• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Simulation of DC glow discharge plasma with free-moving dust particles in the radial direction

    2023-10-08 08:20:52RuihuanTIAN田瑞煥YongganLIANG梁勇敢ShujiHAO郝書吉JieFENG馮杰XiaonanJIANG江曉楠HuiLI李輝ChengxunYUAN袁承勛andJianWU吳健
    Plasma Science and Technology 2023年9期
    關鍵詞:李輝

    Ruihuan TIAN(田瑞煥),Yonggan LIANG(梁勇敢),?,Shuji HAO(郝書吉),Jie FENG(馮杰),Xiaonan JIANG(江曉楠),Hui LI(李輝),Chengxun YUAN(袁承勛) and Jian WU(吳健)

    1 National Key Laboratory of Electromagnetic Environment(LEME),China Research Institute of Radio Wave Propagation,Qingdao 266170,People’s Republic of China

    2 School of Physics,Harbin Institute of Technology,Harbin 150001,People’s Republic of China

    Abstract A self-consistent fluid model is developed to investigate the radial distributions of dusty plasma parameters in a DC glow discharge,in which the extended fluid approach of plasma particles and the transport equations of dust particles are coupled.The electrical interaction between charged dust particles is considered in the model.The time evolution of radial distributions of dust density,plasma density,the radial component of electric field and the forces acting on dust particles when dust density tends to be stable,are obtained and analyzed under different discharge currents and dust particle radii.It is shown that the dust density structure is determined mainly by the radial electrostatic force,thermophoretic force and ion drag force in the discharge tube,and both discharge current and dust particle radius have an obvious effect on the transport processes of dust particles.The dust particles gather in the central region of the discharge tube for low discharge current and small dust radius,then dust voids are formed and become wider when the discharge current and dust radius increase.The plasma parameters in the dust gathering region are obviously affected by the dust particles due to the charging processes of electrons and ions to the dust surface.

    Keywords: dusty plasma,glow discharge,extended fluid model,dust transport processes,dust-void

    1.Introduction

    Dusty plasma is a multicomponent plasma that includes electrons,ions,and additional species such as charged nanoto micrometer-sized dust particles or clusters [1].In recent decades,dusty plasmas have been paid more attention by many researchers because of their importance in many applications related to plasma,such as astrophysical topics[2-4],plasma materials processing [5,6] and fusion related research [7-9].In dusty plasma,ions and electrons are collected by dust particles,which leads to a change in the plasma properties.The dust parameters,such as dust density and dust radius,are critical factors in determining the effects of dust particles on plasma parameters,which should be confirmed before investigating dusty plasmas.

    The influence of dust particles on plasma properties has been studied experimentally and theoretically by many researchers,and most of this research was carried out under two typical low-pressure discharge conditions,i.e.,DC glow discharge and RF discharge [10-17].Vasilyaket al[13]calculated the plasma parameters and electric field distribution in the radial direction in the positive column of air low-pressure glow discharge.In their model,the diffusion approximation was used to describe the plasma transport process,and it was assumed that the dust distribution was independent of the discharge conditions.Polyakovet al[14]studied,experimentally and theoretically,the changes in plasma parameters induced by clouds of disperse micron-size particles in the positive column of a low pressure and low current glow discharge.The numerical model consisted of the diffusion approximation and the orbital motion limited(OML) theory.The simulation result showed that dust particles brought the loss of free electrons and the increase in electric field,which was consistent with experimental results.Sukhininet al[15] presented a self-consistent kinetic model to describe the positive column in a DC glow discharge,where dust particles were introduced.The dust particle density distribution was set as a specific steplike function in their model.The interrelation of plasma property and dust particles was studied,and the radial distributions of plasma parameters and dust particle density were obtained in their study.

    In most of the research about discharge dusty plasma,the dust particles have been assumed to be motionless and the dust densities are assumed to have a fixed flat spatial distribution,since the effects of dust particles on plasma properties can be obtained and analyzed easily with these assumptions.However,the dust particles that exist in plasmas,especially under gas discharge conditions in the laboratory,are subjected to many different forces,such as gravity,electric field force,thermophoretic force,ion drag force and neutral drag force etc.The dust particles in DC glow discharge hardly stay still.They will move and gradually form a particular structure under the action of these forces.One of the typical phenomena resulting from the dust transport processes is that a stable dust-void with a distinct boundary can be formed in the discharge tube [18-27].In order to study the spatial and time evolution processes of dust and plasma parameters in the discharge tube,it is necessary to consider the transport process of dust particles in the theorical simulation model of discharge dusty plasmas.

    The work is devoted to the simulation of the dust and plasma characteristics in the radial direction in a DC glow discharge tube by considering the dust particle transport process.The simulation model is based on the extended fluid approach [28],in which the electron energy conservation equation is contained and the electron temperature can be calculated from the model instead of assuming it to be a constant.The continuity equation of plasma species and dust particles,the momentum equation of dust particles,the electron energy balance equation and the Poisson equation are considered in the model.The detailed model formulations are presented in detail in section 2.A 2D axial symmetry simulation model is built in this work,which means that the simulation conditions are closer to the actual experimental discharge conditions and the related simulation results should be more believable.The equations group of the simulation model is solved with help from the commercial software COMSOL Multiphysics,and the time evolution of dust density and the stable radial distributions of plasma parameters are obtained and analyzed in section 3.The conclusion is presented in section 4.

    2.Model formulation

    This work aims to study the spatial and time evolution processes of dust and plasma parameters in the radial direction of a DC glow discharge tube.In the discharge tube,the dust particles move and gradually form a particular structure under the action of various forces,and the plasma parameters change with the change in dust density distributions.The dust particles will stop moving until they reach the force balance region,where the radial distributions of dust and plasma parameters tend to be stable.A self-consistent theoretical model describing the plasma parameters and dust transport processes is developed based on the extended fluid model presented in [28].The continuity equation and momentum equation of dust particles are included in the simulation model to describe the temporal evolutions of dust particles selfconsistently.The motion of dust particles is dominated by the forces acting on them,such as electric field force,ion drag force,thermophoretic force and neutral molecule drag force.The model formulation is presented in detail as follows.

    2.1.Charge number of dust particles

    The dust particle charging process plays an important role in discharge dusty plasmas,since it is directly related to the electron and ion loss rates on the surface of dust particles and the charge number of dust particles.The most common method used to describe the dust particle charging process for collisionless dusty plasmas is the OML theory[29].While the plasma mentioned in this paper belongs to the weakly ionized and weakly collisional plasma,in which the ion-neutral collisions have a significant effect on the ion flux reaching the surface of dust particles,and the collision enhanced collection(CEC) approximation [30] should be employed to calculate the charging current of ions.Assuming that the electron and ion velocities meet the Maxwell distribution,the charging current of electrons and ions can be described as

    wherene,Te,andmerepresent the density,temperature,and mass of electrons,respectively;ni,Tiandmirepresent the density,temperature,and mass of ions,respectively;kBis the Boltzmann constant;estands for elementary charge;rdand φdrepresent the radius and surface potential of dust particles;λis the Debye length; andliis the ion mean free path.

    At the charging steady state,the balance equation of charging currents is

    Substituting the electroneutrality condition(ni=ne+Ndzd) into equation(3),it can be obtained that

    whereNdandzdare the density and charge number of dust particles,respectively.Cmeans the capacitance of dust particles,which is expressed asC=4πε0rd.The dust charge number is mainly determined by the plasma parameters generated in the discharge tube,and it can be calculated from equation(4) together with the system equations of the fluid model(described in the following section) for DC glow discharge dusty plasmas.

    2.2.Forces acting on dust particles

    In general,the forces acted on dust particles can be divided into two cases.One is the forces related to the charge of dust particles,such as the electrostatic force and the ion drag force.The other is the forces that are unrelated to the charge of dust particles,such as neutral molecular drag,gravity,and thermophoresis force.For the discharge conditions described in this paper,the discharge tube is vertically oriented to the ground.In this condition,the longitudinal thermophoretic force caused by the temperature gradient of the neutral gas(caused by the heating of the electrode) is along the axial direction.The gravity and longitudinal thermophoretic force are usually used to balance with the longitudinal electrostatic force(on the axial direction) to realize the levitation of dust particles in the vertically oriented discharge tube.Meanwhile,with the plasma parameters obtained in this paper,the calculation results of the radial thermophoretic force are comparable to the ion drag force.So,the radial thermophoretic force should be considered when simulating the plasma and dust parameters for the discharge conditions used in our paper.

    With the limitations mentioned above,the total force on dust particles in the radial direction is expressed as

    whereFE,Fid,FthandFndare the electric force,ion drag force,thermophoretic force and neutral molecular drag force in the radial direction.Specifically,the electrostatic force is expressed as

    whereEris the radial electric field.As is the case for electrons,the electrostatic force stops the negatively charged dust particles from moving towards the discharge tube wall.Based on the two-body collision model,the ion drag force can be calculated from the formula [31]

    whereυi=|υi|,υiis ion velocity,fi(υi) is the ion velocity distribution function,andare momentum transfer cross sections of ion collection and Coulomb scattering.For low-temperature plasmas,the ion velocity distribution function is usually assumed as [31]fi(υi)≈fi0(υi)(1+uiυi/uiT2),then the ion drag force can be deduced as

    whereΠ is the modified Coulomb logarithm

    The radial thermophoretic force can be approximately estimated by the formula [32]

    whereris the radial coordinate,pis gas pressure,lgis the gas molecular free path,Tgis gas temperature,Iis the discharge current,Ezis the longitudinal electric field,ηis the thermal conductivity coefficient of gas,J0(r/Λ)is the Bessel function,Λ=Rtube/2.4,Rtubeis the radius of discharge tube andTwis the wall temperature.

    For the dust particles moving in plasma,the friction on dust particles is mainly caused by their collisions with neutral molecular.The neutral molecular drag force is written as [33]

    whereudrepresents the dust particle velocity andunrepresents directional macroscopic velocity(not the thermal velocity) of the neutrals.In DC glow discharge dusty plasmas,the velocity of neutral molecules is usually so small as to be negligible.νdnis the momentum transfer cross sections of dust and neutral gas,which is expressed as [34]

    wherenn,mnandrnrepresent the density,molecular mass and molecular radius of the neutral gas,respectively.

    2.3.System equations for DC glow discharge dusty plasmas

    A self-consistent extended fluid model to describe the influence of dust particles on plasma parameters is presented in[35],in which the energy conservation equation is considered and the spatial distribution of dust particles is given as a fixed step function.Based on the extended fluid approach of discharge dusty plasmas,and considering the continuity and momentum equations of dust component as an additionalsupplement instead of assuming a fixed spatial distribution of dust particles,the system equations for DC glow discharge plasmas introducing radially free-moving dust particles are expressed in detail as follows.

    For plasma parameters of discharge,the electron/ion continuity equation is expressed as

    wherekrepresents species of plasma particles,nkis the number density;Skis source term caused by the plasma chemical processes;is the loss rate of electrons and ions on dust particles.Γkis the flux density;μkandDkrepresent the mobility and diffusion coefficient;E is the electric field;zkis the charge of electron/ion.

    The electron energy balance equation is written as

    wherenεis the electron energy density; Γεis heat flux density,which is described in detail in[36];andrepresent the energy change of electrons owing to the elastic and inelastic electron-neutral collision.

    The electric field is obtained from the modified Poisson’s equation

    whereε0is the vacuum dielectric constant;ndis dust density.

    For the dust component,the governing equations are expressed as

    where Γdis the flux density of dust particles;Tdis the thermal temperature of dust particles.

    The radial distributions of dusty plasma parameters in DC glow discharge can be obtained by coupling the extend fluid model(equations(14)-(18)) and dust transport model(equations(19) and(20)).

    3.Results and discussion

    The 2D axial symmetry simulation model is established with the plasma module of COMSOL Multiphysics software,in which the finite-element method is used to solve various systems of partial differential equations.Figure 1 shows the schematic diagram of the discharge tube.The discharge tube is vertically oriented to the ground,and the dust particles with an initial radial density profile of the blurred step function are placed in the positive column of the discharge,where the plasma parameters are relatively stable and the axial inhomogeneity of the plasma parameters is much smaller than the radial ones.The axial size of the dust region is 2 cm.With proper dust parameters,the dust particles can levitate in the positive column under the action of gravity,thermophoretic force and axial electrostatic force for different discharge currents.Some of the experimental observation results of the levitation of dust particles under discharge current ranging from a few mA to a dozen mA are observed in [22,37].The argon discharge pressure is 0.2 Torr,and for argon discharge studied in this work,the plasma components are reduced to four species: neutrals(Ar),electrons(e-),ions(Ar+) and metastable atoms(Ar?) with excitation energy of 11.72 eV.The plasma chemical processes of these species are described in detail in [35].

    Figure 1.Schematic diagram of the discharge tube.

    In our study,although the simulation model is a 2D axial symmetry simulation model,we only study the radial distributions of dust and plasma parameters for simplicity.The dust particles are negatively charged in positive column region of the discharge tube,so they are pushed to the tube wall by the ion drag forceFidand thermophoretic forceFthin the radial direction,meanwhile,the dust particles are captured at the discharge tube center by the radial electrostatic forceFE.The simulation is conducted under different discharge currents and dust parameters,since the ion drag force and electrostatic force acting on dust particles are dominated by them.It should be noted that different initial dust densities are employed for different discharge conditions and dust parameters to avoid the flameout of discharge caused by high density dust particles.The radial distribution of the concentration of dust particles will change due to the movement of dust particles until the total force on dust particles becomes close to zero,and the total number of dust particles in the discharge tube is constant.

    Table 1.The discharge and dust parameters under different simulation conditions.

    Specifically,the simulation conditions are presented in table 1.The discharge current in table 1 is defined as electron flux in the axial direction,which can be expressed as

    whereSis the cross section of the discharge tube.

    3.1.Simulation results for different discharge currents

    The simulation results for different discharge currents shown in figures 2-5 are obtained with dust particle radiusrd=1μm.Figure 2(a)shows the evolution process of dust density radial distribution with discharge currentI=1 mA.It is shown that the dust particles gradually move towards the axis of the discharge tube and finally gather at the center region of the tube.The ion density and velocity are relatively small under small discharge current,which will lead to a small ion drag force and radial thermophoretic force.In this situation,the electrostatic force is always larger than the sum of ion drag force and thermophoretic force(see figure 5),which leads to a consistent movement of dust particles towards the discharge tube axis.Then the electric field near the tube center will be reduced due to the increase of density of dust particles with negative charge until the electrostatic force,ion drag force and the thermophoretic force can counteract each other.At that time,the dust particles will stop moving and sustain a stable radial density distribution.

    Figure 2.Evolution processes of dust density radial distributions with different discharge currents.(a) I=1 mA,(b) I=2 mA,(c) I=4 mA.

    Figure 3.Radial distributions of charge density of electron,ion and dust particles when the dust distributions tend to be stable.(a)t=5 s and I=1 mA,(b) t=1.8 s and I=2 mA,(c) t=0.85 s and I=4 mA.

    Figure 4.Radial component of electric field for different discharge currents when the discharge starts(t=0 s)and when the dust distribution tends to be stable.(a) I=1 mA,(b) I=2 mA,(c) I=4 mA.

    Figure 5.Distributions of radial force acting on dust particles when the dust distributions tend to be stable.(a) t=5 s and I=1 mA,(b)t=1.8 s and I=2 mA,(c) t=0.85 s and I=4 mA.

    Figures 2(b) and(c) show the evolution process of dust density radial distribution with discharge currentI=2 mA andI=4 mA.It is shown that dust particles in both cases gradually move towards the tube wall and finally gather somewhere between the center and the tube wall.That is,a dust void is formed in the discharge tube,and this phenomenon has been confirmed experimentally by many researchers[19,22,23].When the discharge current increases,the ion density and ion velocity become lager,and,hence,the ion drag force becomes larger.It leads to a motion of dust particles towards the wall,and the dust gathering position is naturally farther away from the center for larger discharge current.It should be noted that the electrostatic force near the tube wall is very strong due to the existence of the plasma sheath,so the probability of dust particles reaching the tube wall is extremely small.

    When the distribution of dust particles tends to be stable,the electron,ion,and dust charge density distributions in the radial direction under different discharge currents with dust particle radiusrd=1μm are shown in figure 3.It is shown that the electron density decreases slightly and the ion density increases obviously in the dust gathering region for all these three cases.In general,the electron density decreases quickly,firstly due to the charging processes after the dust particles are introduced.Then the electrons around the dust cloud diffuse into the dust cloud rapidly due to the large density gradient,and an ambipolar electric field is built immediately,which will push ions moving towards to dust region.This is the reason for the increase in ion density in the dust gathering region.The loss of electrons due to the collection process of dust particles can be made up by the diffusion process of surrounding electrons to a large extent,since the size of the dust gathering regions is sufficiently small.So,the electron densities only have a slight decrease in the dust gathering regions.

    From figure 3,the minimum particle number densityndminleading to a ‘noticeable effect’ on the discharge plasma properties can be estimated.With the definition of a 10 percent change in ion density as the ‘noticeable effect’,the minimum particle number densitiesndminat the dust gathering region are calculated as about 1.8×1010m-3,1.75×1010m-3,1.3×1010m-3for different discharge currentsI=1 mA,2 mA and 4 mA,respectively.

    The radial component of electric field when the discharge starts(t=0 s),and when the dust distribution tends to be stable for different discharge currents with dust particle radiusrd=1μm is shown in figure 4.It can be seen that,compared with the value at the initial time(t=0 s),the radial electric field in the dust gathering region becomes flatter,which is consistent with the calculation results from figure 2 in [25].With the increase of discharge current,the dust gathering region becomes closer to the tube wall and the influence of dust particles on the radial component of electric field becomes more obvious.For dusty plasmas,it is clear that the mobility and diffusion coefficients of dust particles,electrons and ions satisfy the relationμd?μi?μeandDd?Di?De,so the radial component of electric field can be estimated asEr≈-De?rne/(μene).Then it is not hard to find that the radial component of electric field does not change much in the dust gathering region when the dust particles gather in the center region of the discharge tube,since the values of electron densityneand electron density gradient ?rnedo not change much.With the increase in discharge current and dust radius,the dust gathering region becomes closer to the tube wall,and the influence of dust particles onneand ?rnebecomes more obvious since the initial electron density decreases with the decreasing distance from the tube wall.So the influence of dust particles on the radial component of the electric field becomes more obvious accordingly.

    When the radial distribution of dust density tends to be stable,the spatial distributions of forces acting on the dust particles under different discharge currents,with dust particle radiusrd=1μm,is shown in figure 5.The neutral drag force is absent in figure 5,because it takes the role of friction and is directly proportional to the dust velocity.When thedust distribution tends to be stable(i.e.,the dust velocity tends to be zero),the neutral drag force acting on dust particles will get close to zero too.It can be seen from figure 5 that the force balance region of dust particles varies with discharge currents.With the increase in discharge current,the force balance region gradually shifts towards the tube wall,since the increase of the sum of ion drag force and thermophoretic force is greater than that of electrostatic force when the discharge current increases.It should be noted that a local force balance region of dust particles instead of a force balance point is formed in the radial direction of the discharge tube.Because an ambipolar electric field is built around the dust region due to the ambipolar diffusion of electrons and ions,and the initial force balance point is extended widely by the ambipolar electric field.

    3.2.Simulation results for different dust radii

    The influence of dust radius on DC glow discharge dusty plasmas is discussed in this section.Figure 6 shows the evolution processes of dust density radial distribution with different dust radii and for discharge currentI=2 mA.It is shown that the dust particles gather at the center of the discharge tube forrd=0.5μm,and when the dust radius increases,the dust gathering region becomes farther away from the discharge tube axis.From equations(6)and(8),it is not hard to find that the relationship between electrostatic force and dust radius satisfiesFE∝zd∝rd,and the ion drag force and thermophoretic force satisfiesFid∝rd2andFth∝rd2,respectively.This means that the increase in the dust radius results in a larger increment of the ion drag force and thermophoretic force than that of electrostatic force.Therefore,the force balance region gradually shifts towards the tube wall with the increase in radius,which means that the dust gathering region becomes closer to the tube wall.

    Figure 6.Evolution processes of dust density radial distributions with different dust radii.(a) rd=0.5 μm,(b) rd=1 μm,(c) rd=2 μm.

    Figure 7.Radial distributions of charge density of electron,ion and dust particles when the dust distributions tend to be stable.(a) t=8 s and rd=0.5 μm,(b) t=1.8 s and rd=1 μm,(c) t=0.7 s and rd=2 μm.

    Figure 8.Radial component of electric field for different dust radii when the discharge starts(t=0 s)and when the dust distribution tends to be stable.(a) rd=0.5 μm,(b) rd=1 μm,(c) rd=2 μm.

    When the dust distributions tend to be stable,the charge density distributions of electrons,ions and dust particles in the radial direction for different dust radii and with discharge currentI=2 mA are shown in figure 7.The simulation results are similar to the results obtained for different discharge currents,i.e.,the electron density decreases slightly and the ion density increases obviously in the dust gathering region.Here,the minimum particle number densitiesndminthat lead to a ‘noticeable effect’ on ion density in the dust gathering region are calculated as about 8×1010m-3,1.75×1010m-3and 2.6×1010m-3for different dust radiird=0.5μm,rd=1μm,andrd=2μm,respectively.

    The radial component of electric field when the discharge starts(t=0 s) and when the dust distribution tends to be stable for different dust radii with discharge currentI=2 mA is shown in figure 8.It is shown that,compared with the value at the initial time(t=0 s),the radial component of electric field does not change much in the dust gathering region when the dust particles gather in the center region of the discharge tube.With the increase in dust radius,the dust gathering region becomes closer to the tube wall and the influence of dust particles on the radial component of the electric field becomes more obvious,because the influence of dust particles onneand ?rnebecomes more obvious in the dust gathering region closer to the tube wall.

    Figure 9 shows the distributions of radial forces acting on dust particles for different dust radii and with discharge currentI=2 mA when the dust distributions tend to be stable.The neutral drag force is absent here too,since the dust distribution tends to be stable and the neutral drag force actingon dust particles gets close to zero.It is shown that a local force balance region of dust particles instead of a force balance point is formed due to the ambipolar electric field,and the force balance region gradually shifts towards the wall of the tube when the dust radius increases,since the increase in the dust radius leads to a larger increment of ion drag force and thermophoretic force than that of electrostatic force.

    Figure 9.Distributions of radial forces acting on dust particles when the dust distributions tend to be stable.(a)t=8 s and rd=0.5 μm,(b)t=1.8 s and rd=1 μm,(c) t=0.7 s and rd=2 μm.

    4.Conclusions

    An extended fluid model for investigating the dust and plasma parameters generated in DC glow discharge is developed.The radial distributions of dust density,electron/ion density,the radial component of electric field and forces acting on dust particles are calculated numerically by coupling the dust chargingcurrents balance equation and the extended fluid model equations.The influences of discharge current and dust radius on these dusty plasma parameters are obtained and discussed.

    According to the simulation results,it is concluded that both discharge current and dust radius have obvious influences on the dusty plasma parameters under DC glow discharge conditions.When the discharge current is low(I=1 mA)and dust radius is small(rd=0.5μm),the dust particles gradually move towards the center of the discharge tube and finally gather in the center region,since the electrostatic force acting on dust particles is always larger than the sum of ion drag force and thermophoretic force in the entire radial path.With the increase in discharge current and dust radius,the distance between the dust gathering region and the tube axis becomes larger due to the more obvious increase in ion drag force and thermophoretic force.The local force balance region of dust particles varies with the dust gathering region accordingly.The electron and ion densities are affected by the dust particles too.The electron density decreases slightly due to the fast diffusion of electrons and the ion density increases obviously due to the electroneutrality condition in the dust gathering region for all discharge conditions presented in this paper.The radial electric field in the dust gathering region becomes flatter compared with the value at the initial time,and the influence of dust particles on the radial component of electric field becomes more obvious with the increase in discharge current and dust radius,since initial electron density becomes smaller in the corresponding dust gathering region.Compared with the calculation results obtained under the assumption of fixed constant distributions of dust density,the simulation results obtained in this paper should be more realistic.

    Acknowledgments

    This research is financially supported by the Stable-Support Scientific Project of China Research Institute of Radiowave Propagation(No.132101W07),National Natural Science Foundation of China(No.12105251),and National Key Laboratory Foundation Electromagnetic Environment(Nos.A382101001,A382101002 and A152101731-C02).

    ORCID iDs

    猜你喜歡
    李輝
    Detecting the meteoroid by measuring the electromagnetic waves excited by the collision between the hypervelocity meteoroid and spacecraft
    高流量呼吸濕化治療儀在喉癌術后患者氣道濕化中的應用
    健康護理(2022年3期)2022-05-26 02:27:49
    Mechanism of microweld formation and breakage during Cu–Cu wire bonding investigated by molecular dynamics simulation
    Intrinsic two-dimensional multiferroicity in CrNCl2 monolayer*
    Theoretical research on the transport and ionization rate coefficients in glow discharge dusty plasma
    司機倒車未發(fā)生碰撞 旁邊老人摔倒而亡該擔責嗎
    樂活老年(2018年5期)2018-06-30 03:18:22
    李輝廢塑料加工設備技術升級產(chǎn)量高更賺錢
    眼線
    故事林(2017年7期)2017-04-25 09:18:55
    特殊任務
    Design,analysis and control for an antarctic modular manipulator
    国产91av在线免费观看| 水蜜桃什么品种好| 黄色毛片三级朝国网站 | 久久女婷五月综合色啪小说| 深夜a级毛片| 亚洲欧洲日产国产| av国产久精品久网站免费入址| 99热全是精品| 人妻 亚洲 视频| 插逼视频在线观看| 国产一区亚洲一区在线观看| 五月天丁香电影| 中文字幕免费在线视频6| 久久av网站| 永久免费av网站大全| 日韩大片免费观看网站| 91久久精品国产一区二区成人| 丰满饥渴人妻一区二区三| 日韩一区二区视频免费看| 成年美女黄网站色视频大全免费 | 国产欧美日韩综合在线一区二区 | 久久久精品免费免费高清| 免费观看av网站的网址| 国产亚洲欧美精品永久| 狂野欧美白嫩少妇大欣赏| 美女中出高潮动态图| 一级毛片黄色毛片免费观看视频| 亚洲自偷自拍三级| 黄色毛片三级朝国网站 | 一级毛片久久久久久久久女| 日本黄大片高清| 亚洲精品乱码久久久久久按摩| 日韩av不卡免费在线播放| 亚洲精品视频女| 插逼视频在线观看| 亚洲成色77777| 中国美白少妇内射xxxbb| 欧美激情极品国产一区二区三区 | 插阴视频在线观看视频| 国产精品久久久久成人av| 五月天丁香电影| 久久精品久久久久久久性| 国产欧美日韩一区二区三区在线 | 80岁老熟妇乱子伦牲交| 亚洲人成网站在线观看播放| 一级,二级,三级黄色视频| 免费观看a级毛片全部| 精品熟女少妇av免费看| 欧美三级亚洲精品| 国产黄片美女视频| 一个人看视频在线观看www免费| 欧美变态另类bdsm刘玥| 国产淫语在线视频| 欧美人与善性xxx| 波野结衣二区三区在线| 你懂的网址亚洲精品在线观看| 国产av码专区亚洲av| 亚洲欧美一区二区三区黑人 | 自拍欧美九色日韩亚洲蝌蚪91 | 欧美老熟妇乱子伦牲交| 一级毛片黄色毛片免费观看视频| 少妇人妻久久综合中文| 久久久久精品性色| 色5月婷婷丁香| 自拍偷自拍亚洲精品老妇| 亚洲国产精品一区三区| 国产精品国产三级国产专区5o| 蜜桃在线观看..| 亚洲av国产av综合av卡| 高清不卡的av网站| 丝袜喷水一区| 女性生殖器流出的白浆| 色网站视频免费| 男女免费视频国产| 国产男女超爽视频在线观看| 欧美日韩一区二区视频在线观看视频在线| 伊人亚洲综合成人网| 久久久午夜欧美精品| 精品一区二区免费观看| 男女边吃奶边做爰视频| 久久6这里有精品| 老司机亚洲免费影院| 亚洲国产成人一精品久久久| 亚洲国产毛片av蜜桃av| 亚洲无线观看免费| .国产精品久久| 91久久精品电影网| 精品国产乱码久久久久久小说| 亚洲av福利一区| av天堂久久9| 国模一区二区三区四区视频| 色视频www国产| 日韩成人伦理影院| 亚洲精品自拍成人| 中文精品一卡2卡3卡4更新| 一级毛片久久久久久久久女| 久久人人爽人人片av| 狠狠精品人妻久久久久久综合| 少妇熟女欧美另类| 精品人妻一区二区三区麻豆| 国产精品不卡视频一区二区| 国产精品久久久久久久电影| 汤姆久久久久久久影院中文字幕| 少妇人妻久久综合中文| 欧美精品人与动牲交sv欧美| 午夜福利在线观看免费完整高清在| 日韩一本色道免费dvd| 全区人妻精品视频| 91午夜精品亚洲一区二区三区| 一区二区av电影网| 亚洲国产欧美在线一区| 青青草视频在线视频观看| 免费观看的影片在线观看| 婷婷色av中文字幕| 国产色婷婷99| 久久女婷五月综合色啪小说| 日日啪夜夜撸| 免费播放大片免费观看视频在线观看| 免费av中文字幕在线| 三级国产精品片| 国产探花极品一区二区| 一本色道久久久久久精品综合| 在线 av 中文字幕| 十八禁网站网址无遮挡 | 日日啪夜夜爽| 一级,二级,三级黄色视频| 草草在线视频免费看| 国产亚洲精品久久久com| 人妻 亚洲 视频| 91aial.com中文字幕在线观看| 啦啦啦视频在线资源免费观看| av在线app专区| 国产免费一级a男人的天堂| 男女国产视频网站| 久久精品国产亚洲av天美| 欧美三级亚洲精品| 国产亚洲最大av| 一级av片app| 国产精品一区二区三区四区免费观看| 国产亚洲91精品色在线| 18禁动态无遮挡网站| 九九在线视频观看精品| 中国国产av一级| 自线自在国产av| 夜夜看夜夜爽夜夜摸| 免费久久久久久久精品成人欧美视频 | 桃花免费在线播放| 亚洲色图综合在线观看| 亚洲欧美日韩另类电影网站| 少妇的逼水好多| 99精国产麻豆久久婷婷| 亚洲精品,欧美精品| 亚洲精品乱久久久久久| av一本久久久久| 高清欧美精品videossex| 成年人午夜在线观看视频| 丝袜喷水一区| h日本视频在线播放| 日韩精品有码人妻一区| av国产久精品久网站免费入址| 久热久热在线精品观看| 久久久欧美国产精品| 人妻夜夜爽99麻豆av| 久久久久久久久大av| 在线观看美女被高潮喷水网站| 国产在视频线精品| 在线观看www视频免费| 亚洲丝袜综合中文字幕| 国产免费福利视频在线观看| 日本wwww免费看| 国产黄片视频在线免费观看| 国产精品久久久久久精品电影小说| 久久久a久久爽久久v久久| 久久女婷五月综合色啪小说| 最新中文字幕久久久久| 最近手机中文字幕大全| 午夜免费男女啪啪视频观看| 亚洲av成人精品一二三区| 亚洲精品日本国产第一区| 欧美老熟妇乱子伦牲交| 大码成人一级视频| 美女视频免费永久观看网站| av.在线天堂| 成人漫画全彩无遮挡| 久久精品国产a三级三级三级| 伊人亚洲综合成人网| 亚洲欧美日韩卡通动漫| 国产午夜精品一二区理论片| 极品人妻少妇av视频| 熟女人妻精品中文字幕| 久久国产精品大桥未久av | 精品少妇黑人巨大在线播放| xxx大片免费视频| 在线观看www视频免费| 精品国产露脸久久av麻豆| 精品久久久久久久久av| 久久精品国产鲁丝片午夜精品| 精品人妻偷拍中文字幕| 毛片一级片免费看久久久久| 人妻一区二区av| 草草在线视频免费看| 中文字幕av电影在线播放| 99久久精品国产国产毛片| 国产精品一区二区性色av| 自拍偷自拍亚洲精品老妇| 成人影院久久| 少妇人妻精品综合一区二区| 久久精品熟女亚洲av麻豆精品| 日韩av不卡免费在线播放| 久久久精品94久久精品| 日韩一区二区三区影片| 麻豆成人av视频| 国产熟女午夜一区二区三区 | 国产日韩一区二区三区精品不卡 | 老司机亚洲免费影院| 18+在线观看网站| 国产精品成人在线| 美女xxoo啪啪120秒动态图| 精品久久久精品久久久| 观看免费一级毛片| 国产av码专区亚洲av| xxx大片免费视频| 亚洲欧美一区二区三区国产| 欧美高清成人免费视频www| 国产精品无大码| 一二三四中文在线观看免费高清| 一级av片app| 在线天堂最新版资源| 日韩三级伦理在线观看| 国产美女午夜福利| 一级毛片aaaaaa免费看小| 自拍偷自拍亚洲精品老妇| 久久99热这里只频精品6学生| 欧美日韩亚洲高清精品| 夫妻性生交免费视频一级片| 777米奇影视久久| 少妇人妻精品综合一区二区| 人人妻人人爽人人添夜夜欢视频 | 亚洲精品国产av成人精品| 亚洲三级黄色毛片| 日本av免费视频播放| 国产免费视频播放在线视频| 国产高清三级在线| 交换朋友夫妻互换小说| 自拍偷自拍亚洲精品老妇| √禁漫天堂资源中文www| 国产精品久久久久久久久免| 女性生殖器流出的白浆| 亚洲一级一片aⅴ在线观看| 国产精品嫩草影院av在线观看| 久久婷婷青草| 国产精品偷伦视频观看了| 国产成人a∨麻豆精品| 久久久a久久爽久久v久久| 国内少妇人妻偷人精品xxx网站| 一级二级三级毛片免费看| 久久久久久久国产电影| 免费观看在线日韩| a级毛片免费高清观看在线播放| 亚洲精品中文字幕在线视频 | 国产精品人妻久久久影院| 亚洲精品日本国产第一区| 一级爰片在线观看| 国产av码专区亚洲av| 九色成人免费人妻av| 欧美 亚洲 国产 日韩一| av专区在线播放| 欧美亚洲 丝袜 人妻 在线| av天堂久久9| 热re99久久精品国产66热6| 人人妻人人看人人澡| 亚洲精品日韩在线中文字幕| 亚洲欧洲精品一区二区精品久久久 | 插逼视频在线观看| 精品久久久久久久久亚洲| 99九九在线精品视频 | 色吧在线观看| 老司机影院成人| a级片在线免费高清观看视频| 日本色播在线视频| 欧美xxxx性猛交bbbb| 欧美日韩一区二区视频在线观看视频在线| 精品国产国语对白av| 一个人看视频在线观看www免费| 欧美另类一区| 狠狠精品人妻久久久久久综合| 国产黄片美女视频| 国产一区二区在线观看av| 久久久久久久精品精品| 极品教师在线视频| av有码第一页| 欧美日韩精品成人综合77777| 精品一区在线观看国产| 免费看日本二区| 久久这里有精品视频免费| 夫妻性生交免费视频一级片| 中文精品一卡2卡3卡4更新| 日本黄色片子视频| 国产男女超爽视频在线观看| 亚洲av.av天堂| 亚洲综合精品二区| 成年女人在线观看亚洲视频| 亚洲精品aⅴ在线观看| 欧美另类一区| 欧美成人精品欧美一级黄| 免费av不卡在线播放| √禁漫天堂资源中文www| 超碰97精品在线观看| 欧美三级亚洲精品| 在线观看国产h片| 亚洲av在线观看美女高潮| 成人毛片60女人毛片免费| av国产精品久久久久影院| 夜夜爽夜夜爽视频| 街头女战士在线观看网站| 日韩欧美精品免费久久| 少妇被粗大的猛进出69影院 | 建设人人有责人人尽责人人享有的| 人妻制服诱惑在线中文字幕| 国产欧美另类精品又又久久亚洲欧美| 日韩一区二区三区影片| 成人亚洲欧美一区二区av| 日韩三级伦理在线观看| 国产69精品久久久久777片| 插逼视频在线观看| 亚洲欧洲日产国产| 99久久人妻综合| 久久免费观看电影| 日日摸夜夜添夜夜爱| 亚洲丝袜综合中文字幕| 久久精品久久久久久噜噜老黄| 成年人午夜在线观看视频| 人妻制服诱惑在线中文字幕| 亚州av有码| 色视频www国产| 午夜福利在线观看免费完整高清在| 久久综合国产亚洲精品| 观看免费一级毛片| 在线观看免费日韩欧美大片 | 51国产日韩欧美| 日韩熟女老妇一区二区性免费视频| 亚洲av福利一区| 在线亚洲精品国产二区图片欧美 | 欧美日韩视频精品一区| 国产亚洲精品久久久com| 国产伦理片在线播放av一区| 亚洲一级一片aⅴ在线观看| 另类精品久久| 天堂中文最新版在线下载| 观看美女的网站| 国产日韩欧美在线精品| 69精品国产乱码久久久| av女优亚洲男人天堂| 久久久国产精品麻豆| 丰满乱子伦码专区| 久久精品国产亚洲网站| 高清午夜精品一区二区三区| 校园人妻丝袜中文字幕| 中文字幕久久专区| 最黄视频免费看| av女优亚洲男人天堂| 久久久久久久久久久免费av| 国产精品一区二区在线不卡| 亚洲国产毛片av蜜桃av| 观看av在线不卡| 国产美女午夜福利| 国产av精品麻豆| 人人妻人人添人人爽欧美一区卜| 少妇精品久久久久久久| 最黄视频免费看| 三级国产精品片| 欧美日韩一区二区视频在线观看视频在线| 免费大片18禁| h视频一区二区三区| 草草在线视频免费看| a级毛色黄片| 肉色欧美久久久久久久蜜桃| 色视频在线一区二区三区| 免费人成在线观看视频色| 成人国产麻豆网| 天堂俺去俺来也www色官网| 天堂中文最新版在线下载| 免费观看无遮挡的男女| 国产又色又爽无遮挡免| 80岁老熟妇乱子伦牲交| 自拍偷自拍亚洲精品老妇| 久久久久精品性色| 色网站视频免费| 少妇裸体淫交视频免费看高清| h视频一区二区三区| 99热网站在线观看| 啦啦啦啦在线视频资源| 成人午夜精彩视频在线观看| 最新中文字幕久久久久| 99热这里只有是精品在线观看| 亚洲第一区二区三区不卡| 男男h啪啪无遮挡| 国产毛片在线视频| 中文精品一卡2卡3卡4更新| 精品人妻一区二区三区麻豆| 午夜av观看不卡| a 毛片基地| 国产高清不卡午夜福利| 青春草亚洲视频在线观看| 亚洲国产毛片av蜜桃av| 国产一区二区在线观看av| 成人二区视频| 日韩av不卡免费在线播放| 高清欧美精品videossex| 成人亚洲精品一区在线观看| 成人18禁高潮啪啪吃奶动态图 | 一级黄片播放器| 日本免费在线观看一区| 国产日韩一区二区三区精品不卡 | 极品教师在线视频| 男女啪啪激烈高潮av片| 高清欧美精品videossex| 国产精品.久久久| 最近中文字幕高清免费大全6| 成人午夜精彩视频在线观看| 亚洲av福利一区| 乱人伦中国视频| 国产黄频视频在线观看| 简卡轻食公司| 精品熟女少妇av免费看| 国模一区二区三区四区视频| 国产成人一区二区在线| 黑人猛操日本美女一级片| 涩涩av久久男人的天堂| 日韩伦理黄色片| 男人狂女人下面高潮的视频| 日日啪夜夜撸| 欧美精品亚洲一区二区| 国产免费一级a男人的天堂| 夜夜骑夜夜射夜夜干| 亚洲经典国产精华液单| 嫩草影院新地址| 中国美白少妇内射xxxbb| √禁漫天堂资源中文www| 成人综合一区亚洲| 爱豆传媒免费全集在线观看| 涩涩av久久男人的天堂| 国产一区二区在线观看av| 欧美 日韩 精品 国产| 久久99蜜桃精品久久| 亚洲精品成人av观看孕妇| a级毛片在线看网站| 五月天丁香电影| 国产av精品麻豆| 亚洲国产精品一区三区| 成人午夜精彩视频在线观看| 国产欧美日韩一区二区三区在线 | 国产精品人妻久久久久久| 少妇的逼好多水| 夜夜爽夜夜爽视频| 亚洲国产欧美在线一区| 一个人免费看片子| 女人精品久久久久毛片| 久久久久久久久久久丰满| 亚洲欧洲国产日韩| 99热全是精品| 永久免费av网站大全| 亚洲精品国产av成人精品| 色94色欧美一区二区| 中国国产av一级| 欧美变态另类bdsm刘玥| 国产亚洲欧美精品永久| tube8黄色片| 久久久久久久久大av| 高清毛片免费看| 看非洲黑人一级黄片| 超碰97精品在线观看| 国产成人精品福利久久| 成人黄色视频免费在线看| 亚洲国产色片| av天堂中文字幕网| 好男人视频免费观看在线| 免费大片黄手机在线观看| 日本爱情动作片www.在线观看| 一个人看视频在线观看www免费| 欧美日韩视频高清一区二区三区二| 99re6热这里在线精品视频| 午夜免费鲁丝| 国产一区二区三区综合在线观看 | 午夜福利在线观看免费完整高清在| 大香蕉97超碰在线| 午夜福利在线观看免费完整高清在| 一本久久精品| 全区人妻精品视频| 一级毛片我不卡| 成年美女黄网站色视频大全免费 | 亚洲精品456在线播放app| 午夜av观看不卡| 如何舔出高潮| 26uuu在线亚洲综合色| 久久久久久人妻| 亚洲av成人精品一二三区| 精品人妻一区二区三区麻豆| 十分钟在线观看高清视频www | 国产精品国产三级专区第一集| 国产69精品久久久久777片| 日本色播在线视频| 久久久久久久国产电影| 亚洲怡红院男人天堂| 日日啪夜夜爽| 99久久中文字幕三级久久日本| av在线老鸭窝| 在线观看三级黄色| 在线观看免费视频网站a站| a级毛片免费高清观看在线播放| 97超碰精品成人国产| 观看美女的网站| 女性生殖器流出的白浆| 一级毛片我不卡| 欧美xxⅹ黑人| 水蜜桃什么品种好| 蜜臀久久99精品久久宅男| 妹子高潮喷水视频| 精品国产乱码久久久久久小说| 国产欧美日韩一区二区三区在线 | √禁漫天堂资源中文www| 国产又色又爽无遮挡免| 美女xxoo啪啪120秒动态图| 国产欧美亚洲国产| 王馨瑶露胸无遮挡在线观看| 免费av不卡在线播放| 一本大道久久a久久精品| 亚洲精品国产av蜜桃| 亚洲欧美精品自产自拍| 毛片一级片免费看久久久久| 精品亚洲成a人片在线观看| 欧美bdsm另类| 晚上一个人看的免费电影| 久久99蜜桃精品久久| 特大巨黑吊av在线直播| 岛国毛片在线播放| 国产精品一区二区在线不卡| 欧美人与善性xxx| 少妇猛男粗大的猛烈进出视频| 99精国产麻豆久久婷婷| 亚洲精品日本国产第一区| 亚洲精品乱码久久久久久按摩| 三级国产精品片| 最黄视频免费看| 91成人精品电影| √禁漫天堂资源中文www| 色5月婷婷丁香| 国产av国产精品国产| 老司机影院毛片| 国产精品久久久久成人av| 肉色欧美久久久久久久蜜桃| 久久久久国产精品人妻一区二区| av播播在线观看一区| 国产一级毛片在线| 亚洲美女视频黄频| 男女无遮挡免费网站观看| 久久午夜综合久久蜜桃| 性高湖久久久久久久久免费观看| 午夜福利影视在线免费观看| 久久久亚洲精品成人影院| 国产69精品久久久久777片| 国产欧美日韩综合在线一区二区 | av有码第一页| 国产精品熟女久久久久浪| 这个男人来自地球电影免费观看 | 老熟女久久久| 少妇人妻一区二区三区视频| 人妻人人澡人人爽人人| 久久人妻熟女aⅴ| 亚洲国产色片| 高清黄色对白视频在线免费看 | 特大巨黑吊av在线直播| 国产 一区精品| 国产乱人偷精品视频| 美女国产视频在线观看| 婷婷色综合www| 亚洲av国产av综合av卡| 卡戴珊不雅视频在线播放| 少妇的逼水好多| 观看美女的网站| 久久鲁丝午夜福利片| 久久ye,这里只有精品| 自线自在国产av| 色吧在线观看| 国产精品不卡视频一区二区| 国产免费一区二区三区四区乱码| av网站免费在线观看视频| 欧美3d第一页| www.色视频.com| 国产淫语在线视频| 少妇裸体淫交视频免费看高清| 精品国产露脸久久av麻豆| 老司机亚洲免费影院| 久久99精品国语久久久| 国产在线一区二区三区精| 久久久国产一区二区| 欧美人与善性xxx| 美女cb高潮喷水在线观看| 婷婷色麻豆天堂久久| 久久久久久久久久久丰满| 久久久精品94久久精品| 国产白丝娇喘喷水9色精品| 人妻少妇偷人精品九色| 一区在线观看完整版| 亚洲国产毛片av蜜桃av| 亚洲欧洲精品一区二区精品久久久 | 久久久久国产网址| 嫩草影院入口| 欧美日本中文国产一区发布| 免费久久久久久久精品成人欧美视频 | 人人澡人人妻人| a 毛片基地| 国内揄拍国产精品人妻在线| 国产日韩欧美亚洲二区| 人人妻人人澡人人看|