noted that the radial velocity has not been taken into account here and,as a result,the calculated error may potentially be greater than what was estimated in the error analysis presented in section 5.

    3.XCS geometry on EAST

    The XCS system on EAST consists of two subsystems: a tangential x-ray crystal spectrometer(TXCS) and a poloidal x-ray crystal spectrometer.In this study,only the measured data from the TXCS are used for the inversion techniques.The TXCS is installed on the #G horizontal port of EAST,and the angle between the TXCS sightline and the magnetic axis is about 60.5° in the horizontal plane.One single spectral crystal(quartz 011,2d=4.913 ?)with a curvature radius of 3750 mm and an effective area of 80×80 mm2is placed at the location where its major radius isR=10.95 m and its vertical position is atZ=0 m.A PILATUS 900 K detector consisting of nine sub-modules is used to record the spectra.Each module of the detector consists of 487×195 pixels with each pixel size of 172×172μm2.With this large size detector,the vertical spatial observation range covers fromZ=0.4 to-0.4 m of the EAST plasma crosssections.The spatial resolution can be as low as 0.542 mm,and the time resolution can be as good as 0.01 s.In cases with weak signals,the pixels are always combined along the vertical direction to improve the signal intensity.TheTiandvtare calculated by the Doppler broadening(mainly contributed by thermal velocity) and the Doppler shift(mainly contributed by the rotation velocities) of the Ar XVII(3.9494 ?) line spectra.The broadening caused by Zeeman splitting is neglected during the calculation,since it is several orders of magnitude smaller than the observed Doppler broadening at the typical magnetic field strength in EAST.During the discharges,Ar gas is always actively injected to the EAST plasmas through a horizontal #J port gas puffing system to obtain sufficient Ar emissions.Figure 1 shows the spectra measured by the TXCS during the EAST #115199 discharge; the curved spectra are caused by the focusing properties of the spherical crystal.The Ar w-line is the aforementioned line spectra of Ar XVII(3.9494 ?),which is used to calculate the rotation velocities and ion temperatures.These spectra are taken by the TXCS detector with an exposure time oft=0.2 s.The line-integrated profile of the spectra intensity is also presented for the vertical range of-40 cm≤Z≤40 cm.

    Figure 1.(a) A typical spectra recorded by the TXCS detector in EAST,which contains nine sub-modules covering the EAST vertical range of-40 cm≤Z≤40 cm.(b)The measured fifth sub-module spectra data with an obvious Ar w-line.

    To apply the aforementioned inversion techniques,the crucial step is to obtain the length and angle matricesLijandMijin equation(11).In doing so,it is necessary to consider the realistic geometry of the TXCS sightlines for high accuracy in the resulting velocity and temperature profiles.Figure 2(a) shows the top view of the realistic geometry of the TXCS sightline(in red) at the midplane,and the magnetic surfaces(which are assumed to be toroidally symmetric) of EAST plasmas in blue lines.Therefore,thelength and angle matrices can be expressed as follows,

    Figure 2.(a) The detailed geometry top-view profile used for the inversion technique.(b) The projection of the length matrix on the basis of EFIT information; the intersection of all the lines of the sightlines is not the real crystal position for illustration convenience.

    Figure 3.The results of the simulation(real) profiles and lineintegrated profiles for(a) the emissivity,(b) the velocity and(c) the ion temperature based on the method illustrated above.

    Figure 4.(a) The assumed different velocity profiles.(b) The lineintegrated effects with different velocity profiles on ion temperature profiles; the red line in(b) is the true profile of the ion temperature.

    whereHis the vertical distance from the device center to the sightline on the midplane that can be calculated by the angle mentioned earlier,Lijis the chord length calculated according to the projectiongenerated by EFIT [20],φis the angle between the major radius and the sightline,θis the angle between the sightline and the toroidal velocity direction tangent to the magnetic surface andαis the angle between the projection of the sightline in the poloidal and horizontal plane(pink dashed line),as illustrated in detail in figure 2(b).In addition,the red lines are the poloidal crosssection sightlines,which correspond to the red line in figure 2(a).The sightlines are chosen to be tangent to the magnetic surfaces at locations indicated with the red asterisks for convenience.Theis calculated along the path length of theith observation chord through thejth zone,indicated with the yellow and black lines in figure 2(b).

    4.Simulations of effects on the ion temperature profiles

    Since the absolute calibration of the TXCS-measured velocities is currently not available at EAST,we focus on ion temperature profile measurements as the key aspect,unless there are other elements significantly affecting the velocities.Previously,it is mentioned that the line-integrated profiles will deviate from the local true profiles.Besides,according to equation(11),it is obvious that the velocity terms are coupled with the ion temperatures terms.Thus,in this section,lineintegration and velocity effects on the ion temperature radial profiles are simulated.

    4.1.Effects of line-integration

    To verify the line-integration effects on emissivity,rotation velocity and ion temperature profiles,a tanh-shape distribution of the local profiles can be assumed,as in equation(15),to conduct the simulations,as in [21],

    One typical plasma geometry data of EAST #115199 att=4.8 s is applied during the simulation.The results of lineintegration and inversion are shown in figure 3 with all calculated emission,vt,andTiprofiles presented.The assumed local profiles(red solid lines),which are also the true radial profiles,are integrated along each observation chord(to restore the TXCS direct measurement results) to obtain the line-integrated profile(blue dotted lines) of the emission,vtandTiprofiles.The line-integrated profiles are in the coordinateZ(blue axis at the top),which is simply mapped to the coordinateρ(red axis at the bottom) corresponding to the magnetic flux provided by EFIT.Since the quantities are assumed to be uniform within each magnetic flux surface,only the sightlines located above the magnetic axis were considered in this analysis.It is obvious that all of the lineintegrated profiles deviate from the assumed(true) profiles,and the absolute values of the line-integrated results are smaller than the assumed(true) values.It is notable that although only the tanh-shape profile is discussed here,different radial profile shapes will have different line-integrated profiles,and they will always deviate from the true profiles.

    The details of the line-integration effects of the toroidal rotation velocityvton theTiprofile are demonstrated in figure 4.To investigate the effects ofvton the line-integratedTiprofiles,four different velocity profiles are selected.Theresults show that increasingvtleads to greater line-integratedTiprofiles.

    Figure 5 shows the ratio between the line-integratedTi(LineIntegrated)and the assumedTi(Assumed)for a range of typical toroidal velocities in tokamaks when no inversion techniques are applied.In the low-velocity range(<100 km s-1),approximately 20% reduction(~0.8 ratio) in the line-averagedTiis expected from the true values and approximately equal to the assumed value near 250 km s-1,without applying the inversion techniques.This interpretation can also be translated to the core and edge radial gradients of tokamak plasmas since the core velocities are much higher than those in the edge.Therefore,it can be generalized that different velocity gradients produce varying effects on the line-integrated ion temperature profile.

    Figure 5.The relation between the core velocity value and the differences between the line-integrated and real ion temperature.

    Figure 6.(a)The assumed velocity profiles.(b)The inversion results after ignoring the velocity term in the ion temperature inversion operation using according to the profiles in(a).

    Figure 7.Time evolutions of(a)plasma current,(b)electron density,(c)NBI power,(d)toroidal velocity and(e)ion temperature of EAST#115199.

    4.2.Effects of absolute velocity and velocity gradient

    Since the absolute velocity calibration is currently not available for EAST TXCS,it is necessary to further study the effects of the absolute value and radial gradients of the velocity profiles on the accuracy of the obtained local profiles.For this purpose,a set of comparisons between different velocity profiles without considering the second term in equation(11) during the inversion operation is shown in figure 6.The line styles and colors correspond in figures 6(a)and(b).It is shown that the inverted profiles(in dot-dashed yellow and dashed crimson) deviate significantly from the true profile(in red crosses) in figure 6(b).Conversely,the other two(in solid blue and dotted cyan) are much closer to the assumed profile.It should be noted that the blue line overlaps with the red true profile,thus lies underneath the true red plus profiles in figure 6(b).The main difference between these two different groups being compared is in their radial velocity gradients.The effect of velocity magnitudes can also be investigated by comparing the dot-dashed yellow and dotted crimson lines or solid blue and dotted cyan lines,and it is much less than that of the velocity gradient effect.The slight differences between these two groups’ profiles are caused by the difference in the velocity term in equation(11).From a practical perspective,since the absolute wavelength is not well calibrated for the EAST XCS at present,it is still difficult to provide the absolute values of the rotation velocities.However,as aforementioned,when the velocity gradient of the profile is small enough,it is acceptable to neglect the second term during the calculation process.Specifically,when applying inversion techniques to plasmas,obtainingvelocity profiles with accurate radial gradients is more crucial than calibrating their absolute magnitudes.

    5.TXCS inversion operations on EAST

    The EAST discharge(#115199) is chosen for the inversion application in this study because of its high ion temperature.The discharge waveform of this shot is shown in figure 7.As the EAST neutral beam injections(NBIs) typically introduce large gradients in the velocity profiles,this shot is a good example where the second term in equation(11)should not be neglected.

    Figure 8 shows the raw TXCS-measuredvtandTiprofiles of shot #115199 att=5.5 s before any inversion techniques are applied.It should be noted that thevthere is approximately obtained by dividing the rough line-integrated data by cos(60.5°),where 60.5°represents the angle between the sightlines and magnetic axis.Furthermore,the ion temperature on the edge is set to be 0.5 keV according to the CXRS measurement.As mentioned above,the absolute velocity calibrations of TXCS measurements are currently not available;the velocity in figure 8 is obtained by comparing the wavelength shift before the NBI injection(att=2.0 s) because the co-NBI(co-direction with toroidal rotation) provides an enormous momentum input to accelerate the toroidal velocity [22].If these measurements are converted into their respective radial profiles,the maxvtin the core range is expected to be ~115 km s-1and the maxTinear 4.2 keV.Abel inversion techniques are applied to theTXCS-measured profiles to yield their respective radial profiles,as presented in figure 9.The invertedvtprofile is averaged according to equation(9),and theTiprofile is also averaged by the results from the upper and lower profiles.As a result,the accuracy in the TXCS-measured velocity gradients has significantly improved,which is important because many tokamak discharge analyses are based on reliable velocity gradients,although their absolute calibrations may not be available.With the availability of the CXRS measurement,the TXCS velocity profiles can be adjusted to match the CXRS profiles by matching the CXRS edge velocity,as shown in figure 9(a).It is shown that the maxvtin the core range,with the inversion techniques applied and calibrated with the CXRS edge data,has been calibrated to be near 150 km s-1,which introduces about 35 km s-1differences in the magnitude ofv.t A similar difference can also be observed forTi,where its max value at near 4.2 keV before the inversion is re-calculated to about 5 keV.

    Figure 8.The measured(a) toroidal velocity profile and(b) ion temperature profile by TXCS;the red dots are measured data,and the blue lines are fitted profiles by smoothing splines.

    The error in the inversion techniques is analyzed according to the error propagation theory,and the relative error of velocity can be expressed as,

    where the relative error of theuiis ~10%,and theθis calculated by the EFIT magnetic surface information and causes a ~5% margin of error,which yields the final accumulated error of about 11.2% for the velocity inversion.With regard to the ion temperature,the relative error is expressed as,

    where the relative errorof theTiis ~10% andthe absence of any other quantity is because they could be neglected sinceisa small amount compared to their relative errors.According to the above data,the final accumulated error is at about 10% for the ion temperature inversion.

    Therefore,the Abel inversion techniques applied to the radialvtandTiprofiles measured by EAST XCS have shown significant improvements in their corresponding final profiles.

    6.Summary

    The inversion techniques have been applied to increase the accuracy in the obtained localvtandTiprofiles from the lineintegrated profiles measured by TXCS on EAST.To test the performance of the Abel inversion method,simulations based on a set of assumed profiles are performed in this study and introduced in this article.It is also verified that the inverted results are sensitive to the accuracy of the velocity gradients but much less sensitive to the accuracy of the velocity magnitudes.To demonstrate this inversion method with actual experimental data,the line-integrated profiles ofvtandTimeasured by TXCS from EAST shot # 115199 have been used to apply the inversion operations to obtain the localvtandTiprofiles.Furthermore,the comparison between the inverted profiles and those from the CXRS measurement show good qualitative agreement,which also demonstrates the reliable accuracy of the inversion method applied in this study.Therefore,the Abel inversion technique is expected to assist when cross-checking the accuracy of CXRS and XCS data in future EAST experiments.Besides,the localvtandTiprofiles can also be provided in those situations where the CXRS is not available with no NBI injections.

    The obtained localvtandTiprofiles can be used to evaluate the plasma performance in the next EAST campaign.The obtained local profiles will also be used to study the related momentum transport in EAST.

    Acknowledgments

    The authors wish to thank the EAST team.The work is partially supported by National Natural Science Foundation of China(Nos.12175278 and 12205072),the Comprehensive Research Facility for Fusion Technology Program of China(No.2018-000052-73-01-001228),Major Science and Technology Infrastructure Maintenance and Reconstruction Projects of the Chinese Academy of Sciences(2021),the University Synergy Innovation Program of Anhui Province(No.GXXT-2021-029),Anhui Provincial Key Research and Development Project(No.202104a06020021),Open Fund of the Magnetic Confinement Fusion Laboratory of Anhui Province(No.2021AMF01002),and the National Magnetic Confinement Fusion Science Program of China(Nos.2019YFE03040000 and 2018YFE0303103).

    ORCID iDs

    猜你喜歡
    迪安福地建康
    商山銀花
    公交站里的背影
    中外文摘(2021年22期)2021-12-30 02:17:18
    方一新《建康實(shí)錄釋詞》手稿
    阿維迪安黃金公司簡(jiǎn)介
    常來常熟 江南福地的一碗面等著你
    臨夏·福地
    《太常引·建康中秋夜為呂叔潛賦》
    人間福地楠溪江
    幸福家庭(2019年14期)2019-01-06 09:15:34
    讓農(nóng)村成為農(nóng)民的福地
    對(duì)不起,我愛你
    新青年(2017年11期)2017-11-23 18:30:47
    搡老岳熟女国产| 色婷婷av一区二区三区视频| 亚洲av成人精品一二三区| 午夜两性在线视频| 中文字幕最新亚洲高清| 亚洲av国产av综合av卡| 国产有黄有色有爽视频| 亚洲熟女毛片儿| 亚洲,欧美精品.| 亚洲五月色婷婷综合| 国产男女内射视频| 久久久亚洲精品成人影院| 性高湖久久久久久久久免费观看| 亚洲精品国产av成人精品| 国产男人的电影天堂91| 欧美亚洲 丝袜 人妻 在线| 九草在线视频观看| 黄片小视频在线播放| 男人添女人高潮全过程视频| 亚洲精品一卡2卡三卡4卡5卡 | 久久99一区二区三区| 80岁老熟妇乱子伦牲交| 麻豆乱淫一区二区| 午夜91福利影院| 又粗又硬又长又爽又黄的视频| 中文字幕人妻熟女乱码| 亚洲av日韩在线播放| 久久鲁丝午夜福利片| 欧美在线黄色| 国产爽快片一区二区三区| 久久久久网色| 在线观看免费高清a一片| 久久ye,这里只有精品| 国产成人一区二区三区免费视频网站 | 看免费成人av毛片| 青春草视频在线免费观看| 激情视频va一区二区三区| 欧美性长视频在线观看| 国产免费视频播放在线视频| 看免费av毛片| 欧美国产精品va在线观看不卡| 一级毛片女人18水好多 | 伦理电影免费视频| 91麻豆av在线| 最新在线观看一区二区三区 | 亚洲av片天天在线观看| 脱女人内裤的视频| 亚洲精品久久午夜乱码| 日本av手机在线免费观看| 亚洲精品久久午夜乱码| 啦啦啦视频在线资源免费观看| 免费在线观看日本一区| 日日摸夜夜添夜夜爱| 高清不卡的av网站| 久久影院123| 50天的宝宝边吃奶边哭怎么回事| 50天的宝宝边吃奶边哭怎么回事| av国产精品久久久久影院| 中国国产av一级| 久久综合国产亚洲精品| 制服人妻中文乱码| 一级毛片电影观看| 国产一区二区 视频在线| 国产视频首页在线观看| 亚洲情色 制服丝袜| 免费在线观看日本一区| 男男h啪啪无遮挡| 美女福利国产在线| 色播在线永久视频| 国产成人精品久久二区二区免费| 国产在视频线精品| 人妻人人澡人人爽人人| av电影中文网址| 欧美 日韩 精品 国产| 免费看av在线观看网站| 国产亚洲av高清不卡| a级毛片黄视频| 又紧又爽又黄一区二区| 亚洲精品在线美女| 男人舔女人的私密视频| videos熟女内射| 日韩 欧美 亚洲 中文字幕| 欧美97在线视频| 国产午夜精品一二区理论片| 一本一本久久a久久精品综合妖精| 黄色一级大片看看| 亚洲精品美女久久av网站| 国产一区二区三区综合在线观看| 国产高清不卡午夜福利| 亚洲av欧美aⅴ国产| 午夜av观看不卡| 日本wwww免费看| 少妇人妻 视频| 一边亲一边摸免费视频| 国产男人的电影天堂91| 人人妻人人添人人爽欧美一区卜| 日日摸夜夜添夜夜爱| 国产精品久久久久成人av| 九色亚洲精品在线播放| 超碰97精品在线观看| 十八禁高潮呻吟视频| 免费少妇av软件| 尾随美女入室| 19禁男女啪啪无遮挡网站| 久久女婷五月综合色啪小说| 精品免费久久久久久久清纯 | 中文字幕人妻丝袜一区二区| 亚洲久久久国产精品| 精品免费久久久久久久清纯 | 人人妻人人澡人人看| 91麻豆av在线| 人人澡人人妻人| 女人爽到高潮嗷嗷叫在线视频| 一级毛片我不卡| 成年人午夜在线观看视频| 又紧又爽又黄一区二区| www.自偷自拍.com| av欧美777| 十八禁网站网址无遮挡| 国产伦人伦偷精品视频| 免费高清在线观看视频在线观看| 亚洲欧洲国产日韩| 午夜久久久在线观看| 天堂8中文在线网| 丰满少妇做爰视频| 国产精品一二三区在线看| www.自偷自拍.com| 老汉色av国产亚洲站长工具| 51午夜福利影视在线观看| 国产精品偷伦视频观看了| 成人国语在线视频| 亚洲精品久久午夜乱码| 丝袜脚勾引网站| 男人舔女人的私密视频| 日本欧美视频一区| 亚洲精品美女久久av网站| 久久精品成人免费网站| 精品一区二区三区四区五区乱码 | 曰老女人黄片| 晚上一个人看的免费电影| 午夜影院在线不卡| 亚洲国产日韩一区二区| 久久久久久久久久久久大奶| 精品熟女少妇八av免费久了| 91麻豆av在线| 亚洲中文日韩欧美视频| a 毛片基地| 黄色 视频免费看| 国产午夜精品一二区理论片| 午夜福利免费观看在线| 伊人亚洲综合成人网| 欧美日韩福利视频一区二区| 亚洲国产欧美在线一区| 久久av网站| 亚洲视频免费观看视频| 老汉色av国产亚洲站长工具| 久久久亚洲精品成人影院| 一级毛片 在线播放| 免费在线观看日本一区| 欧美精品亚洲一区二区| 国产深夜福利视频在线观看| 亚洲人成网站在线观看播放| 波野结衣二区三区在线| 后天国语完整版免费观看| 成年美女黄网站色视频大全免费| 麻豆国产av国片精品| www.精华液| 国语对白做爰xxxⅹ性视频网站| 黄网站色视频无遮挡免费观看| 精品人妻1区二区| 国产欧美日韩精品亚洲av| 在线观看免费日韩欧美大片| 欧美日韩亚洲国产一区二区在线观看 | 欧美亚洲日本最大视频资源| 亚洲av在线观看美女高潮| 亚洲精品一二三| 国产成人精品久久二区二区91| 视频区图区小说| 丰满迷人的少妇在线观看| 下体分泌物呈黄色| 亚洲国产毛片av蜜桃av| 国产在线免费精品| 男女边摸边吃奶| 操美女的视频在线观看| 免费在线观看日本一区| 国产亚洲av高清不卡| 国产精品香港三级国产av潘金莲 | 黄色怎么调成土黄色| 狂野欧美激情性bbbbbb| 精品人妻一区二区三区麻豆| 亚洲精品一二三| 人人妻,人人澡人人爽秒播 | 日本黄色日本黄色录像| 精品久久蜜臀av无| 天天操日日干夜夜撸| 这个男人来自地球电影免费观看| 大香蕉久久成人网| 中文精品一卡2卡3卡4更新| 欧美日韩国产mv在线观看视频| 欧美 日韩 精品 国产| 国产午夜精品一二区理论片| 叶爱在线成人免费视频播放| 人人妻人人澡人人看| 好男人视频免费观看在线| 日本91视频免费播放| 亚洲欧美一区二区三区黑人| 国产成人啪精品午夜网站| 欧美日韩精品网址| 日韩 欧美 亚洲 中文字幕| 色网站视频免费| 国产黄色免费在线视频| 精品一区在线观看国产| 美女国产高潮福利片在线看| 日本欧美视频一区| 肉色欧美久久久久久久蜜桃| 国产成人av教育| 国精品久久久久久国模美| 97精品久久久久久久久久精品| 国产免费又黄又爽又色| 你懂的网址亚洲精品在线观看| 两人在一起打扑克的视频| 99久久综合免费| 欧美日韩亚洲高清精品| 1024香蕉在线观看| 欧美亚洲 丝袜 人妻 在线| 欧美精品av麻豆av| 亚洲五月色婷婷综合| 久久毛片免费看一区二区三区| 老鸭窝网址在线观看| 国产一区亚洲一区在线观看| 国产在视频线精品| 国产日韩欧美亚洲二区| 叶爱在线成人免费视频播放| 亚洲伊人久久精品综合| 天天躁日日躁夜夜躁夜夜| 好男人电影高清在线观看| 捣出白浆h1v1| 最新的欧美精品一区二区| 国产精品 欧美亚洲| 国产老妇伦熟女老妇高清| 午夜免费成人在线视频| 色网站视频免费| 老司机午夜十八禁免费视频| 一区二区三区乱码不卡18| 精品亚洲成国产av| 国产av精品麻豆| 午夜老司机福利片| 色视频在线一区二区三区| 超碰97精品在线观看| 高清视频免费观看一区二区| 久久精品亚洲av国产电影网| av一本久久久久| 亚洲专区国产一区二区| 久久毛片免费看一区二区三区| 免费看十八禁软件| 男女国产视频网站| 亚洲中文字幕日韩| 午夜福利一区二区在线看| 1024视频免费在线观看| 精品第一国产精品| 麻豆乱淫一区二区| 久久精品国产亚洲av涩爱| 欧美日韩福利视频一区二区| 欧美乱码精品一区二区三区| tube8黄色片| 久久精品国产亚洲av高清一级| 19禁男女啪啪无遮挡网站| 国产淫语在线视频| 一级毛片黄色毛片免费观看视频| 视频在线观看一区二区三区| 国产男人的电影天堂91| 我要看黄色一级片免费的| 十八禁高潮呻吟视频| 亚洲九九香蕉| 一边亲一边摸免费视频| 97精品久久久久久久久久精品| 黄片小视频在线播放| 国产熟女午夜一区二区三区| 亚洲成人手机| 女人高潮潮喷娇喘18禁视频| 丝袜美腿诱惑在线| av网站在线播放免费| 亚洲专区国产一区二区| 亚洲久久久国产精品| 精品国产一区二区久久| 国产免费一区二区三区四区乱码| 日韩视频在线欧美| 欧美日韩亚洲综合一区二区三区_| 十分钟在线观看高清视频www| 亚洲精品日本国产第一区| 尾随美女入室| 一区二区三区精品91| 欧美大码av| 欧美成人精品欧美一级黄| 天天添夜夜摸| 色综合欧美亚洲国产小说| 亚洲午夜精品一区,二区,三区| 国产精品久久久人人做人人爽| 久久99精品国语久久久| 黄色a级毛片大全视频| 午夜精品国产一区二区电影| 国产精品一区二区在线观看99| e午夜精品久久久久久久| 中文乱码字字幕精品一区二区三区| 日韩欧美一区视频在线观看| 成人手机av| 亚洲精品av麻豆狂野| 久久人人97超碰香蕉20202| 51午夜福利影视在线观看| 久久久久精品国产欧美久久久 | 国产精品九九99| 亚洲一卡2卡3卡4卡5卡精品中文| 人人妻人人添人人爽欧美一区卜| 激情视频va一区二区三区| 亚洲精品一二三| 一级片免费观看大全| 久久久久精品国产欧美久久久 | 69精品国产乱码久久久| 亚洲色图综合在线观看| 久久久久久久国产电影| 国产精品九九99| 国产麻豆69| 亚洲av片天天在线观看| 欧美成人午夜精品| 涩涩av久久男人的天堂| 香蕉丝袜av| 在线观看免费午夜福利视频| 国产成人av激情在线播放| 久久久精品区二区三区| 免费在线观看完整版高清| 汤姆久久久久久久影院中文字幕| 免费在线观看日本一区| 久久人人97超碰香蕉20202| 免费高清在线观看日韩| 一本色道久久久久久精品综合| 日本猛色少妇xxxxx猛交久久| 丝袜美足系列| 欧美日韩黄片免| 男女床上黄色一级片免费看| 国产精品成人在线| 亚洲,一卡二卡三卡| 亚洲 国产 在线| 国产一卡二卡三卡精品| 宅男免费午夜| 老司机靠b影院| 在线精品无人区一区二区三| 亚洲一区二区三区欧美精品| 大片电影免费在线观看免费| 丝袜脚勾引网站| 高清视频免费观看一区二区| 青草久久国产| av天堂久久9| 久久久久久人人人人人| 精品人妻熟女毛片av久久网站| 免费人妻精品一区二区三区视频| 中文字幕最新亚洲高清| 热re99久久精品国产66热6| 尾随美女入室| 少妇人妻久久综合中文| a 毛片基地| 波野结衣二区三区在线| 黑人猛操日本美女一级片| 亚洲国产成人一精品久久久| 亚洲欧美精品自产自拍| 国产人伦9x9x在线观看| 自线自在国产av| 久久久久久久久久久久大奶| 国产1区2区3区精品| 久久精品aⅴ一区二区三区四区| 欧美成狂野欧美在线观看| 五月天丁香电影| 久久鲁丝午夜福利片| 精品久久蜜臀av无| 老司机靠b影院| 亚洲一码二码三码区别大吗| 91老司机精品| 国产xxxxx性猛交| 嫁个100分男人电影在线观看 | 亚洲九九香蕉| 亚洲av电影在线观看一区二区三区| 99国产综合亚洲精品| 久久久国产一区二区| 亚洲国产欧美日韩在线播放| 一级毛片黄色毛片免费观看视频| 国产成人av激情在线播放| 国产精品麻豆人妻色哟哟久久| 亚洲五月婷婷丁香| 我要看黄色一级片免费的| 十八禁网站网址无遮挡| 狂野欧美激情性xxxx| 少妇粗大呻吟视频| 亚洲一码二码三码区别大吗| 高清不卡的av网站| 赤兔流量卡办理| 日韩一卡2卡3卡4卡2021年| 午夜两性在线视频| 久久久久精品人妻al黑| 各种免费的搞黄视频| 午夜视频精品福利| 亚洲欧美一区二区三区黑人| av在线播放精品| 久久久欧美国产精品| 亚洲色图 男人天堂 中文字幕| 午夜福利视频精品| 精品一品国产午夜福利视频| 国产麻豆69| 亚洲精品在线美女| 少妇裸体淫交视频免费看高清 | 欧美老熟妇乱子伦牲交| 精品国产乱码久久久久久小说| 国产老妇伦熟女老妇高清| 深夜精品福利| 久久久久视频综合| 国产成人欧美| 久久天躁狠狠躁夜夜2o2o | 精品久久久久久久毛片微露脸 | 免费观看a级毛片全部| 一边摸一边抽搐一进一出视频| 国产精品二区激情视频| av网站在线播放免费| 亚洲 国产 在线| 这个男人来自地球电影免费观看| 天天躁日日躁夜夜躁夜夜| 人人妻人人爽人人添夜夜欢视频| 18禁裸乳无遮挡动漫免费视频| 老司机靠b影院| 麻豆av在线久日| 亚洲av片天天在线观看| 欧美黑人欧美精品刺激| √禁漫天堂资源中文www| 天天躁夜夜躁狠狠躁躁| 久久免费观看电影| av国产久精品久网站免费入址| 午夜免费男女啪啪视频观看| 成人国产av品久久久| 日韩av在线免费看完整版不卡| 少妇猛男粗大的猛烈进出视频| 午夜免费男女啪啪视频观看| 成人国语在线视频| 亚洲三区欧美一区| 久久人妻福利社区极品人妻图片 | 高清视频免费观看一区二区| netflix在线观看网站| 久久国产精品影院| 99精国产麻豆久久婷婷| 国产高清videossex| 成人国产一区最新在线观看 | 水蜜桃什么品种好| 狠狠婷婷综合久久久久久88av| 免费一级毛片在线播放高清视频 | 色精品久久人妻99蜜桃| 亚洲国产最新在线播放| 人人妻人人爽人人添夜夜欢视频| 亚洲精品国产一区二区精华液| 乱人伦中国视频| 在线观看免费日韩欧美大片| 国产片特级美女逼逼视频| 午夜福利免费观看在线| 丰满迷人的少妇在线观看| 亚洲国产精品国产精品| 男人操女人黄网站| 久久国产精品影院| 国产成人精品久久二区二区91| 啦啦啦中文免费视频观看日本| 另类亚洲欧美激情| 亚洲av男天堂| 狠狠精品人妻久久久久久综合| 欧美日韩成人在线一区二区| av不卡在线播放| 看十八女毛片水多多多| 欧美日韩视频高清一区二区三区二| 午夜福利一区二区在线看| 久久久久国产一级毛片高清牌| 伊人久久大香线蕉亚洲五| 大香蕉久久成人网| 老司机深夜福利视频在线观看 | 成年人免费黄色播放视频| 丰满迷人的少妇在线观看| h视频一区二区三区| 亚洲av男天堂| 欧美+亚洲+日韩+国产| 久久性视频一级片| 欧美日韩av久久| 国产成人精品久久二区二区91| 高清欧美精品videossex| 少妇裸体淫交视频免费看高清 | 看十八女毛片水多多多| 大片电影免费在线观看免费| 精品熟女少妇八av免费久了| 亚洲欧美精品综合一区二区三区| 亚洲欧美一区二区三区黑人| 欧美乱码精品一区二区三区| 色94色欧美一区二区| 亚洲情色 制服丝袜| 欧美在线黄色| 日韩大片免费观看网站| 亚洲精品一区蜜桃| 国产精品久久久人人做人人爽| 欧美黄色淫秽网站| www.自偷自拍.com| 午夜av观看不卡| 国产无遮挡羞羞视频在线观看| 性色av乱码一区二区三区2| 99国产精品99久久久久| 在线天堂中文资源库| 色视频在线一区二区三区| 男女床上黄色一级片免费看| 亚洲欧洲精品一区二区精品久久久| 国产真人三级小视频在线观看| 在线av久久热| 极品少妇高潮喷水抽搐| 大香蕉久久成人网| 亚洲欧美精品综合一区二区三区| 国产亚洲欧美在线一区二区| 夫妻午夜视频| 亚洲国产成人一精品久久久| 亚洲国产欧美一区二区综合| 亚洲国产精品成人久久小说| 国产伦人伦偷精品视频| 最近手机中文字幕大全| 午夜福利在线免费观看网站| 久久99热这里只频精品6学生| 99re6热这里在线精品视频| 国产一区二区 视频在线| 亚洲人成网站在线观看播放| 亚洲欧洲日产国产| 久久久国产欧美日韩av| 日韩一卡2卡3卡4卡2021年| 国产深夜福利视频在线观看| 国产一区二区三区av在线| 一边摸一边抽搐一进一出视频| 久久精品国产亚洲av高清一级| 欧美 亚洲 国产 日韩一| 五月开心婷婷网| 黄片播放在线免费| 十八禁网站网址无遮挡| 免费在线观看日本一区| 99re6热这里在线精品视频| 亚洲 欧美一区二区三区| 黄色视频不卡| xxxhd国产人妻xxx| 五月开心婷婷网| 国精品久久久久久国模美| 在线天堂中文资源库| 国产99久久九九免费精品| 啦啦啦 在线观看视频| 啦啦啦中文免费视频观看日本| 国产伦理片在线播放av一区| 校园人妻丝袜中文字幕| 国产在线视频一区二区| 欧美日韩视频高清一区二区三区二| 亚洲国产精品999| 久久国产精品人妻蜜桃| 80岁老熟妇乱子伦牲交| 黑人猛操日本美女一级片| 久久亚洲国产成人精品v| 我的亚洲天堂| 亚洲第一青青草原| 黄片播放在线免费| www.av在线官网国产| 男男h啪啪无遮挡| 精品国产一区二区三区久久久樱花| 精品国产国语对白av| 人体艺术视频欧美日本| 一本久久精品| 丝袜美腿诱惑在线| 夜夜骑夜夜射夜夜干| 纵有疾风起免费观看全集完整版| 国产精品一区二区精品视频观看| 亚洲精品久久久久久婷婷小说| 久久久精品区二区三区| 一区在线观看完整版| 97在线人人人人妻| av又黄又爽大尺度在线免费看| 午夜福利乱码中文字幕| av网站在线播放免费| 人妻 亚洲 视频| 菩萨蛮人人尽说江南好唐韦庄| 97在线人人人人妻| 成年女人毛片免费观看观看9 | 成年av动漫网址| 99热网站在线观看| 亚洲成人免费av在线播放| 久久久久国产一级毛片高清牌| 国产xxxxx性猛交| 伦理电影免费视频| 国产精品二区激情视频| 国产1区2区3区精品| 国产伦人伦偷精品视频| 一边摸一边抽搐一进一出视频| 亚洲av国产av综合av卡| 欧美日韩黄片免| 亚洲欧美成人综合另类久久久| 人人妻,人人澡人人爽秒播 | 精品久久久精品久久久| 性色av乱码一区二区三区2| 午夜激情av网站| 大香蕉久久成人网| 久久久久久久国产电影| 一本色道久久久久久精品综合| 考比视频在线观看| 黄色怎么调成土黄色| 美女高潮到喷水免费观看| 亚洲国产最新在线播放| 欧美在线一区亚洲| 丰满饥渴人妻一区二区三| 久久精品久久久久久噜噜老黄| 日本91视频免费播放| 午夜激情久久久久久久| 亚洲人成网站在线观看播放| 精品一区二区三区av网在线观看 | 国产视频首页在线观看| 欧美日本中文国产一区发布| 久久国产亚洲av麻豆专区| 国产免费福利视频在线观看|